Eco-Friendly Sample Preparation Trends for Exogenous Toxic Organic Compounds in Food: A Sustainable Perspective for LC-MS Analysis
Abstract
1. Introduction
2. Exogenous Toxic Compounds in Food: Chemical Families, Toxicological Relevance, and Regulatory Frameworks
2.1. Mycotoxins
2.2. Veterinary Drugs
2.3. Non-Polar Pesticides
2.4. Per- and Polyfluoroalkyl Substances
2.5. Heterocyclic Aromatic Amines
2.6. Polycyclic Aromatic Hydrocarbons
2.7. Regulatory Constraints and Analytical Challenges
3. Food Matrices’ Impact on the Occurrence of Exogenous Toxic Compounds
3.1. Plant Matrices
3.2. Animal Matrices
3.3. Processed and Mixed Matrices
4. Sample Preparation Techniques Exogenous Toxic Compounds in Food Analysis
4.1. Solid-Phase Extraction
4.2. QuEChERS
4.3. Liquid–Liquid Extraction
5. Integration of Advanced Sample Preparation with UHPLC–MS and Spectral Databases
5.1. Instrumental Requirements for Diverse Food Extracts
5.2. Linking Sustainable Extraction to Green Instrumental Workflow
5.3. High-Resolution Screening and Spectral Identification
6. Green Metrics in Food Analysis
Overview of Extraction Techniques Assessed with the AGREEprep Metric
- Criterion 1—“Sample preparation placement” was identical across all methods, as sample pretreatment was performed ex situ in the laboratory.
- Criterion 3—“Target sustainable, reusable, and renewable materials” was uniformly scored, since the materials used were neither sustainable nor renewable, although they were reused multiple times.
- Criterion 6—“Maximize sample throughput” was benchmarked against solid-phase extraction (SPE) as the reference technique, using a 24-position vacuum manifold system that enables parallel sample processing.
- Criterion 9—“Post-sample preparation configuration for analysis” was constant for all approaches, as LC–MS was employed in every case.
7. Conclusions and Perspectives
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C. Chemical contaminants and food quality. Foods 2025, 14, 2317. [Google Scholar] [CrossRef]
- De Girolamo, A.; Lippolis, V.; Pascale, M. Overview of recent liquid chromatography mass spectrometry-based methods for natural toxins detection in food products. Toxins 2022, 14, 328. [Google Scholar] [CrossRef]
- Brandi, J.; Siragusa, G.; Robotti, E.; Marengo, E.; Cecconi, D. Analysis of veterinary drugs and pesticides in food using liquid chromatography-mass spectrometry. Trends Anal. Chem. 2024, 179, 117888. [Google Scholar] [CrossRef]
- Sun, Q.; Dong, Y.; Wen, X.; Zhang, X.; Hou, S.; Zhao, W. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front. Nutr. 2023, 10, 1244459. [Google Scholar] [CrossRef]
- Ma, M.-H.; Zhang, J.-N.; Ma, X.-L.; Wang, X.-C.; Ma, F.-L.; Liu, J.-N.; Lv, Y.; Yu, Y.-J.; She, Y. Using UHPLC–HRMS-based comprehensive strategy to efficiently and accurately screen and identify illegal additives in health-care foods. Food Res. Int. 2023, 170, 113015. [Google Scholar] [CrossRef]
- Soares Maciel, E.V.; dos Santos, N.G.P.; Vargas Medina, D.A.; Lanças, F.M. Cyclodextrins-based sorbents for sustainable sample preparation focusing on food analysis. Green Anal. Chem. 2023, 7, 100077. [Google Scholar] [CrossRef]
- Alahmad, W.; Kaya, S.I.; Cetinkaya, A.; Varanusupakul, P.; Ozkan, S.A. Green chemistry methods for food analysis: Overview of sample preparation and determination. Adv. Sample Prep. 2023, 5, 100053. [Google Scholar] [CrossRef]
- Peña-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green analytical chemistry metrics: A review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Peña-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Santana-Mayor, A.; Rodríguez-Ramos, R.; Herrera-Herrera, A.V.; Socas-Rodríguez, B.; Rodríguez-Delgado, M.A. Updated overview of QuEChERS applications in food, environmental and biological analysis (2020–2023). Trends Anal. Chem. 2023, 169, 117375. [Google Scholar] [CrossRef]
- Saura-Cayuela, M.; Lara-Torres, S.; Pacheco-Fernández, I.; Trujillo-Rodríguez, M.J.; Ayala, J.H.; Pino, V. Green materials for greener food sample preparation: A review. Green Anal. Chem. 2023, 4, 100053. [Google Scholar] [CrossRef]
- Yin, L.; Yu, L.; Guo, Y.; Wang, C.; Ge, Y. Green analytical chemistry metrics for evaluating the greenness of analytical procedures. J. Pharm. Anal. 2024, 14, 101013. [Google Scholar] [CrossRef]
- Louppis, A.P.; Kontominas, M.G. Recent developments (2020–2023) on the use of liquid chromatography in the determination of food contaminants. Separations 2024, 11, 342. [Google Scholar] [CrossRef]
- Hupatz, H.; Rahu, I.; Wang, W.-C.; Witting, M.; Causon, T.J. Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening. Anal. Bioanal. Chem. 2025, 417, 473–493. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Cuesta Ramos, L.; Rodríguez-García, A.; Castagnini, J.M.; Salgado-Ramos, M.; Martínez-Culebras, P.V.; Barba, F.J.; Pallarés, N. HPLC-MS/MS and ICP-MS for evaluation of mycotoxins and heavy metals in edible insects and their defatted cakes resulting from supercritical fluid extraction. Foods 2024, 13, 3233. [Google Scholar] [CrossRef]
- Pallarés, N.; Tolosa, J.; Ferrer, E.; Berrada, H. Mycotoxins in raw materials, beverages and supplements of botanicals: A review of occurrence, risk assessment and analytical methodologies. Food Chem. Toxicol. 2022, 165, 113013. [Google Scholar] [CrossRef] [PubMed]
- Vargas Medina, D.A.; Bassolli Borsatto, J.V.; Maciel, E.V.S.; Lanças, F.M. Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends Anal. Chem. 2021, 135, 116156. [Google Scholar] [CrossRef]
- Castell, A.; Arroyo-Manzanares, N.; ViNas, P.; Lopez-Garcia, I.; Campillo, N. Advanced materials for magnetic solid-phase extraction of mycotoxins: A review. TrAC Trends Anal. Chem. 2024, 178, 117826. [Google Scholar] [CrossRef]
- Tang, Z.; Han, Q. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J. Sep. Sci. 2022, 45, 2273–2300. [Google Scholar] [CrossRef] [PubMed]
- IARC. Chemical Agents and Related Occupations; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100F; International Agency for Research on Cancer: Lyon, France, 2012. Available online: https://publications.iarc.fr/100F (accessed on 7 November 2025).
- IARC. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; IARC Monographs, Volume 56; International Agency for Research on Cancer: Lyon, France, 1993. Available online: https://publications.iarc.fr/56 (accessed on 7 November 2025).
- IARC. Monographs on the Identification of Carcinogenic Hazards to Humans; International Agency for Research on Cancer: Lyon, France, 2023; Volume 135. Available online: https://publications.iarc.fr/135 (accessed on 7 November 2025).
- Stoev, S.D. Food security, underestimated hazard of joint mycotoxin exposure and management of contamination risk. Food Control 2024, 159, 110235. [Google Scholar] [CrossRef]
- Nešić, K.; Marić, M.; Bojanić, N. Modified mycotoxins and multitoxin contamination of food and feed: A review. Toxins 2023, 15, 379. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L122. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R0915 (accessed on 7 November 2025).
- Codex Alimentarius Commission. General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995, Rev. 2024); FAO/WHO: Rome, Italy, 2024; Available online: https://www.fao.org/fao-who-codexalimentarius (accessed on 7 November 2025).
- Yang, G.; Zhang, J.; Tang, Y.; Kong, C.; Li, S.; Wang, S.; Ding, S.; Gu, L.; Shen, X.; Martin, A.A.; et al. Development and validation of rapid screening of 192 veterinary drug residues in aquatic products using HPLC-HRMS coupled with QuEChERS. Food Chem. X 2024, 22, 101504. [Google Scholar] [CrossRef]
- Tripathi, A.; Rawson, A.; Singh, A. Nitrofuran residues in animal-sourced food: Sample extraction and identification methods—A review. Food Chem. Toxicol. 2023, 178, 113312. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Wan, J. A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions. Sustainability 2023, 15, 10413. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 37/2010 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union 2010, L15, 1–72. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010R0037 (accessed on 7 November 2025).
- European Commission. Commission Regulation (EU) 2019/1871 on Reference Points for Action for Non-Allowed Pharmacologically Active Substances in Food of Animal Origin. Off. J. Eur. Union 2019, L289, 41–46. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R1871 (accessed on 7 November 2025).
