Recent Advances in the Development of Active and Intelligent Packaging Films Using Fruit Peel Powders
Abstract
1. Introduction
2. Preparation and Characterization Methods of FPP
3. Preparation Methods of FPP-Filled and FPP-Based Films
3.1. Film Components
3.2. Preparation Methods
3.2.1. Solvent Casting
3.2.2. Knife Coating
3.2.3. Extrusion
4. Structural Characteristics of FPP-Filled and FPP-Based Films
4.1. Microstructure
4.2. Molecular Interactions
5. Physical Properties of FPP-Filled and FPP-Based Films
5.1. Hydrophobicity
5.2. Mechanical Properties
5.3. Barrier Properties
5.4. Thermal Properties
6. Functional Properties of FPP-Filled and FPP-Based Films
6.1. Antioxidant and Antimicrobial Activities
6.2. pH Sensitivity
6.3. Biodegradability
7. Applications of FPP-Filled and FPP-Based Films in Food Packaging
7.1. Active Packaging
7.2. Intelligent Packaging
8. Current Challenges of FPP-Filled and FPP-Based Films
9. Future Perspectives of FPP-Filled and FPP-Based Films
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Mendes, A.C.; Pedersen, G.A. Perspectives on sustainable food packaging: Is bio-based plastics a solution? Trends Food Sci. Technol. 2021, 112, 839–846. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Chen, X.; Yu, X.; Li, W.; Zhang, S.; Meng, X.; Zhao, Z.; Dong, T.; Anderson, A.; et al. Sustainable bioplastics derived from renewable natural resources for food packaging. Matter 2023, 6, 97–127. [Google Scholar] [CrossRef]
- Bayram, B.; Ozkan, G.; Kostka, T.; Capanoglu, E.; Esatbeyoglu, T. Valorization and application of fruit and vegetable wastes and by-products for food packaging materials. Molecules 2021, 26, 4031. [Google Scholar] [CrossRef] [PubMed]
- Sani, I.K.; Masoudpour-Behabadi, M.; Sani, M.A.; Motalebinejad, H.; Juma, A.S.; Asdagh, A.; Eghbaljoo, H.; Khodaei, S.M.; Rhim, J.W.; Mohammadi, F. Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem. 2023, 405, 134964. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Tripathi, G.; Mir, S.S.; Yousuf, O. Current scenario and global perspectives of citrus fruit waste as a valuable resource for the development of food packaging film. Trends Food Sci. Technol. 2023, 141, 104190. [Google Scholar] [CrossRef]
- Merino, D.; Quilez-Molina, A.I.; Perotto, G.; Bassani, A.; Spigno, G.; Athanassiou, A. A second life for fruit and vegetable waste: A review on bioplastic films and coatings for potential food protection applications. Green Chem. 2022, 24, 4703–4727. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Pandiselvam, R. Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef]
- Rather, J.A.; Akhter, N.; Ayaz, Q.; Mir, S.A.; Singh, A.; Goksen, G.; Majid, D.; Makroo, H.A.; Dar, B.N. Fruit peel valorization, phytochemical profile, biological activity, and applications in food and packaging industries: Comprehensive review. Curr. Food Sci. Technol. Rep. 2023, 1, 63–79. [Google Scholar] [CrossRef]
- Hamed, I.; Jakobsen, A.N.; Lerfall, J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 198–226. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible packaging from fruit processing waste: A comprehensive review. Food Rev. Int. 2023, 39, 2075–2106. [Google Scholar] [CrossRef]
- Câmara, J.S.; Perestrelo, R.; Berenguer, C.V.; Andrade, C.F.; Gomes, T.M.; Olayanju, B.; Kabir, A.; Rocha, C.M.R.; Teixeira, J.A.; Pereira, J.A.M. Green extraction techniques as advanced sample preparation approaches in biological, food, and environmental matrices: A review. Molecules 2022, 27, 2953. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.S.; Saini, C.S. Development of soybean meal protein isolate-based active edible film incorporating bioactive compounds rich kinnow (Citrus reticulata) peel. Food Bioprod. Process. 2024, 147, 406–417. [Google Scholar] [CrossRef]
