The Incorporation of Plant-Derived Polysaccharides into Alginate-Based Capsules Improve Probiotic Viabilities During Storage, Gastrointestinal Digestion, and Their Application in Yogurt
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Probiotic Capsules
2.3. Determination of Encapsulation Efficiency (EE)
2.4. Characterization of Probiotic Microspheres
2.4.1. Particle Size Measurement
2.4.2. Stereomicroscopy Observation
2.4.3. Texture Profile Analysis (TPA)
2.4.4. Rheological Characterization
2.5. Simulated Gastrointestinal Digestion
2.6. Preparation of Probiotic Yogurt
2.7. Yogurt E-Nose Analysis
2.8. Storage Stability
2.9. Data Analysis
3. Results and Discussion
3.1. Encapsulation Efficiency of Probiotic Capsules
3.2. Morphological Characterization of Probiotic Capsules
3.3. Texture Analysis of Probiotic Capsules
3.4. Rheological Analysis of Probiotic Capsules
3.5. Simulated Gastrointestinal Digestion of Probiotic Capsules
3.6. Storage Stability of Probiotic Capsules
3.7. Application of Probiotic Capsules in Yogurt
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Cremon, C.; Barbaro, M.R.; Ventura, M.; Barbara, G. Pre- and probiotic overview. Curr. Opin. Pharmacol. 2018, 43, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and Probiotic-Derived Functional Factors-Mechanistic Insights Into Applications for Intestinal Homeostasis. Front. Immunol. 2020, 11, 1428. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Pärtty, A.; Rautava, S.; Kalliomäki, M. Probiotics on Pediatric Functional Gastrointestinal Disorders. Nutrients 2018, 10, 1836. [Google Scholar] [CrossRef]
- Hod, K.; Ringel, Y. Probiotics in functional bowel disorders. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 89–97. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, T.; Li, J.; Niu, R.; Liu, D.; Wang, W. Single-cell encapsulation systems for probiotic delivery: Armor probiotics. Adv. Colloid Interface Sci. 2024, 332, 103270. [Google Scholar] [CrossRef]
- Zhang, J.; Miao, W.; Shi, X.; Xiao, H.; Li, C. Alginate microcapsules enriched with biofilm-like Lactiplantibacillus plantarum: Characterization, stability, and application in fermented soy yoghurts. Food Hydrocoll. 2025, 172, 112046. [Google Scholar] [CrossRef]
- Yan, P.; Lan, W.; Xie, J. Modification on sodium alginate for food preservation: A review. Trends Food Sci. Technol. 2023, 143, 104217. [Google Scholar] [CrossRef]
- Yuan, Y.; Yin, M.; Chen, L.; Liu, F.; Chen, M.; Zhong, F. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocoll. 2022, 130, 107668. [Google Scholar] [CrossRef]
- Li, G.-Y.; Chen, Q.-H.; Su, C.-R.; Wang, H.; He, S.; Liu, J.; Nag, A.; Yuan, Y. Soy protein-polysaccharide complex coacervate under physical treatment: Effects of pH, ionic strength and polysaccharide type. Innov. Food Sci. Emerg. Technol. 2021, 68, 102612. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Zhao, X.; Gao, J. Investigation on ionical cross-linking of alginate by monovalent cations to fabrication alginate gel for biomedical application. React. Funct. Polym. 2022, 183, 105484. [Google Scholar] [CrossRef]
- Jing, Y.-Y.; Li, Y.-C.; Luo, Y.-Q.; Zou, L.-H.; Tang, Y.-M.; Lin, Y.-X.; Meng, F.-B. Effects of gum incorporation on the properties of sodium alginate-based composite hydrogel beads for encapsulating lactic acid bacteria. Carbohydr. Polym. 2025, 369, 124298. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, J.; Xu, X.; Sun, M.; Xu, L.; Kuang, H.; Xu, C.; Guo, L. The multiple benefits of bioactive polysaccharides: From the gut to overall health. Trends Food Sci. Technol. 2024, 152, 104677. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, P.; Ding, Y.; Xie, X.; Fu, J.; Zhao, R.; Xiao, Y.; Lukic, M.J.; Li, B.; Wang, W.; et al. Bioactives from biomass: Treasure for future potent antimicrobial applications. Chem. Eng. J. 2024, 499, 155669. [Google Scholar] [CrossRef]