- Melekhin, A.O.; Tolmacheva, V.V.; Apyari, V.V.; Dmitrienko, S.G. Current trends in analytical strategies for chromatographic determination of nitrofuran metabolites in food samples: An update since 2012. J. Chromatogr. A 2022, 1685, 463598. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R.; Wang, X.; Zhang, Y. Determination of veterinary drug residues in food of animal origin: Recent advances and future perspectives. Anal. Chim. Acta 2020, 1120, 15–33. [Google Scholar] [CrossRef]
- Zheng, X.; Xie, Y.; Chen, Z.; Cao, M.; Lei, X.; Le, T. A comprehensive review on the pretreatment and detection methods of nitrofurans and their metabolites in animal-derived food and environmental samples. Food Chem. X 2024, 24, 101928. [Google Scholar] [CrossRef] [PubMed]
- Castello Branco, L.; Rodrigues, M.V.N.; Reyes, F.G.R. Effect of food processing (fish burger preparation and frying) on residual levels of enrofloxacin and ciprofloxacin. Food Addit. Contam. Part A 2021, 38, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO; WOAH. One Health Joint Plan of Action (2022–2026); FAO/WHO/WOAH: Rome, Italy, 2022; Available online: https://www.fao.org/one-health/en (accessed on 7 November 2025).
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–750. [Google Scholar] [CrossRef]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement the ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef]
- Barros, S.C.; Silva, A.S.; Torres, D. Multiresidue multiclass analytical methods for determination of antibiotics in animal-origin food: A critical analysis. Antibiotics 2023, 12, 202. [Google Scholar] [CrossRef]
- Lima, É.; Oliveira, M.B.; Freitas, A. Antibiotics in intensive egg production: Food-safety tools to ensure regulatory compliance. Food Chem. Adv. 2023, 3, 100548. [Google Scholar] [CrossRef]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241515528 (accessed on 7 November 2025).
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D. Antibiotic use in livestock and residues in food—A public health threat: A review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Ishtaweera, P.; Baker, G.A. Progress in the application of ionic liquids and deep eutectic solvents for the separation and quantification of per- and polyfluoroalkyl substances. J. Hazard. Mater. 2024, 465, 132959. [Google Scholar] [CrossRef]
- Jiménez-Skrzypek, G.; González-Sálamo, J.; Hernández-Borges, J. Analytical methodologies and occurrence of per- and polyfluorinated alkyl substances—A review. J. Chromatogr. Open 2023, 4, 100089. [Google Scholar] [CrossRef]
- Ogunbiyi, O.D.; Ajiboye, T.O.; Omotola, E.O.; Oladoye, P.O.; Olanrewaju, C.A.; Quinete, N. Analytical approaches for screening of per- and poly fluoroalkyl substances in food items: A review of recent advances and improvements. Environ. Pollut. 2023, 329, 121705. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 396/2005 on Maximum Residue Levels of Pesticides in or on Food and Feed. Off. J. Eur. Union 2005, L70, 1–16. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32005R0396 (accessed on 7 November 2025).
- UNEP. Stockholm Convention on Persistent Organic Pollutants; United Nations Environment Programme: Geneva, Switzerland, 2023. [Google Scholar]
- Domingo, J.L.; Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef]
- Brase, R.A.; Mullin, E.J.; Spink, D.C. Legacy and emerging per- and polyfluoroalkyl substances: Analytical techniques, environmental fate, and health effects. Int. J. Mol. Sci. 2021, 22, 995. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Minucci, J.M.; Mullikin, A.; Slover, R.; Cohen Hubal, E.A. Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: A systematic review. Environ. Int. 2022, 162, 107149. [Google Scholar] [CrossRef]
- Numata, J.; Kowalczyk, J.; Adolphs, J.; Ehlers, S.; Schafft, H.; Fuerst, P.; Müller-Graf, C.; Lahrssen-Wiederholt, M.; Greiner, M. Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. J. Agric. Food Chem. 2014, 62, 6861–6870. [Google Scholar] [CrossRef]
- EFSA. Risk assessment of PFAS in food: Summary of the EFSA Scientific Opinion. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2022/2388 Setting Maximum Levels for PFAS in Certain Foodstuffs. Off. J. Eur. Union 2022, L317, 6–14. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R2388 (accessed on 7 November 2025).
- Munoz, G.; Liu, J.; Duy, S.V.; Sauvè, S. Analysis of F-53B, GenX, ADONA, and emerging fluoroalkyl ether substances in environmental and biomonitoring samples: A review. Trends Environ. Anal. Chem. 2019, 23, e00066. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Zhang, W.; Xu, J. Perfluoroalkyl substances accumulation in lettuce and transfer potential from soil to edible plants. Food Addit. Contam. Part A 2024, 41, 1278–1289. [Google Scholar]
- Dong, H.; Xian, Y.; Li, H.; Bai, W.; Zeng, X. Potential carcinogenic heterocyclic aromatic amines (HAAs) in foodstuffs: Formation, extraction, analytical methods, and mitigation strategies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 365–404. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, Y.; Pateiro, M.; Munekata, P.; Lorenzo, J.M. HAAs in cooked foods: Formation pathways, occurrence, and reduction strategies. Foods 2021, 10, 3031. [Google Scholar] [CrossRef]
- Oz, E.; Aoudeh, E.; Murkovic, M.; Toldrá, F.; Gomez-Zavaglia, A.; Brennan, C.; Oz, F. HAAs in meat: Formation, toxicology, occurrence, risk, and analytics. Meat Sci. 2023, 205, 109312. [Google Scholar] [CrossRef]
- Wei, S.; Yang, X.; Lin, M.; Chen, N.; Gao, X.; Hu, X.; Chen, F.; Zhu, Y. Development of a two-step pretreatment and UPLC–MS/MS-based method for simultaneous determination of acrylamide, 5-hydroxymethylfurfural, advanced glycation end products and heterocyclic amines in thermally processed foods. Food Chem. 2024, 430, 136726. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, X.; Wen, R.; Qi, J.; Shao, L.; Hu, Y.; Zhang, L. Effects of vegetable extracts on the formation of heterocyclic aromatic amines and advanced glycation end products during roasting and in vitro digestion of roasted beef patties. Meat Sci. 2025, 229, 109925. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, G.; Lee, J.G. A review of food contamination with nitrated and oxygenated polycyclic aromatic hydrocarbons: Toxicity, analysis, occurrence, and risk assessment. Food Sci. Biotechnol. 2024, 33, 2261–2274. [Google Scholar] [CrossRef]
- Chen, B.; Inbaraj, B.S.; Hsu, K.-C. Recent advances in the analysis of PAHs in food and water. J. Food Drug Anal. 2022, 30, 494–522. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.; Zheng, Y.; Qin, Q.; Chen, D. Recent advances in sample preparation and chromatographic/mass-spectrometric techniques for detecting PAHs in edible oils: 2010 to present. Foods 2024, 13, 1714. [Google Scholar] [CrossRef]
- Ma, X.; Wu, S. Oxygenated polycyclic aromatic hydrocarbons in food: Toxicity, occurrence and potential sources. Crit. Rev. Food Sci. Nutr. 2024, 64, 4882–4903. [Google Scholar] [CrossRef]
- Mansour, S.T.; Ibrahim, H.; Zhang, J.; Farag, M.A. Extraction and analytical approaches for major food carcinogens: Nitrosamines, HAAs, and PAHs. Food Chem. 2025, 464, 141736. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 835/2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for PAHs in Foodstuffs. Off. J. Eur. Union 2011, L215, 4–8. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011R0835 (accessed on 7 November 2025).