- Karakuş, E.; Ayhan, Z.; Haskaraca, G. Development and characterization of sustainable-active-edible-bio based films from orange and pomegranate peel waste for food packaging: Effects of particle size and acid/plasticizer concentrations. Food Packag. Shelf Life 2023, 37, 101092. [Google Scholar] [CrossRef]
- Abd Rahman, N.F.; Shamsudin, R.; Ismail, A.; Shah, N.N.A.K.; Varith, J. Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innov. Food Sci. Emerg. Technol. 2018, 50, 217–225. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Liu, F.; Gao, H.; Zeng, J. Interactions, structures, and functions of pomegranate peel reinforced starch film. Int. J. Biol. Macromol. 2024, 282, 136813. [Google Scholar] [CrossRef]
- Ahmad, A.; Dubey, P.; Younis, K.; Yousuf, O. Mosambi (Citrus limetta) peel and Sago based biodegradable film: Development and characterization of physical, water barrier and biodegradation properties. Bioresour. Technol. Rep. 2022, 18, 101016. [Google Scholar] [CrossRef]
- Bahadoriyan, S.; Qarachoboogh, A.F.; Toupchi, F.M.; Pirsa, S. Polyvinyl alcohol based composite film modified with grapefruit peel waste and V2O5 nanoparticles. J. Food Meas. Charact. 2024, 18, 6574–6585. [Google Scholar] [CrossRef]
- Coimbra, P.; Marona, B.; Henriques, M.H.F.; Campos, L.; Gomes, D.M.G.S.; Vitorino, C.; Sousa, J.J.S.; Braga, M.E.M.; Gaspar, M.C. Edible films based on potato and quince peels with potential for the preservation of cured cheese. Food Packag. Shelf Life 2023, 40, 101176. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Z.; Ma, Q.; Mu, J.; Li, X.; Liu, H. Preparation and characterization of yellow peach peel/sodium alginate/glycerol antioxidant film applicable for oil package. Polymers 2022, 14, 1693. [Google Scholar] [CrossRef]
- Putri, W.D.R.; Rahma, R.A.; Wardana, A.A.; Wijayanti, Z.H.; Nur, M.; Mubarok, A.Z. Optimizing edible film production from red pitaya peel powder, konjac glucomannan and kappa carrageenan. J. Polym. Environ. 2024, 32, 2394–2413. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Rosa, G.B.; Ferreira, A.L.A.; da Rosa, C.G.; Beling, P.C.; Xavier, L.O.; Hansen, C.M.; Ferrareze, J.P.; Nunes, M.R.; Barreto, P.L.M.; et al. Bioactive food packaging based on starch, citric pectin and functionalized with Acca sellowiana waste by-product: Characterization and application in the postharvest conservation of apple. Int. J. Biol. Macromol. 2020, 147, 295–303. [Google Scholar] [CrossRef]
- Silva, R.D.; Pacheco, T.F.; de Santi, A.D.; Manarelli, F.; Bozzo, B.R.; Brienzo, M.; Otoni, C.G.; Azeredo, H.M. From bulk banana peels to active materials: Slipping into bioplastic films with high UV-blocking and antioxidant properties. J. Clean. Prod. 2024, 438, 140709. [Google Scholar] [CrossRef]
- Yun, D.; Li, C.; Wang, Z.; Xu, F.; Chen, D.; Liu, J. Preparation of cost-effective and hydrophobic freshness indicating labels based on passion fruit peel powder and stearic acid. Food Biosci. 2023, 53, 102758. [Google Scholar] [CrossRef]
- Yun, D.; Wang, Z.; Li, C.; Chen, D.; Liu, J. Antioxidant and antimicrobial packaging films developed based on the peel powder of different citrus fruits: A comparative study. Food Biosci. 2023, 51, 102319. [Google Scholar] [CrossRef]
- Ba, L.; Luo, C.; Li, X.; Cao, S.; Luo, D. Research progress on the nutritional components, bioactivity, health effects, and food applications of passion fruit peel (PFP). Foods 2025, 14, 3397. [Google Scholar] [CrossRef]
- Bureš, M.S.; Maslov Bandić, L.; Vlahoviček-Kahlina, K. Determination of bioactive components in mandarin fruits: A review. Crit. Rev. Anal. Chem. 2023, 53, 1489–1514. [Google Scholar] [CrossRef]