- Chen, S.K.; Wang, X.; Guo, Y.Q.; Song, X.X.; Yin, J.Y.; Nie, S.P. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4831–4870. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, J.; Shen, M.; Nie, S.; Xie, M. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends Food Sci. Technol. 2018, 74, 147–157. [Google Scholar] [CrossRef]
- Pang, Y.; Peng, Z.; Ding, K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr. Polym. 2024, 343, 122457. [Google Scholar] [CrossRef]
- Xin, W.-G.; Jiang, Y.-H.; Zhao, Y.-T.; Liang, M.; Chen, X.-Y.; Liu, S.-J.; Suo, H.-Y. Encapsulation of Lactiplantibacillus plantarum in a sodium alginate/pectin/tea polyphenol complex: Enhancing stability and bioactivity for fermented milk products. Food Chem. 2025, 488, 144851. [Google Scholar] [CrossRef]
- Ming, Y.; Shi, Z.; Zhao, Y.; Li, J.; Sha, W.; Wang, W.; Li, G.; Wu, M.; Ma, T. Preparation and characterization of microcapsules using an acid-tolerant sanxan gum combined with sodium alginate/chitosan and their application in Lactobacillus plantarum delivery. Carbohydr. Polym. 2025, 361, 123638. [Google Scholar] [CrossRef]
- Yan, J.; Liang, X.; Ma, C.; McClements, D.J.; Liu, X.; Liu, F. Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocoll. 2021, 113, 106473. [Google Scholar] [CrossRef]
- Su, C.-y.; Li, D.; Wang, L.-j.; Wang, Y. Green double crosslinked starch-alginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring. Chem. Eng. J. 2022, 455, 140653. [Google Scholar] [CrossRef]
- Wang, N.; Tian, J.; Wang, L.; Song, C.; Wen, C.; Fu, Y.; Song, S. Fabrication, characterization, and antibacterial properties of sodium alginate/chito-oligosaccharide gel beads. Food Hydrocoll. 2024, 156, 110286. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Li, L.; Yan, J.-N.; Zhang, L.-C.; Wang, C.; Lai, B.; Wu, H.-T. Characterization of hydrogel beads constructed from gelatinized lotus rhizome starch and sodium alginate by calcium cross-linking. Food Hydrocoll. 2024, 154, 110102. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Hu, J.; Liu, H. Improved Loading Capacity and Viability of Probiotics Encapsulated in Alginate Hydrogel Beads by In Situ Cultivation Method. Foods 2023, 12, 2256. [Google Scholar] [CrossRef]
- Liu, B.; Hu, J.; Yao, H.; Zhang, L.; Liu, H. Improved viability of probiotics encapsulated by layer-by-layer assembly using zein nanoparticles and pectin. Food Hydrocoll. 2023, 143, 108899. [Google Scholar] [CrossRef]
- Liu, H.; Gong, J.; Chabot, D.; Miller, S.S.; Cui, S.W.; Ma, J.; Zhong, F.; Wang, Q. Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food Hydrocoll. 2016, 54, 328–337. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, K.; Zhang, Y.; Cao, H.; Luo, D.-K.; Yi, C.; Guan, X. Manufacture and characterization of a novel dairy-free quinoa yogurt fermented by modified commercial starter with Weissella confusa. Food Chem. X 2023, 19, 100823. [Google Scholar] [CrossRef]
- Zeng, H.; Han, H.; Huang, Y.; Wang, B. Rapid prediction of the aroma type of plain yogurts via electronic nose combined with machine learning approaches. Food Biosci. 2023, 56, 103269. [Google Scholar] [CrossRef]