- Paoletti, F.; Sdogati, S.; Barola, C.; Giusepponi, D.; Moretti, S.; Galarini, R. Development and validation of a multiclass confirmatory method for the determination of over 60 antibiotics in eggs using liquid-chromatography high-resolution mass spectrometry. Food Control 2021, 127, 108109. [Google Scholar] [CrossRef]
- Kiszkiel-Taudul, I.; Stankiewicz, P. Microextraction of tigecycline using deep eutectic solvents and its determination in milk by LC-MS/MS method. J. Agric. Food Chem. 2023, 71, 11716–11725. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Liu, R.; Yao, S.; Wang, H.; Liu, Y. Mycotoxins in apples and apple products: Analytical methods, natural occurrence, and risk assessment. Food Chem. 2025, 493, 145808. [Google Scholar] [CrossRef]
- Hu, M.; Ben, Y.; Wong, M.H.; Zheng, C. Trace analysis of multiclass antibiotics in food products by liquid chromatography-tandem mass spectrometry: Method development. J. Agric. Food Chem. 2021, 69, 1656–1666. [Google Scholar] [CrossRef]
- Hyung, S.W.; Lee, J.; Baek, S.Y.; Lee, S.; Han, J.; Kim, B.; Lee, H. Method improvement for analysis of enrofloxacin and ciprofloxacin in chicken meat: Application of in-sample addition of trace ethylenediaminetetraacetic acid to isotope dilution ultra-performance liquid chromatography–mass spectrometry. Chromatographia 2022, 85, 35–45. [Google Scholar] [CrossRef]
- Khaled, O.; Ryad, L.; Medhat, M.; Eissa, F. Development and validation of an ion pairing LC-Q-Orbitrap method with diverter valve for the quantitative analysis of aminoglycosides in animal-derived matrices and honey for routine applications. Food Chem. 2025, 492, 145336. [Google Scholar] [CrossRef]
- Al Tamim, A.; Alzahrani, S.; Al-Subaie, S.; Almutairi, M.A.; Al Jaber, A.; Alowaifeer, A.M. Fast simultaneous determination of 23 veterinary drug residues in fish, poultry, and red meat by liquid chromatography/tandem mass spectrometry. Arab. J. Chem. 2022, 15, 104116. [Google Scholar] [CrossRef]
- Miossec, C.; Mille, T.; Lanceleur, L.; Monperrus, M. Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography–tandem mass spectrometry. Food Chem. 2020, 322, 126765. [Google Scholar] [CrossRef]
- Zhan, J.; Shi, X.Z.; Xu, X.W.; Cao, G.Z.; Chen, X.F. Generic and rapid determination of low molecular weight organic chemical contaminants in protein powder by using ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2020, 1138, 121967. [Google Scholar] [CrossRef]
- Tong, W.; Huang, R.; Zuo, H.; Zarabadipour, C.; Moore, A.; Hamel, D.; Letendre, L. Feasibility of establishing a veterinary marker to total residue in edible tissues with non-radiolabeled study using high-resolution mass spectrometry. Res. Vet. Sci. 2022, 149, 60–70. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Hong, S.; Zhou, H.; Cao, X.; Li, K.; Rao, Q. A novel approach based on supramolecular solvents microextraction for quick detection of perfluoroalkyl acids and their precursors in aquatic food. J. Hazard. Mater. 2024, 480, 136169. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Tahoun, I.F.; Yamani, R.N.; Rend, E.A.; Shehata, A.B. Eco-friendly and sensitive analytical method for determination of T-2 toxin and HT-2 toxin in cereal products using UPLC-MS/MS. J. Food Compos. Anal. 2022, 107, 104395. [Google Scholar] [CrossRef]
- Giannioti, Z.; Albero, B.; Hernando, M.D.; Bontempo, L.; Pérez, R.A. Determination of regulated and emerging mycotoxins in organic and conventional gluten-free flours by LC-MS/MS. Toxins 2023, 15, 155. [Google Scholar] [CrossRef]
- Cina, M.; del Valle Ponce, M.; Fernandez, L.; Cerutti, S. A green approach for Ochratoxin A determination in coffee infusions. J. Food Compos. Anal. 2022, 114, 104777. [Google Scholar] [CrossRef]
- Ponce, M.D.V.; Cina, M.; López, C.; Cerutti, S. Polyurethane Foam as a Novel Material for Ochratoxin A Removal in Tea and Herbal Infusions—A Quantitative Approach. Foods 2023, 12, 1828. [Google Scholar] [CrossRef]
- Pradanas-González, F.; Aragoneses-Cazorla, R.; Merino-Sierra, M.Á.; Andrade-Bartolomé, E.; Navarro-Villoslada, F.; Benito-Pena, E.; Moreno-Bondi, M.C. Extracting mycotoxins from edible vegetable oils by using green, ecofriendly deep eutectic solvents. Food Chem. 2023, 429, 136846. [Google Scholar] [CrossRef] [PubMed]
- Pradanas-González, F.; Álvarez-Rivera, G.; Benito-Peña, E.; Navarro-Villoslada, F.; Cifuentes, A.; Herrero, M.; Moreno-Bondi, M.C. Mycotoxin extraction from edible insects with natural deep eutectic solvents: A green alternative to conventional methods. J. Chromatogr. A 2021, 1648, 462180. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.; Low, K. Residual determination of multiple pesticides in vegetable samples by LC-MS/MS coupled with modified QuEChERS-dSPE ionic liquid-based DLLME method. J. Turk. Chem. Soc. Sect. A Chem. 2021, 8, 693–704. [Google Scholar] [CrossRef]
- Regulation-149/2008-EN-EUR-LEx. Available online: https://eur-lex.europa.eu/eli/reg/2008/149/oj (accessed on 7 November 2025).
- Sivakumar, S.; Angappan, S.; Thiyagarajan, E.; Sankaran, S.P.; Perumal, R.; Veeranan, V.A.G.; Ikram, M. Study of dissipation dynamics and persistent toxicity of selected insecticides in chilli using LCMSMS. Sci. Rep. 2025, 15, 3585. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, A.; Bochetto, A.; Guiñez, M.; Cerutti, S. Quantitative Analysis and Health Risk Assessment of Heterocyclic Aromatic Amines in Plant-Based Milk Beverages. Foods 2025, 14, 3295. [Google Scholar] [CrossRef]
- Sonego, E.; Bhattarai, B.; Duedahl-Olesen, L. Detection of nitrated, oxygenated and hydrogenated polycyclic aromatic compounds in smoked fish and meat products. Foods 2022, 11, 2446. [Google Scholar] [CrossRef]
- Jeannot, C.; Macorps, N.; Bizec, B.L.; Parinet, J.; Dervilly, G. Advancing PFASs monitoring in food: From targeted SPE-LC-MS/MS to non-targeted QuEChERS-LC-HRMS approaches. Food Chem. X 2025, 29, 102674. [Google Scholar] [CrossRef]
- Vera-Baquero, F.L.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Assessment of atropine and scopolamine in commercial multigrain cereal-based baby products using UHPLC-TQ-MS/MS and solid phase extraction with MCM-41 mesostructured silica as sorbent. Food Chem. 2025, 472, 142875. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, Y.; Huang, R.; Wang, P.; Li, G. Simultaneous detection of heterocyclic aromatic amines and acrylamide in thermally processed foods by magnetic solid-phase extraction combined with HPLC-MS/MS based on cysteine-functionalized covalent organic frameworks. Food Chem. 2023, 424, 136349. [Google Scholar] [CrossRef] [PubMed]
- Merlo, F.; Centenaro, D.; Maraschi, F.; Profumo, A.; Speltini, A. Green and efficient determination of fluoroquinolone residues in edible green fruits and leafy vegetables by ultrasound-assisted extraction followed by HPLC-MS/MS. Molecules 2022, 27, 6595. [Google Scholar] [CrossRef] [PubMed]
- Notardonato, I.; Gianfagna, S.; Castoria, R.; Ianiri, G.; De Curtis, F.; Russo, M.V.; Avino, P. Critical review of the analytical methods for determining the mycotoxin patulin in food matrices. Rev. Anal. Chem. 2021, 40, 144–160. [Google Scholar] [CrossRef]
- Mehl, A.; Hudel, L.; Bücker, M.; Morlock, G.E. Validated screening method for 81 multiclass veterinary drug residues in food via online-coupling high-throughput planar solid-phase extraction to high-performance liquid chromatography–orbitrap tandem mass spectrometry. J. Agric. Food Chem. 2022, 70, 10886–10898. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Gou, Y.; Chen, T.; Shen, X.; Wang, T.; Hua, Y. Determination of veterinary drugs in foods of animal origin by QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). J. Chromatogr. A 2025, 1744, 465726. [Google Scholar] [CrossRef]