- Chaudhary, S.; Singh, B. Grapefruit peel waste: Unlocking the potential for industrial applications in the circular economy. Food Sci. Biotechnol. 2025, 34, 2131–2155. [Google Scholar] [CrossRef]
- Le, N.L. Functional compounds in dragon fruit peels and their potential health benefits: A review. Int. J. Food Sci. Technol. 2022, 57, 2571–2580. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Bioactive compounds in banana and their associated health benefits–A review. Food Chem. 2016, 206, 1–11. [Google Scholar] [CrossRef]
- Tocmo, R.; Pena-Fronteras, J.; Calumba, K.F.; Mendoza, M.; Johnson, J.J. Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1969–2012. [Google Scholar] [CrossRef]
- Taharuddin, N.H.; Jumaidin, R.; Mansor, M.R.; Hazrati, K.Z.; Hafila, K.Z.; Yusof, F.A.M. Synergistic effect of Hylocereus polyrhizus (dragon fruit) peel on physicomechanical, thermal, and biodegradation properties of thermoplastic sago starch/agar composites. Int. J. Biol. Macromol. 2024, 277, 133852. [Google Scholar] [CrossRef]
- Chi, W.; Cao, L.; Sun, G.; Meng, F.; Zhang, C.; Li, J.; Wang, L. Developing a highly pH-sensitive κ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. J. Clean. Prod. 2020, 244, 118862. [Google Scholar] [CrossRef]
- Terzioğlu, P.; Güney, F.; Parın, F.N.; Şen, İ.; Tuna, S. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packag. Shelf Life 2021, 30, 100742. [Google Scholar] [CrossRef]
- Khalid, S.; Yu, L.; Feng, M.; Meng, L.; Bai, Y.; Ali, A.; Liu, H.; Chen, L. Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag. Shelf Life 2018, 18, 71–79. [Google Scholar] [CrossRef]
- Li, Y.; Fu, J.; Xu, Y.; Ali, A.; Hussain, Z.; Duan, Q.; Liu, H.; Yu, L. Antimicrobial packaging materials of PLA/starch composites functionalized by pomegranate peel. J. Taiwan Inst. Chem. Eng. 2024, 156, 105371. [Google Scholar] [CrossRef]
- Maliha, M.; Rashid, T.U.; Rahman, M.M. Fabrication of collagen-sodium alginate based antibacterial and edible packaging material: Performance evaluation using entropy-combined compromise solution (CoCoSo). Carbohyd. Polym. Technol. Appl. 2024, 8, 100582. [Google Scholar] [CrossRef]
- Ai, Y.; Wang, G.; Fang, F.; Zhang, F.; Liao, H. Development of real-time intelligent films from red pitaya peel and its application in monitoring the freshness of pork. J. Sci. Food Agric. 2022, 102, 5512–5522. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Yun, D.; Khan, M.I.; Tang, C.; Liu, J. Development of shrimp freshness monitoring labels based on betacyanins-rich red pitaya peel and cassava starch. J. Food Meas. Charact. 2023, 17, 1714–1727. [Google Scholar] [CrossRef]
- Jati, I.R.A.P.; Setijawaty, E.; Utomo, A.R.; Nugraha, D.T. The effect of cassava starch concentration on the characteristics of red dragon fruit peel with eggshell-based smart edible packaging. Food Res. 2025, 9, 209–217. [Google Scholar] [CrossRef]
- Giannelli, M.; Lacivita, V.; Posati, T.; Aluigi, A.; Conte, A.; Zamboni, R.; Del Nobile, M.A. Silk fibroin and pomegranate by-products to develop sustainable active pad for food packaging applications. Foods 2021, 10, 2921. [Google Scholar] [CrossRef]
- Venkatesh, A.; Sutariya, H. Studies on formulation and properties of fruit peel waste incorporated edible film and its effect on quality of bread. J. Packag. Technol. Res. 2019, 3, 99–108. [Google Scholar] [CrossRef]
- Girgin, B.; Abahuni Uçar, M.; Moroydör Derun, E.; Tugrul, N. Development of edible packaging films from walnut, mango, and orange peels: Effect of plasticizers and essential oils. ACS Food Sci. Technol. 2024, 5, 75–84. [Google Scholar] [CrossRef]