- Ta, L.P.; Bujna, E.; Antal, O.; Ladányi, M.; Juhász, R.; Szécsi, A.; Kun, S.; Sudheer, S.; Gupta, V.K.; Nguyen, Q.D. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. Int. J. Biol. Macromol. 2021, 183, 1136–1144. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, X.; Gong, J.; Mu, R.; Li, Y.; Wu, C.; Pang, J. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int. J. Biol. Macromol. 2019, 131, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-induced gelation of alginate: Mechanisms and applications. Int. J. Biol. Macromol. 2021, 177, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yuan, K.; Zhang, H.; Luo, S.; Wang, S.; Yang, X.; Guo, Y. Regulation on gel textures of Nicandra physalodes (Linn.) Gaertn. pectin by its synergistic interaction with sodium alginate. Food Hydrocoll. 2022, 134, 108047. [Google Scholar] [CrossRef]
- Liu, R.; Ci, X.; Liu, L.; Wang, X.; Rifky, M.; Liu, R.; Sui, W.; Wu, T.; Zhang, M. Chitosan entrapping of sodium alginate/Lycium barbarum polysaccharide gels for the encapsulation, protection and delivery of Lactiplantibacillus plantarum with enhanced viability. Int. J. Biol. Macromol. 2024, 260, 129615. [Google Scholar] [CrossRef]
- Zhang, Z.; He, X.; Zeng, C.; Li, Q.; Xia, H. Preparation of cassava starch-gelatin yolk-shell microspheres by water-in-water emulsion method. Carbohydr. Polym. 2023, 323, 121461. [Google Scholar] [CrossRef]
- Chu, L.; Deng, Y.; Zhang, M.; Chen, J.; Lian, Y.; Chen, B.; Xie, L.; Jiang, Y. The characteristics of sodium alginate-tremella polysaccharide assembled hydrogel induced by calcium ion and its protective effect on Lactobacillus rhamnosus. Food Hydrocoll. 2024, 160, 110732. [Google Scholar] [CrossRef]
- Zongping, Z.; Jiao, C.; Yi, C.; Yuntong, M.; Qingsong, Y.; Yunqiu, F.; Chaomei, F.; Boonjai, L.; Rui, L.; Wan, L. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT—Food Sci. Technol. 2021, 154, 112805. [Google Scholar] [CrossRef]
- Yuan, C.; Hu, R.; He, L.; Hu, J.; Liu, H. Extraction and prebiotic potential of β-glucan from highland barley and its application in probiotic microcapsules. Food Hydrocoll. 2023, 139, 108520. [Google Scholar] [CrossRef]
- Edwards, J.S.; Hettiarachchy, N.S.; Kumar, T.K.S.; Carbonero, F.; Martin, E.M.; Benamara, M. Physicochemical properties of soy protein hydrolysate and its formulation and stability with encapsulated probiotic under in vitro gastrointestinal environment. J. Food Sci. 2020, 85, 3543–3551. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Luo, L.; Liu, C.; McClements, D.J. Influence of anionic polysaccharides on the physical and oxidative stability of hydrolyzed rice glutelin emulsions: Impact of polysaccharide type and pH. Food Hydrocoll. 2017, 72, 185–194. [Google Scholar] [CrossRef]
- Yao, H.; Liu, B.; He, L.; Hu, J.; Liu, H. The incorporation of peach gum polysaccharide into soy protein based microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food Chem. 2023, 413, 135596. [Google Scholar] [CrossRef]
- Zhao, M.; Mu, L.; Guo, Z.; Lv, W.; Jiang, H.; Li, B. Double-layer microcapsules based on shellac for enhancing probiotic survival during freeze drying, storage, and simulated gastrointestinal digestion. Int. J. Biol. Macromol. 2024, 267, 131483. [Google Scholar] [CrossRef] [PubMed]
- Vimon, S.; Kertsomboon, T.; Chirachanchai, S.; Angkanaporn, K.; Nuengjamnong, C. Matrices-charges of agar-alginate crosslinked microcapsules via o/w microemulsion: A non-spore forming probiotic bacteria encapsulation system for extensive viability. Carbohydr. Polym. 2023, 321, 121302. [Google Scholar] [CrossRef] [PubMed]
- Poletto, G.; Raddatz, G.C.; Cichoski, A.J.; Zepka, L.Q.; Lopes, E.J.; Barin, J.S.; Wagner, R.; de Menezes, C.R. Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocoll. 2019, 95, 238–244. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Liu, R.; Yang, C.; Shao, Y.; Wang, X.; Yi, H.; Lu, Y. An effective potential Bifidobacterium animalis F1-7 delivery strategy: Supramolecular hydrogel—Sodium alginate/tryptophan-Sulfobutylether-β-cyclodextrin (Alg/Trp-SBE-β-CD). Food Hydrocoll. 2024, 155, 110217. [Google Scholar] [CrossRef]