- Khaled, O.; Ryad, L.; Nagi, M.; Eissa, F. Multiclass method for detecting 41 antibiotic residues in bovine liver, muscle, and milk using LC-Q-Orbitrap-HRMS. J. Food Compos. Anal. 2024, 132, 106299. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Jiang, R.W.; Pawliszyn, J. Solid-phase microextraction with recessed matrix compatible coating for in situ sampling of per-and polyfluoroalkyl substances in meat. Food Chem. 2025, 480, 143891. [Google Scholar] [CrossRef]
- Lavrukhina, O.I.; Amelin, V.G.; Kish, L.K.; Tretyakov, A.V.; Pen’kov, T.D. Determination of residual amounts of antibiotics in environmental samples and food products. J. Anal. Chem. 2022, 77, 1349–1385. [Google Scholar] [CrossRef]
- de Freitas, L.V.P.; Alponti, A.L.B.; Campanharo, S.C.; Damaceno, M.A.; da Silva, A.F.B.; de Oliveira Souza, M.C.; Paschoal, J.A.R. QuEChERS vs QuEChERS-DLLME: Toward an eco-friendly, selective, and sensitive method for levamisole determination in fish. Microchem. J. 2025, 215, 114524. [Google Scholar] [CrossRef]
- Al-Shaalan, N.H.; Nasr, J.J.; Shalan, S.; El-Mahdy, A.M. Use of green-modified micellar liquid chromatography for the determination of imidocarb dipropionate residues in food samples. Microchem. J. 2022, 178, 107316. [Google Scholar] [CrossRef]
- Teglia, C.M.; Guiñez, M.; Culzoni, M.J.; Cerutti, S. Determination of residual enrofloxacin in eggs due to long term administration to laying hens. Analysis of the consumer exposure assessment to egg derivatives. Food Chem. 2021, 351, 129279. [Google Scholar] [CrossRef] [PubMed]
- Jonard, C.; Chandelier, A.; Eylenbosch, D.; Pannecoucque, J.; Godin, B.; Douny, C.; Gofflot, S. Multi-Mycotoxin Analyses by UPLC-MS/MS in Wheat: The Situation in Belgium in 2023 and 2024. Foods 2025, 14, 2300. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Q.; Yang, T.; Zhang, Y.; He, M.; Zeng, H.; Fan, H. Sequential extraction and enrichment of pesticide residues in Longan fruit by ultrasonic-assisted aqueous two-phase extraction linked to vortex-assisted dispersive liquid-liquid microextraction prior to high performance liquid chromatography analysis. J. Chromatogr. A 2020, 1619, 460929. [Google Scholar] [CrossRef]
- Rodrigues, H.; Leite, M.; Oliveira, B.; Freitas, A. Antibiotics in honey: A comprehensive review on occurrence and analytical methodologies. Open Res. Eur. 2024, 4, 125. [Google Scholar] [CrossRef]
- Nemati, M.; Mogaddam, M.R.A.; Farazajdeh, M.A.; Tuzen, M.; Khandaghi, J. In-situ formation/decomposition of deep eutectic solvent during solidification of floating organic droplet-liquid-liquid microextraction method for the extraction of some antibiotics from honey prior to high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2021, 1660, 462653. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, A.; Guiñez, M.; Cerutti, S. Evaluation of Environmentally Relevant Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons in Honey. Foods 2023, 12, 2205. [Google Scholar] [CrossRef] [PubMed]
- Lahkak, F.E.; Taha, E.K.; Nassik, S. Detection of mycotoxins in raw milk, traditional yogurt and buttermilk in Morocco by ultra performance liquid chromatography coupled to high resolution mass spectrometry (UPLC/HRMS). Assiut Vet. Med. J. 2025, 71, 635–642. [Google Scholar] [CrossRef]
- Mookantsa, S.O.; Dube, S.; Nindi, M.M. Multiclass Determination of 87 Mixed Veterinary Drugs, Pesticides and Mycotoxin Residues in Beef Muscle Samples by Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction and Liquid Chromatography Tandem Mass Spectrometry. Foods 2025, 14, 720. [Google Scholar] [CrossRef]
- Gallocchio, F.; Moressa, A.; Zonta, G.; Angeletti, R.; Lega, F. Fast and sensitive analysis of short-and long-chain perfluoroalkyl substances in foods of animal origin. Molecules 2022, 27, 7899. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Y.; Wang, Y.; Lu, Q.; Ruan, H.; Luo, J.; Yang, M. A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples. Food Chem. X 2022, 15, 100375. [Google Scholar] [CrossRef]
- Jano, A.; Fuente-Ballesteros, A.; Ares, A.M.; Bernal, J. Miniaturized solid-phase extraction techniques in sample preparation applied to food matrices: A review. Microchem. J. 2025, 213, 113794. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Shu, P. Magnetic molecularly imprinted polymers are used to selectively extract cephalosporins from milk samples and analyze by LC-MS/MS. Meas. Food 2024, 14, 100169. [Google Scholar] [CrossRef]
- Fu, Q.; Xia, Z.; Sun, X.; Jiang, H.; Wang, L.; Ai, S.; Zhao, R. Recent advance and applications of covalent organic frameworks based on magnetic solid-phase extraction technology for food safety analysis. TrAC Trends Anal. Chem. 2023, 162, 117054. [Google Scholar] [CrossRef]
- Wen, A.; Li, G.; Wu, D.; Yu, Y.; Yang, Y.; Hu, N.; Wang, H.; Chen, J.; Wu, Y. Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones. J. Chromatogr. A 2020, 1612, 460651. [Google Scholar] [CrossRef]
- Ma, L.; Gu, Y.; Guo, L.; Wang, K. The determination of 11 sulfonamide antibiotics in water and foods by developing a N-rich magnetic covalent organic framework combined with ultra-high performance liquid chromatography-tandem mass spectrometry. RSC Adv. 2024, 14, 21318. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, W.; Qiang, C.; Nie, J.; Ma, L.; Zhang, Y.; Wang, K. Fe3O4@SiO2–BD–DADB-COF is proposed as a novel magnetic covalent organic framework for the determination and extraction of 15 macrolide antibiotics in water and honey. RSC Adv. 2025, 15, 8111. [Google Scholar] [CrossRef]
- Li, N.; Liang, M.; Zhang, H.; Hua, Z.; Ma, L.; Qi, Y.; Wang, K. Effective extraction and determination of 24 quinolones in water and egg samples using a novel magnetic covalent organic framework combined with UPLC-MS/MS. RSC Adv. 2024, 14, 8303–8312. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, M.; Guo, E.; Wang, K.; Ma, L.; Lian, K. Fe3O4@SiO2@MPA-TAPA-COF as a novel sorbent in magnetic solid-phase extraction coupling with UPLC-MS/MS for determining 12 sulfonamides in water and milk. Microchem. J. 2024, 200, 110293. [Google Scholar] [CrossRef]
- Wang, T.; Liu, W.; Chen, L.; Li, X. A magnetic carboxyl-functionalized covalent organic framework for the efficient enrichment of foodborne heterocyclic aromatic amines prior to UPLC-MS analysis. Food Chem. 2024, 461, 140852. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, R.; Yu, H.; Li, J.; Liu, L.; Wang, S.; Chen, X.; Chan, T.-W.D. Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core-shell magnetite and molybdenum disulfide nanocomposite adsorbent. J. Chromatogr. A 2020, 1610, 460543. [Google Scholar] [CrossRef]
- Song, Y.; Yang, M.; Zhang, F.; Xu, M.; Feng, X. Zinc (Ⅱ) functionalized magnetic geopolymer as sorbents for rapid extraction of Fluoroquinolones in food prior to quantification by UHPLC-MS/MS. Food Chem. 2023, 428, 136750. [Google Scholar] [CrossRef]
- Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography–tandem mass spectrometry. Food Chem. 2022, 387, 132866. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, Y.-C.; Bai, X.-L.; Liu, Y.-M.; Wu, G.-F.; Yang, F.-S.; Liao, X. Multi-mycotoxins analysis in liquid milk by UHPLC-Q-Exactive HRMS after magnetic solid-phase extraction based on PEGylated multi-walled carbon nanotubes. Food Chem. 2020, 305, 125429. [Google Scholar] [CrossRef] [PubMed]
- Sahebi, H.; Jouya Talaei, A.; Abdollahi, E.; Hashempour-Baltork, F.; Vali Zade, S.; Jannat, B.; Sadeghi, N. Rapid determination of multiclass antibiotics and their metabolites in milk using ionic liquid-modified magnetic chitosan nanoparticles followed by UPLC-MS/MS. Talanta 2023, 253, 124091. [Google Scholar] [CrossRef]
- Lyu, W.-T.; Wen, Y.; Zeng, H.-B.; Chen, B.-D.; Xiao, X.-N.; Zhao, Y.-G.; Xiao, Y.-P. Magnetic pore-rich skeleton material with C8 brushes as novel sorbent for the cleanup of 16 antiviral drugs from poultry. J. Chromatogr. A 2025, 1755, 466060. [Google Scholar] [CrossRef]
- Shan, S.; Ma, Y.; Sun, C.; Guo, X.; Zheng, H.; Xu, X.; Qin, L.; Hu, J. A novel magnetic solid-phase extraction method for detection of 14 heterocyclic aromatic amines by UPLC-MS/MS in meat products. Food Chem. 2021, 337, 127630. [Google Scholar] [CrossRef]