- Kharb, J.; Saharan, R. Development of biodegradable and eco-friendly fruit peel-derived bioplastic film with antibacterial potential for food packaging application. Biomass Convers. Biorefinery 2025, 15, 10839–10854. [Google Scholar] [CrossRef]
- Sivasathiya, M.; Ravi, H.; Sunil, C.K.; Anandakumar, S.; Natarajan, V. Characterization and utilization of Karpuravalli banana leaf wax to enhance the properties of biodegradable film from ripened banana peel powder. Biomass Convers. Biorefinery 2025, 15, 29415–29432. [Google Scholar] [CrossRef]
- Meydanju, N.; Pirsa, S.; Farzi, J. Biodegradable film based on lemon peel powder containing xanthan gum and TiO2–Ag nanoparticles: Investigation of physicochemical and antibacterial properties. Polym. Test. 2022, 106, 107445. [Google Scholar] [CrossRef]
- Riaz, S.; Maan, A.A.; Butt, M.S.; Khan, M.K.I. Valorization of agricultural residues in the development of biodegradable active packaging films. Ind. Crop. Prod. 2024, 215, 118587. [Google Scholar] [CrossRef]
- Sánchez-Orozco, R.; Timoteo-Cruz, B.; García-Sánchez, J.J.; Gomez-Espinosa, R.M.; Bernal-Martínez, L.A.; Torres-Blancas, T. Properties of eco-friendly orange peel-alginate-glycerol bioplastic films as potential food packaging applications. J. Macromol. Sci. A 2024, 61, 528–540. [Google Scholar] [CrossRef]
- Yun, D.; Liu, J. Preparation, characterization and application of active food packaging films based on sodium alginate and twelve varieties of mandarin peel powder. Foods 2024, 13, 1174. [Google Scholar] [CrossRef]
- Karuna, N.; Arssanasuwan, N.; Nuchanong, P.; Udomchawee, M.; Pimpa, P.; Chantakhat, N.; Pattanamongkol, R.; Suttiruengwong, S. Superior hydrophobicity of pomelo peel film: Impact of silane integration. Food Packag. Shelf Life 2024, 46, 101369. [Google Scholar] [CrossRef]
- Wu, H.; Lei, Y.; Zhu, R.; Zhao, M.; Lu, J.; Xiao, D.; Jiao, C.; Zhang, Z.; Shen, G.; Li, S. Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocoll. 2019, 90, 41–49. [Google Scholar] [CrossRef]
- Bajpai, S.; Garg, M.; Narayan, K.; Sharma, R.; Kebaili, I. Enhanced performance of the mechanical, biodegradable, and water absorption properties of PLA orange peel polymer. Polym. Bull. 2026, 83, 82. [Google Scholar] [CrossRef]
- Ghasemizad, S.; Pirsa, S.; Amiri, S.; Abdosatari, P. Optimization and characterization of bioactive biocomposite film based on orange peel incorporated with gum arabic reinforced by Cr2O3 nanoparticles. J. Polym. Environ. 2022, 30, 2493–2506. [Google Scholar] [CrossRef]
- Merino, D.; Bertolacci, L.; Paul, U.C.; Simonutti, R.; Athanassiou, A. Avocado peels and seeds: Processing strategies for the development of highly antioxidant bioplastic films. ACS Appl. Mater. Interfaces 2021, 13, 38688–38699. [Google Scholar] [CrossRef] [PubMed]
- Balavairavan, B.; Saravanakumar, S.S. Characterization of ecofriendly poly (vinyl alcohol) and green banana peel filler (GBPF) reinforced bio-films. J. Polym. Environ. 2021, 29, 2756–2771. [Google Scholar] [CrossRef]
- Senthil, M.K.T.; Rajini, N.; Alavudeen, A.; Suchart, S.; Varada, R.A.; Nadir, A. Development and analysis of completely biodegradable cellulose/banana peel powder composite films. J. Nat. Fibers 2021, 18, 151–160. [Google Scholar]
- Luchese, C.L.; Pavoni, J.M.F.; Spada, J.C.; Tessaro, I.C. Influence of blueberry and jaboticaba agroindustrial residue particle size on color change of corn starch based films submitted to different pH values solutions. J. Renew. Mater. 2019, 7, 235. [Google Scholar] [CrossRef]
- Prajapati, R.A.; Jadeja, G.C. Engineering biodegradable sodium alginate films with dragon fruit peel powder and MgO nanoparticles. J. Macromol. Sci. B 2025, 64, 21–47. [Google Scholar] [CrossRef]