- Zeng, S.; Long, J.; Sun, J.; Wang, G.; Zhou, L. A review on peach gum polysaccharide: Hydrolysis, structure, properties and applications. Carbohydr. Polym. 2021, 279, 119015. [Google Scholar] [CrossRef]
- Ye, C.; Xu, J.; Shi, L.; Zong, C.; Ji, W.; Lu, Y.; Tao, R.; Han, F.; Ma, H. Injectable natural Tremella-derived hydrogel for reversing ferroptosis-mediated osteoporotic microenvironment imbalance and promoting osteoregeneration. Biomaterials 2025, 324, 123532. [Google Scholar] [CrossRef]
- Wan, F.; Feng, C.; Luo, K.; Cui, W.; Xia, Z.; Cheng, A. Effect of steam explosion on phenolics and antioxidant activity in plants: A review. Trends Food Sci. Technol. 2022, 124, 13–24. [Google Scholar] [CrossRef]
- Fan, X.; Shi, Z.; Xu, J.; Li, C.; Li, X.; Jiang, X.; Du, L.; Tu, M.; Zeng, X.; Wu, Z.; et al. Characterization of the effects of binary probiotics and wolfberry dietary fiber on the quality of yogurt. Food Chem. 2022, 406, 135020. [Google Scholar] [CrossRef]
- Shu, G.; Tian, M.; Chen, L.; Ma, D.; Cui, X.; Meng, J. Probiotic goat milk tablets: Formulation optimization and stability evaluation. LWT—Food Sci. Technol. 2019, 119, 108862. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, R.; Zhang, F.; Wang, B.; Liu, Y. Storage stability of texture, organoleptic, and biological properties of goat milk yogurt fermented with probiotic bacteria. Front. Nutr. 2023, 9, 1093654. [Google Scholar] [CrossRef]






| Sample | SA | SA: LBP | SA: CP | SA: PGP |
|---|---|---|---|---|
| 1:2 1:1 2:1 | 79.27 ± 0.07 D | 84.26 ± 0.13 Ac 85.04 ± 0.05 Ab 86.07 ± 0.11 Aa | 82.40 ± 0.06 Cc 83.09 ± 0.04 Cb 83.90 ± 0.10 Ca | 83.59 ± 0.07 Bb 83.63 ± 0.19 Bb 84.14 ± 0.06 Ba |
| Sample | Size (mm) |
|---|---|
| SA | 2.14 ± 0.01 c |
| SA: LBP | 2.33 ± 0.04 a |
| SA: CP | 2.25 ± 0.03 b |
| SA: PGP | 2.37 ± 0.03 a |
| Sample | Hardness | Springiness | Cohesiveness | Chewiness | Resilience |
|---|---|---|---|---|---|
| SA | 50.90 ± 1.43 c | 0.62 ± 0.02 a | 0.71 ± 0.01 a | 23.28 ± 0.23 c | 0.22 ± 0.04 b |
| SA: LBP | 55.82 ± 0.16 b | 0.58 ± 0.01 b | 0.71 ± 0.01 a | 25.57 ± 0.60 a | 0.23 ± 0.06 ab |
| SA: CP | 56.64 ± 0.20 b | 0.59 ± 0.01 b | 0.71 ± 0.09 a | 25.17 ± 0.14 a | 0.29 ± 0.01 ab |
| SA: PGP | 71.50 ± 0.12 a | 0.64 ± 0.01 a | 0.71 ± 0.03 a | 24.47 ± 0.21 b | 0.30 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
You, S.; Zhao, X.; Cui, W.; Liu, H.; Hu, J. The Incorporation of Plant-Derived Polysaccharides into Alginate-Based Capsules Improve Probiotic Viabilities During Storage, Gastrointestinal Digestion, and Their Application in Yogurt. Foods 2026, 15, 163. https://doi.org/10.3390/foods15010163
You S, Zhao X, Cui W, Liu H, Hu J. The Incorporation of Plant-Derived Polysaccharides into Alginate-Based Capsules Improve Probiotic Viabilities During Storage, Gastrointestinal Digestion, and Their Application in Yogurt. Foods. 2026; 15(1):163. https://doi.org/10.3390/foods15010163
Chicago/Turabian StyleYou, Sijia, Xinming Zhao, Weina Cui, Huan Liu, and Jielun Hu. 2026. "The Incorporation of Plant-Derived Polysaccharides into Alginate-Based Capsules Improve Probiotic Viabilities During Storage, Gastrointestinal Digestion, and Their Application in Yogurt" Foods 15, no. 1: 163. https://doi.org/10.3390/foods15010163
APA StyleYou, S., Zhao, X., Cui, W., Liu, H., & Hu, J. (2026). The Incorporation of Plant-Derived Polysaccharides into Alginate-Based Capsules Improve Probiotic Viabilities During Storage, Gastrointestinal Digestion, and Their Application in Yogurt. Foods, 15(1), 163. https://doi.org/10.3390/foods15010163