- Melekhin, A.O.; Tolmacheva, V.V.; Shubina, E.G.; Dmitrienko, S.G.; Apyari, V.V.; Grudev, A.I. Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid-phase extraction and LC–MS/MS. Talanta 2021, 230, 122310. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.; Yu, F.; Wang, Y.; Ye, D.; Hu, X.; Zhou, L.; Du, J.; Xia, X. Multi-class analysis of veterinary drugs in eggs using dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2021, 334, 127598. [Google Scholar] [CrossRef]
- Du, J.; Li, X.; Tian, L.; Li, J.; Wang, C.; Ye, D.; Zhao, L.; Liu, S.; Xu, J.; Xia, X. Determination of macrolides in animal tissues and egg by multi-walled carbon nanotube-based dispersive solid-phase extraction and ultra-high performance liquid chromatography–tandem mass spectrometry. Food Chem. 2021, 365, 130502. [Google Scholar] [CrossRef]
- Yang, M.; Yi, J.; Wei, C.; Peng, X.; Yang, Z.; Zhao, L.; Jiang, X.; Tu, F. Determination of fumonisins in edible vegetable oil by MIL-101(Cr) based dispersive solid-phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry. J. Food Compos. Anal. 2023, 117, 105099. [Google Scholar] [CrossRef]
- Huang, H.; Li, N.; Chen, Y.; Shentu, X.; Yu, X.; Ye, Z. Synthesis of multiwalled carbon nanotubes/metal-organic framework composite for the determination of neonicotinoid pesticides in medicine and food homology products. Food Chem. 2024, 434, 137354. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Li, X.; Zhou, X.; Jia, X.; Wang, H.; Xu, Z.; Wei, X. Preparation of bifunctional monomer molecularly imprinted polymer filled solid-phase extraction for sensitivity improvement of quantitative analysis of sulfonamide in milk. J. Chromatogr. A 2023, 1700, 464046. [Google Scholar] [CrossRef]
- Keikavousi Behbahan, A.; Mahdavi, V.; Roustaei, Z.; Bagheri, H. Preparation and evaluation of various banana-based biochars together with ultra-high performance liquid chromatography-tandem mass spectrometry for determination of diverse pesticides in fruiting vegetables. Food Chem. 2021, 360, 130085. [Google Scholar] [CrossRef]
- Ning, Y.; Ye, Y.; Liao, W.; Xu, Y.; Wang, W.; Wang, A.-j. Triazine-based porous organic polymer as pipette tip solid-phase extraction adsorbent coupled with HPLC for the determination of sulfonamide residues in food samples. Food Chem. 2022, 397, 133831. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, R.; Li, L.; Wang, X.; Ji, W. Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chem. 2021, 362, 130214. [Google Scholar] [CrossRef]
- Tripathy, V.; Devi, S.; Singh, G.; Yadav, R.; Sharma, K.; Gupta, R.; Tandekar, K.; Verma, A.; Kalra, S. Development and validation of tandem mass spectrometry-based method for the analysis of more than 400 pesticides in honey. J. Food Compos. Anal. 2024, 128, 106013. [Google Scholar] [CrossRef]
- Wan, J.; He, P.; Chen, Y.; Zhu, Q. Comprehensive target analysis for 19 pyrethroids in tea and orange samples based on LC-ESI-QqQ-MS/MS and LC-ESI-Q-ToF/MS. LWT 2021, 151, 112072. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, Y.; Liu, D.; Meng, Z.; Hao, X. Development of a design of experiments (DOE) assistant modified QuEChERS method coupled with HPLC-MS/MS simultaneous determination of twelve lipid-soluble pesticides and four metabolites in chicken liver and pork. J. Food Compos. Anal. 2024, 133, 106379. [Google Scholar] [CrossRef]
- Schiano, M.E.; Sodano, F.; Cassiano, C.; Magli, E.; Seccia, S.; Rimoli, M.G.; Albrizio, S. Monitoring of seven pesticide residues by LC-MS/MS in extra virgin olive oil samples and risk assessment for consumers. Food Chem. 2024, 442, 138498. [Google Scholar] [CrossRef]
- Rodríguez-Cañás, I.; González-Jartín, J.M.; Alfonso, A.; Alvariño, R.; Vieytes, M.R.; Botana, L.M. Application of a multi-toxin detect method to analyze mycotoxins occurrence in plant-based beverages. Food Chem. 2024, 434, 137427. [Google Scholar] [CrossRef]
- Oueslati, S.; Ben Yakhlef, S.; Vila-Donat, P.; Pallarés, N.; Ferrer, E.; Barba, F.J.; Berrada, H. Multi-mycotoxin determination in coffee beans marketed in Tunisia and the associated dietary exposure assessment. Food Control 2022, 140, 109127. [Google Scholar] [CrossRef]
- Wu, W.; Huang, X.; Liang, R.; Guo, T.; Xiao, Q.; Xia, B.; Wan, Y.; Zhou, Y. Determination of 63 mycotoxins in grain products by ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry. Food Control 2023, 150, 109772. [Google Scholar] [CrossRef]
- Prata, R.; López-Ruiz, R.; Petrarca, M.H.; Godoy, H.T.; Frenich, A.G.; Romero-González, R. Targeted and non-targeted analysis of pesticides and aflatoxins in baby foods by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Control 2022, 139, 109072. [Google Scholar] [CrossRef]
- Taylor, R.B.; Sapozhnikova, Y. Comparison and validation of the QuEChERSER mega-method for determination of per- and polyfluoroalkyl substances in foods by liquid chromatography with high-resolution and triple quadrupole mass spectrometry. Anal. Chim. Acta 2022, 1230, 340400. [Google Scholar] [CrossRef] [PubMed]
- Diallo, T.; Makni, Y.; Lerebours, A.; Thomas, H.; Guérin, T.; Parinet, J. Wide-scope screening of multi-class contaminants in seafood using a novel sample preparation (QuEChUP) procedure coupled with UHPLC-Q-TOF-MS: Application for semi-quantitation of real seafood samples. Food Chem. 2023, 426, 136572. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, Z.; He, Y.; Huang, L.; Xu, X.; Pan, C.; Guo, F.; Yang, H.; Tang, S. Nontarget and high-throughput screening of pesticides and metabolites residues in tea using ultra-high-performance liquid chromatography and quadrupole-orbitrap high-resolution mass spectrometry. J. Chromatogr. B 2021, 1179, 122847. [Google Scholar] [CrossRef]
- Zhou, R.; Wen, Y.; Huo, W.; Kong, C.; Yang, G.; Liu, H.; Zhang, C.; Mu, Y.; Huang, D.; Li, J. Eco-friendly chitosan microspheres as a novel one-step sorbent for the rapid purification and determination of pesticides and veterinary drug multi-residues in aquatic products with HPLC-MS/MS. Food Chem. 2025, 462, 140860. [Google Scholar] [CrossRef]
- El Jai, A.; Juan, C.; Juan-García, A.; Mañes, J.; Zinedine, A. Multi-mycotoxin contamination of green tea infusion and dietary exposure assessment in Moroccan population. Food Res. Int. 2021, 140, 109958. [Google Scholar] [CrossRef]
- Del Bosco, C.; Mariani, F.; Gentili, A. Hydrophobic Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Pesticides in Wine. Molecules 2022, 27, 908. [Google Scholar] [CrossRef]
- Seetha, B.S.; Bhandi, M.M.; Shaikh, A.; Matta, S.; Reddy Mudiam, M.K. Natural hydrophobic deep eutectic solvent based dispersive liquid-liquid microextraction followed by liquid chromatography with tandem mass spectrometry analysis of multi-class metabolites of pesticides, phthalates, and polycyclic aromatic hydrocarbons in animal-originated foods. Microchem. J. 2024, 199, 110196. [Google Scholar] [CrossRef]
- Bochetto, A.; Merino, N.; Kaplan, M.; Guiñez, M.; Cerutti, S. Design of a combined microextraction and back-extraction technique for the analysis of mycotoxins in amaranth seeds. J. Food Compos. Anal. 2021, 98, 103818. [Google Scholar] [CrossRef]
- Carbonell-Rozas, L.; Ferrari, F.; Righetti, L.; Dall’Asta, C. NADES-assisted sample preparation as a greener alternative for mycotoxins determination in apple-based products. Microchem. J. 2023, 191, 108887. [Google Scholar] [CrossRef]
- Abdallah, A.B.; Amaar, N.M.; Sayed-Ahmed, K.; Salem Molouk, A.F.; Awad, F.S. Highly efficient green extraction of oxyfluorfen, imazapic, and pyridaben from food samples using VALLME-based deep eutectic solvent prior to LC-MS/MS. Microchem. J. 2025, 216, 114807. [Google Scholar] [CrossRef]
- Muñiz-Bustamante, L.; Caballero-Casero, N.; Rubio, S. SUPRAS-based generic sample treatment for determination of twelve regulated mycotoxins in five food commodity groups. Food Chem. 2025, 490, 145092. [Google Scholar] [CrossRef]
- Muschket, M.; Keltsch, N.; Paschke, H.; Reemtsma, T.; Berger, U. Determination of transformation products of per- and polyfluoroalkyl substances at trace levels in agricultural plants. J. Chromatogr. A 2020, 1625, 461271. [Google Scholar] [CrossRef]
- Futigami, J.S.; Hoff, R.B.; Deolindo, C.T.P.; Kleemann, C.R.; de Oliveira, L.V.A.; de Casas, A.d.F.; Burin, V.M. Search for new green natural solid phases for sample preparation for PAHs determination in seafood samples followed by LC and GC–MS/MS analysis. Food Res. Int. 2024, 183, 114240. [Google Scholar] [CrossRef]
- Lourêdo, A.A.M.; Pereira, H.H.; Bonfilio, R.; Santos, M.G. Online restricted access molecularly imprinted solid phase extraction coupled with electrospray ionization-tandem mass spectrometry for determination of mebendazole and albendazole in milk samples. J. Chromatogr. A 2024, 1737, 465466. [Google Scholar] [CrossRef]
- De Cesaris, M.G.; Antonelli, L.; Lucci, E.; Felli, N.; Dal Bosco, C.; Gentili, A. Current trends to green food sample preparation. A review. J. Chromatogr. Open 2024, 6, 100170. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Bedi, M.; Sapozhnikova, Y.; Taylor, R.B.; Ng, C. Per- and polyfluoroalkyl substances (PFAS) measured in seafood from a cross-section of retail stores in the United States. J. Hazard. Mater. 2023, 459, 132062. [Google Scholar] [CrossRef]
- Stroski, K.M.; Sapozhnikova, Y. Method development and validation for analysis of 74 per- and polyfluoroalkyl substances (PFAS) in food of animal origin using QuEChERSER method and LC-MS/MS. Anal. Chim. Acta 2025, 1364, 344216. [Google Scholar] [CrossRef] [PubMed]
- Makni, Y.; Inthavong, C.; Leblanc, J.-C.; Guérin, T.; Parinet, J. Combining a generic QuEChUP sample preparation with LC-Q-ToF-MS analysis for the large-scale screening of pesticides, veterinary drugs, mycotoxins and other chemicals in baby foods: A robust early-warning system to improve infant food monitoring. Food Chem. 2025, 492, 145607. [Google Scholar] [CrossRef]
- Kokosa, J.M. The role of liquid phase microextraction in plant and animal food analysis. Explor. Foods Foodomics 2024, 2, 275–312. [Google Scholar] [CrossRef]
- Carasek, E.; Scur, R.; Bernardi, G. High-throughput analytical methods employing microextraction techniques: Towards fast analyses lasting a few seconds. Adv. Sample Prep. 2023, 8, 100095. [Google Scholar] [CrossRef]
- Wang, P.; Liu, C. Deep eutectic solvents in food contaminants detection: Characteristics, interaction mechanism and application advances from extracting to other roles. Food Chem. 2025, 476, 143521. [Google Scholar] [CrossRef]
- Sahebi, H.; Konoz, E.; Ezabadi, A.; Niazi, A.; Hamid Ahmadi, S. Simultaneous determination of five penicillins in milk using a new ionic liquid-modified magnetic nanoparticle based dispersive micro-solid phase extraction followed by ultra performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2020, 154, 104605. [Google Scholar] [CrossRef]
- Rossi, R.; Saluti, G.; Moretti, S.; Galarini, R. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review. Food Addit. Contam. Part A 2018, 35, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.D.; Nguyen, N.H.; Ngoc Do, M.H.; Nguyen, T.T.; Nguyen, T.H.; Gia Hua, C.T.; Tran, P.H. Functionalized ionic liquids as an efficient sorbent for solid-phase extraction of tetracyclines in bovine milk. Microchem. J. 2024, 204, 110999. [Google Scholar] [CrossRef]
- Mani, V.; Kumar, P. Machine learning applications in chromatographic optimization and HRMS data interpretation for food contaminants. J. Adv. Res. 2024, 54, 123–135. [Google Scholar] [CrossRef]
- Malm, L.; Palm, E.; Souihi, A.; Plassmann, M.; Liigand, J.; Kruve, A. Guide to semi-quantitative non-targeted screening using LC/ESI/HRMS. Molecules 2021, 26, 3524. [Google Scholar] [CrossRef]
- Malm, L.; Palm, E.; Plassmann, M.; Liigand, J.; Kruve, A. Quantification approaches in non-target LC/ESI/HRMS analysis: An interlaboratory comparison. Anal. Chem. 2024, 96, 16215–16226. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.M.; Croley, T.R.; Knolhoff, A.M. Data-processing strategies for non-targeted analysis of foods using liquid chromatography/high-resolution mass spectrometry. Trends Anal. Chem. 2021, 142, 116188. [Google Scholar] [CrossRef]
- Newton, S.R.; Sobus, J.R.; Ulrich, E.M.; Singh, R.R.; Chao, A.; McCord, J.; Laughlin-Toth, S.; Strynar, M. Examining NTA performance and potential using fortified and reference house dust as part of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT). Anal. Bioanal. Chem. 2020, 412, 4221–4233. [Google Scholar] [CrossRef]
- Cajka, T. Liquid chromatography–mass spectrometry–based metabolomics approaches for foodomics research. Curr. Opin. Food Sci. 2024, 58, 101201. [Google Scholar] [CrossRef]
- Elapavalore, A.; Kondić, T.; Singh, R.R.; Shoemaker, B.A.; Thiessen, P.A.; Zhang, J.; Bolton, E.E.; Schymanski, E.L. Adding open spectral data to MassBank and PubChem using open source tools to support non-targeted exposomics of mixtures. Environ. Sci. Process. Impacts 2023, 25, 1788–1801. [Google Scholar] [CrossRef]
- Schulze, B.; Jeon, Y.; Kaserzon, S.; Heffernan, A.L.; Dewapriya, P.; O’Brien, J.; Gómez-Ramos, M.J.; Ghorbani Gorji, S.; Mueller, J.F.; Thomas, K.V.; et al. An assessment of QA/QC efforts in high-resolution mass spectrometry non-target workflows for analysis of environmental samples. Trends Anal. Chem. 2022, 133, 116063. [Google Scholar] [CrossRef]
- Hulleman, T.; Turkina, V.; O’Brien, J.W.; Chia, A.; Samanipour, S. Critical assessment of the chemical space covered by LC-HRMS non-targeted analysis. Environ. Sci. Technol. 2023, 57, 14101–14112. [Google Scholar] [CrossRef]
- Jonkers, T.J.H.; Meijer, J.; Vlaanderen, J.J.; Vermeulen, R.C.H.; Houtman, C.J.; Hamers, T.; Lamoree, M.H. High-performance data-processing workflow incorporating effect-directed analysis for feature prioritization in suspect and nontarget screening. Environ. Sci. Technol. 2022, 56, 1639–1651. [Google Scholar] [CrossRef]
- Meher, A.K.; Zarouri, A. Green analytical chemistry: Recent innovations. Analytica 2025, 6, 10. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The ten principles of green sample preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White analytical chemistry: An approach to reconcile the principles of green analytical chemistry and functionality. TrAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- National Environmental Methods Index (NEMI). NEMI. Available online: https://www.nemi.gov/home/ (accessed on 25 November 2025).
- Raynie, D.; Driver, J. Innovating For the Future: Progress on the Grand Challenges in the Chemical Enterprise. In Proceedings of the 13th Annual Green Chemistry and Engineering Conference, College Park, MD, USA, 23–25 June 2009. [Google Scholar]
- de la Guardia, M.; Armenta, S. Chapter 3—A Green Evaluation of Existing Analytical Methods. In Comprehensive Analytical Chemistry; de la Guardia, M., Armenta, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 57, pp. 39–57. ISBN 978-0-444-53709-6. [Google Scholar]
- Hartman, R.; Helmy, R.; Al-Sayah, M.; Welch, C.J. Analytical Method Volume Intensity (AMVI): A Green Chemistry Metric for HPLC Methodology in the Pharmaceutical Industry. Green Chem. 2011, 13, 934–939. [Google Scholar] [CrossRef]
- Gaber, Y.; Törnvall, U.; Kumar, M.; Amin, M.A.; Hatti-Kaul, R. HPLC-EAT (Environmental Assessment Tool): A Tool for Profiling Safety, Health and Environmental Impacts of Liquid Chromatography Methods. Green Chem. 2011, 13, 2021–2025. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Valcárcel, M.; Cárdenas, S.; Lucena, R. Analytical Microextraction Techniques; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; ISBN 978-1-68108-380-3. [Google Scholar]
- Shen, Y.; Lo, C.; Nagaraj, D.R.; Farinato, R.; Essenfeld, A.; Somasundaran, P. Development of Greenness Index as an Evaluation Tool to Assess Reagents: Evaluation Based on SDS (Safety Data Sheet) Information. Miner. Eng. 2016, 94, 1–9. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Ballester-Caudet, A.; Campíns-Falcó, P.; Pérez, B.; Sancho, R.; Lorente, M.; Sastre, G.; González, C. A New Tool for Evaluating and/or Selecting Analytical Methods: Summarizing the Information in a Hexagon. TrAC Trends Anal. Chem. 2019, 118, 538–547. [Google Scholar] [CrossRef]
- Hicks, M.B.; Farrell, W.; Aurigemma, C.; Lehmann, L.; Weisel, L.; Nadeau, K.; Lee, H.; Moraff, C.; Wong, M.; Huang, Y. Making the Move towards Modernized Greener Separations: Introduction of the Analytical Method Greenness Score (AMGS) Calculator. Green Chem. 2019, 21, 1816–1826. [Google Scholar] [CrossRef]
- Nowak, P.M.; Kościelniak, P. What Color Is Your Method? Adaptation of the RGB Additive Color Model to Analytical Method Evaluation. Anal. Chem. 2019, 91, 10343–10352. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Wojnowski, W. Complementary Green Analytical Procedure Index (ComplexGAPI) and Software. Green Chem. 2021, 23, 8657–8665. [Google Scholar] [CrossRef]
- González-Martín, R.; Gutiérrez-Serpa, A.; Pino, V.; Sajid, M. A Tool to Assess Analytical Sample Preparation Procedures: Sample Preparation Metric of Sustainability. J. Chromatogr. A 2023, 1707, 464291. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Wojnowski, W.; Płotka-Wasylka, J.; Samanidou, V. Blue Applicability Grade Index (BAGI) and Software: A New Tool for the Evaluation of Method Practicality. Green Chem. 2023, 25, 7598–7604. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Płotka-Wasylka, J.; Tobiszewski, M. How to Evaluate Methods Used in Chemical Laboratories in Terms of the Total Chemical Risk?—A ChlorTox Scale. Green Anal. Chem. 2023, 5, 100056. [Google Scholar] [CrossRef]
- Marć, M.; Wojnowski, W.; Pena-Pereira, F.; Tobiszewski, M.; Martín-Esteban, A. AGREEMIP: The Analytical Greenness Assessment Tool for Molecularly Imprinted Polymers Synthesis. ACS Sustain. Chem. Eng. 2024, 12, 12516–12524. [Google Scholar] [CrossRef]
- Mansour, F.R.; Płotka-Wasylka, J.; Locatelli, M. Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications. Analytica 2024, 5, 451–457. [Google Scholar] [CrossRef]
- Mansour, F.R.; Omer, K.M.; Płotka-Wasylka, J. A Total Scoring System and Software for Complex Modified GAPI (ComplexMoGAPI) Application in the Assessment of Method Greenness. Green Anal. Chem. 2024, 10, 100126. [Google Scholar] [CrossRef]
- Nowak, P.M.; Arduini, F. RGBfast—A User-Friendly Version of the Red-Green-Blue Model for Assessing Greenness and Whiteness of Analytical Methods. Green Anal. Chem. 2024, 10, 100120. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wojnowski, W.; Manousi, N.; Samanidou, V.; Płotka-Wasylka, J. Red Analytical Performance Index (RAPI) and Software: The Missing Tool for Assessing Methods in Terms of Analytical Performance. Green Chem. 2025, 27, 5546–5553. [Google Scholar] [CrossRef]
- Mansour, F.R.; Bedair, A.; Belal, F.; Magdy, G.; Locatelli, M. Analytical Green Star Area (AGSA) as a New Tool to Assess Greenness of Analytical Methods. Sustain. Chem. Pharm. 2025, 46, 102051. [Google Scholar] [CrossRef]
- Xin, T.; Yu, L.; Zhang, W.; Guo, Y.; Wang, C.; Li, Z.; You, J.; Xue, H.; Shi, M.; Yin, L. Greenness Evaluation Metric for Analytical Methods and Software. J. Pharm. Anal. 2025, 15, 101202. [Google Scholar] [CrossRef]
- Mansour, F.R.; Bedair, A.; Locatelli, M. Click Analytical Chemistry Index as a Novel Concept and Framework, Supported with Open Source Software to Assess Analytical Methods. Adv. Sample Prep. 2025, 14, 100164. [Google Scholar] [CrossRef]
- Fuente-Ballesteros, A.; Jano, A.; Ares, A.M.; Valverde, S.; Bernal, J. GLANCE: A Novel Graphical Tool for Simplifying Analytical Chemistry Method Evaluation. Analytica 2025, 6, 8. [Google Scholar] [CrossRef]
- Nowak, P.M.; Zima, A.; Gołąb, M.; Woźniakiewicz, M. A prospective evaluation of microscale thermophoresis coupled with mass spectrometry using the “RGB_ex-ante” model. Green Anal. Chem. 2025, 12, 100185. [Google Scholar] [CrossRef]
- Fuente-Ballesteros, A.; Martínez-Martínez, V.; Ares, A.M.; Valverde, S.; Samanidou, V.; Bernal, J. Violet Innovation Grade Index (VIGI): A new survey-based metric for evaluating innovation in analytical methods. Anal. Chem. 2025, 97, 6946–6955. [Google Scholar] [CrossRef]
- Yahaya, N.; Mohamed, A.H.; Miskam, M.; Abdul Keyon, A.S.; Loh, S.H.; Mohamad Zain, N.N.; Sajid, M. Green analytical chemistry metrics for evaluation of microextraction methods: Fascinating or essential tools in real-world applications? TrAC Trends Anal. Chem. 2024, 172, 117587. [Google Scholar] [CrossRef]
- Hammad, S.F.; Hamid, M.A.A.; Adly, L.; Elagamy, S.H. Comprehensive review of greenness, whiteness, and blueness assessments of analytical methods. Green Anal. Chem. 2025, 12, 100209. [Google Scholar] [CrossRef]
- Cina, M.; Azcarate, S.A.; Cerutti, S. Natural eutectic solvents extraction and liquid chromatography–tandem mass spectrometry determination of ochratoxin A in rice and corn derived products. J. Food Compos. Anal. 2025, 145, 107843. [Google Scholar] [CrossRef]




| Extraction Method | Sorbent/Solvent | Analyte | Matrix | LOD (μg kg−1) | LOQ (μg kg−1) | Recovery (%) | RSD (%) | Ref. |
|---|---|---|---|---|---|---|---|---|
| MSPE | COF | Antibiotics | Honey | 1.0–75 | 4.0–228 | 70–115 | <10 | [118] |
| COF | Antibiotics | Meat | 0.1–1.0 | 0.3–3 | 82–110 | <10 | [116] | |
| COF | Antibiotics | Eggs | 0.01–0.73 | 0.2–2.44 | 75–102 | <10 | [117] | |
| COF | Antibiotics | Eggs | 0.009–0.272 | 0.029–0.908 | 70–120 | <10 | [119] | |
| COF | Antibiotics | Milk | 0.004–0.044 | 0.013–0.136 | 61–103 | <10 | [120] | |
| Chitosan | Antibiotics | Milk | 0.04–0.19 | 0.13–0.64 | 86–107 | <10 | [126] | |
| (HCP/Fe3O4) | Veterinary drugs | Milk | 0.015–0.3 | 0.05–1 | 72–120 | <20 | [124] | |
| (HCP/Fe3O4) | Veterinary drugs | Honey | 0.1–0.3 | 0.3–1.0 | >85 | <15 | [129] | |
| Fe3O4@COF@Cys | HAAs | Meat | 0.012–0.210 | 0.043–0.650 | 90–103 | <10 | [93] | |
| Fe3O4@PDA | HAAs | Meat | 0.013–0.247 | 0.056–0.803 | 71–108 | <10 | [128] | |
| PEG-MWCNTs-MNP | Mycotoxins | Milk | 0.005–0.050 | 0.015–0.150 | 82–106 | <10 | [125] | |
| DSPE | Cation exchange | Veterinary drugs | Eggs | 0.01–1.0 | 0.1–1.0 | 70–119 | <20 | [130] |
| MWCNT | Antibiotics | Eggs | 0.1–0.6 | 2.0 | 83–111 | <20 | [131] | |
| MIL-101(Cr) | Mycotoxins | Vegetable oil | 1.5 | 5.0 | 94–102 | <5 | [132] | |
| MWCNT | Pesticides | Food | 0.01–0.07 | 0.04–0.22 | 78–101 | <10 | [133] | |
| MISPE | MIP | Veterinary drugs | Milk | 0.34–2.21 | 1.12–7.36 | 95–98 | <5 | [134] |
| MIP | Antibiotics | Milk | 1.0–20 | 3.0–60 | 81–118 | <15 | [114] | |
| PT-µSPE | Biochar | Pesticides | Fruits and vegetables | 0.03–10 | 0.1–10 | 80–100 | <20 | [135] |
| TAPT-BPDA | Antibiotics | Meat, eggs, milk | 0.10–0.28 | 0.33–0.93 | 76–114 | <5 | [136] | |
| ONLINE SPE | TPB-BFBIm-iCOF | PFASs | Seafood | <0.0017 | 0.0017 | 85–109 | <10 | [137] |
| QuEChERS | PSA, C18, ACN | Pesticides | Honey | 0.1–3.0 | 5.0–10.0 | 70–120 | <20 | [138] |
| PSA, C18, ACN | Pesticides | Tea, orange | 0.07–0.29 | 0.7–10.0 | 90–109 | <5 | [139] | |
| PSA, C18, ACN | Pesticides | Meat | 0.4–3.0 | 1.0–10.0 | 73–105 | <10 | [140] | |
| PSA, C18, ACN | Pesticides | Virgin olive oil | 0.12 | 0.4 | 70–120 | <20 | [141] | |
| PSA, C18, ACN | Mycotoxins | Plant-based beverages | 0.002–3 | 0.007–10 | 80–120 | <20 | [142] | |
| PSA, C18, ACN | Mycotoxins | Coffee beans | 0.5–2 | 0.45–1 | >65 | <15 | [143] | |
| C18, ACN, H2O | Mycotoxins | Grain products | 0.001–20 | 0.015–60 | 61–109 | <10 | [144] | |
| PSA, C18, Z-Sep+, ACN | Pesticides, mycotoxins | Baby food | 0.4–2 | 1.0–2.0 | 60–120 | <20 | [145] | |
| QuEChERSER | ACN, H2O | PFASs | Beef, catfish, eggs | 0.003–0.3 | 0.01–0.7 | 70–120 | <20 | [146] |
| QuEChUP | ACN, MeOH, EMR-Lipid | Pesticides and Veterinary drugs | Seafood | <0.001 | <0.07 | 70–110 | <20 | [147] |
| sin-QuEChERS | MS/ddMS, ACN, FA | Pesticides | Green tea | 1.0–2.0 | 2.0–10 | 74–111 | <15 | [148] |
| modified-QuEChERS | Chitosan, ACN | Pesticides and Veterinary drugs | Aquatic products | 0.5–1.0 | 1.0–2.0 | 64–116 | <20 | [149] |
| DLLME | ACN, MeOH, ethyl acetate | Mycotoxins | Green tea | 0.1–14 | 1.02–47-7 | 81–125 | <15 | [150] |
| DES | Pesticides | Wine | 0.00070–1.6 | 0.0024–5.0 | 56–100 | <15 | [151] | |
| NADES | Pesticides, PAHs | Eggs and meat | 0.03–0.4 | 0.1–1.32 | 8–112 | <20 | [152] | |
| DLLME-SFO | 1-dodecanol, MeOH, ACN | Mycotoxins | Amaranthus seeds | 0.07–0.73 | 0.22–0.9 | 80–100 | <10 | [153] |
| NADES | Mycotoxins | Apple products | 0.03–0.2 | 0.1–0.2 | 72–100 | <15 | [154] | |
| VA-LLME | DES | Pesticides | Apples, pears, peaches, and grapes | 0.08–0.3 | 2.1–2.9 | 97–100 | <5 | [155] |
| LLME | NADES | Mycotoxins | Vegetable oils | 0.07–300 | 0.2–300 | 95–103 | <10 | [84] |
| SUPRAS | 1-hexanol, H2O, THF | Mycotoxins | Orange juice, white bread, raisins, yogurt | 0.01–2.1 | 0.41–2.97 | 60–107 | <15 | [156] |
| Year | Name | Acronyms | Developers | Software | Reference |
|---|---|---|---|---|---|
| 2002 | National Environmental Methods Index | NEMI | U.S. Environmental Protection Agency (EPA). | NA * | [184] |
| 2009 | Green Assessment Profile | GAP | Raynie, D. and J. Driver. | NA | [185] |
| 2011 | Advanced national environmental methods index | Advanced NEMI | U.S. Environmental Protection Agency (EPA). | NA | [186] |
| 2011 | Analytical Method Volume Intensity | AMVI | Hartman, R., Helmy, R., Al-Sayah, M., & Welch, C. J. | NA | [187] |
| 2011 | High-Performance Liquid Chromatography Environmental Assessment Tool | HPLC-EAT | Gaber, Y., Törnvall, U., Kumar, M. A., Amine, M. A., & Hatti-Kaul, R. | HPLC-EAT program and user manual (Java program, v. 2011) | [188] |
| 2012 | Analytical Eco-Scale | Analytical Eco-Scale | Gałuszka, A., Konieczka, P., Migaszewski, Z. M., Namieśnik, J. | NA | [189] |
| 2015 | Green Certificate | Green Certificate | De la Guardia, M. & Armenta, S., | NA | [190] |
| 2016 | Spider diagram | Spider diagram | Yang Shen, Chi Lo, D.R. Nagaraj, Raymond Farinato, Amy Essenfeld, P. Somasundaran | NA | [191] |
| 2018 | Green Analytical Procedure Index | GAPI | Płotka-Wasylka, J. | NA | [192] |
| 2019 | HEXAGON | HEXAGON | Ballester-Caudet, A., Campíns-Falcó, P., Pérez, B., Sancho, R., Lorente, M., Sastre, G., & González, C. | NA | [193] |
| 2019 | Analytical Method Greenness Score Calculator | AMGS | Hicks, M. B., Farrell, W., Aurigemma, C., Lehmann, L., Weisel, L., Nadeau, K., Lee, H., Moraff, C., Wong, M., Huang, Y., & Ferguson, P. | NA | [194] |
| 2019 | Red, Green and Blue Model | RGB | Nowak, M.P. & Kościelniak, P. | Template | [195] |
| 2020 | Analytical Greenness Calculator | AGREE | Pena-Pereira, F., Wojnowski, W., & Tobiszewski, M. | https://mostwiedzy.pl/AGREE (accessed on 22 December 2025; developed in Python 3.7, v. 2020) | [8] |
| 2021 | Complementary GAPI Tool | ComplexGAPI | Płotka-Wasylka, J. and Wojnowski, W. | https://mostwiedzy.pl/en/justyna-plotka-wasylka,647762-1/complexgapi (accessed on 22 December 2025, developed in Python 3 software, v. 2021) | [196] |
| 2021 | White Analytical Chemistry (WAC) Metrics | WAC-RGB | Nowak, P. M., Wietecha-Posłuszny, R., & Pawliszyn, J. | Template (Excel worksheets, 2021 last version) | [183] |
| 2022 | Analytical Greenness Metric for Sample Preparation | AGREEprep | Wojnowski, W., Tobiszewski, M., Pena-Pereira, F., & Psillakis, E. | https://mostwiedzy.pl/en/publication/agreeprep-analytical-greenness-metric-for-sample-preparation,157564-1 (accessed on 22 December 2025; user-friendly graphical interface (GUI), v. 2022) | [10] |
| 2023 | Sample preparation metric of sustainability | SPMS | González-Martín, R., Gutiérrez-Serpa, A., Pino, V., & Sajid, M. | Appendix (Not software-based, scoring done manually or in Excel) | [197] |
| 2023 | Blue Applicability Grade Index | BAGI | Manousi. N., Wojnowski, W., Płotka-Wasylkac, J., and Samanidou, V. | https://mostwiedzy.pl/en/publication/blue-applicability-grade-index-bagi-and-software-a-new-tool-for-the-evaluation-of-method-practicalit,161475-1 (accessed on 22 December 2025; metric applied via tables or spreadsheets) | [198] |
| 2023 | ChlorTox Scale | ChlorTox Scale | Nowak, P. M., Wietecha-Posłuszny, R., Płotka-Wasylka, J., & Tobiszewski, M | NA (Not software-based, scoring done manually or in Excel) | [199] |
| 2024 | Analytical Greenness Assessment Tool for Molecular Imprinting | AGREEmip | Marć, M., Wojnowski, W., Pena-Pereira, F. J., Tobiszewski, M., & Martín-Esteban, A. | https://mostwiedzy.pl/en/wojciech-wojnowski,174235-1/agreemip (accessed on 22 December 2025; developed in Python 3.9, v. 2024) | [200] |
| 2024 | Modified GAPI | MoGAPI | Mansour, F. R., Płotka-Wasylka, J. anD Locatelli, M. | https://bit.ly/MoGAPI (accessed on 22 December 2025; Web-based interactive tool, v. 2024) | [201] |
| 2024 | Complex Modified GAPI | ComplexMoGAPI | Mansour, F.R., Omer K. M., Płotka-Wasylka, J. | https://fotouhmansour.github.io/ComplexMoGAPI/ (accessed on 22 December 2025; Web-based interactive tool, v. 2024) | [202] |
| 2024 | Red, Green and Blue Model Fast | RGBfast | Nowak, P. M., & Arduini, F. | Excel template (v. 2024) | [203] |
| 2025 | RAPI Analytical Performance Index and Software | RAPI | Nowak, P. M., Wojnowski, W., Manousi, N., Samanidou, V., & Płotka-Wasylka, J. | https://rapi-index.anvil.app/ (accessed on 22 December 2025; Python-based software tool, v. 2024) | [204] |
| 2025 | Analytical Green Star Area | AGSA | Mansour, F. R., Bedair A., Belal, F., Magdy, G. | https://fotouhmansour.github.io/AGSA/ (accessed on 22 December 2025; free, open-source software tool, v. 2025) | [205] |
| 2025 | Greenness Evaluation Metric for Analytical Methods | GEMAM | Xin, T., Yu, L., Zhang, W., Guo, Y., Wang, C. and Li, Z. | https://gitee.com/xtDLUT/Gemam/releases/tag/Gemam-v1 (accessed on 22 December 2025; software developed in Python 3.11, v. 2025) | [206] |
| 2025 | Click Analytical Chemistry Index | CAC | Mansour, F. R., Bedair A., Locatelli, M. | https://bit.ly/CACI2025 (accessed on 22 December 2025; open-source tool, v. 2025) | [207] |
| 2025 | Graphical Layout Tool for Analytical Chemistry Evaluation | GLANCE | Fuente-Ballesteros, A., Jano, A., Ares, A. M., Valverde S. and Bernal, J. | bit.ly/409cwDd (accessed on 22 December 2025; Canva editable template, v. 2025) | [208] |
| 2025 | Red, Green and Blue Model ex ante | RGB ex ante | Nowak, P. M., Zima, A., Gołąb, M., & Woźniakiewicz, M. | Excel spreadsheet available on: https://ars.els-cdn.com/content/image/1-s2.0-S2772577424000946-mmc1.xlsx (accessed on 22 December 2025; v. 2025) | [209] |
| 2025 | Violet Innovation Grade Index | VIGI | Fuente-Ballesteros, A., Martínez-Martínez, V., Ares, A.M., Valverde, S., Samanidou, V., and Bernal, J. | https://bit.ly/VIGItool (accessed on 22 December 2025; free, open-access desktop application, v. 2025) | [210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cina, M.; Mandelli, A.; Ponce, M.D.V.; Guiñez, M.; Cerutti, S. Eco-Friendly Sample Preparation Trends for Exogenous Toxic Organic Compounds in Food: A Sustainable Perspective for LC-MS Analysis. Foods 2026, 15, 517. https://doi.org/10.3390/foods15030517
Cina M, Mandelli A, Ponce MDV, Guiñez M, Cerutti S. Eco-Friendly Sample Preparation Trends for Exogenous Toxic Organic Compounds in Food: A Sustainable Perspective for LC-MS Analysis. Foods. 2026; 15(3):517. https://doi.org/10.3390/foods15030517
Chicago/Turabian StyleCina, Mariel, Alejandro Mandelli, María Del Valle Ponce, María Guiñez, and Soledad Cerutti. 2026. "Eco-Friendly Sample Preparation Trends for Exogenous Toxic Organic Compounds in Food: A Sustainable Perspective for LC-MS Analysis" Foods 15, no. 3: 517. https://doi.org/10.3390/foods15030517
APA StyleCina, M., Mandelli, A., Ponce, M. D. V., Guiñez, M., & Cerutti, S. (2026). Eco-Friendly Sample Preparation Trends for Exogenous Toxic Organic Compounds in Food: A Sustainable Perspective for LC-MS Analysis. Foods, 15(3), 517. https://doi.org/10.3390/foods15030517