- Rahma, R.A.; Putri, W.D.R.; Megatri, A.A.; Nur, M.; Mubarok, A.Z.; Wardana, A.A. Optimisation of fish gelatin and red pitaya peel powder edible film production. Int. J. Food Sci. Technol. 2023, 58, 5578–5590. [Google Scholar] [CrossRef]
- Rahma, R.A.; Putri, W.D.R.; Wardana, A.A.; Zhu, F.; Purwati, I.D.; Mubarok, A.Z.; Nur, M. Optimising the properties of pH-sensing films based on red pitaya peel powder and konjac glucomannan. Food Biophys. 2025, 20, 41. [Google Scholar] [CrossRef]
- Marzuki, M.N.A.; Tawakkal, I.S.M.A.; Basri, M.S.M.; Othman, S.H.; Kamarudin, S.H.; Lee, C.H.; Khalina, A. The effect of jackfruit skin powder and fiber bleaching treatment in PLA composites with incorporation of thymol. Polymers 2020, 12, 2622. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.S.; Saini, C.S. Effect of montmorillonite (MMT) on the properties of soybean meal protein isolate-based nanocomposite film loaded with debittered kinnow peel powder. Food Res. Int. 2024, 185, 114292. [Google Scholar] [CrossRef]
- Duarte, O.; Valencia, G.A.; Ferreiro, O.B.; Duarte, S. Biodegradable colorimetric indicative films based on kurugua (Sicana odorifera) peel powder. Polymers 2025, 17, 1167. [Google Scholar] [CrossRef]
- Jiang, L.; Luo, Z.; Liu, H.; Wang, F.; Li, H.; Gao, H.; Zhang, H. Preparation and characterization of chitosan films containing lychee (Litchi chinensis Sonn.) pericarp powder and their application as active food packaging. Foods 2021, 10, 2834. [Google Scholar] [CrossRef]
- Rojas-Bravo, M.; Rojas-Zenteno, E.G.; Hernández-Carranza, P.; Ávila-Sosa, R.; Aguilar-Sánchez, R.; Ruiz-López, I.I.; Ochoa-Velasco, C.E. A potential application of mango (Mangifera indica L. cv Manila) peel powder to increase the total phenolic compounds and antioxidant capacity of edible films and coatings. Food Bioprocess Technol. 2019, 12, 1584–1592. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Yong, H.; Qin, Y.; Liu, J.; Jin, C. Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder. Int. J. Biol. Macromol. 2020, 145, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Chhatariya, H.F.; Srinivasan, S.; Choudhary, P.M.; Begum, S.S. Corn starch biofilm reinforced with orange peel powder: Characterization of physicochemical and mechanical properties. Mater. Today Proc. 2022, 59, 884–892. [Google Scholar] [CrossRef]
- Koutoulis, A.S.; Giannakas, A.E.; Lazaridis, D.G.; Kitsios, A.P.; Karabagias, V.K.; Giannakas, A.E.; Ladavos, A.; Karabagias, I.K. Preparation and characterization of PLA-based films fabricated with different citrus species peel powder. Coatings 2024, 14, 1311. [Google Scholar] [CrossRef]
- McKay, S.; Sawant, P.; Fehlberg, J.; Almenar, E. Antimicrobial activity of orange juice processing waste in powder form and its suitability to produce antimicrobial packaging. Waste Manag. 2021, 120, 230–239. [Google Scholar] [CrossRef]
- Rathinavel, S.; Saravanakumar, S.S. Development and analysis of poly vinyl alcohol/orange peel powder biocomposite films. J. Nat. Fibers 2021, 18, 2045–2054. [Google Scholar] [CrossRef]
- Sambudi, N.S.; Lin, W.Y.; Harun, N.Y.; Mutiari, D. Modification of poly (lactic acid) with orange peel powder as biodegradable composite. Polymers 2022, 14, 4126. [Google Scholar] [CrossRef]
- Taghavi Kevij, H.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Mechanical, physical, and bio-functional properties of biopolymer films based on gelatin as affected by enriching with orange peel powder. Polym. Bull. 2021, 78, 4387–4402. [Google Scholar] [CrossRef]
- Yadav, V.; Pal, D.; Poonia, A.K. Synthesis and characterization of orange peel powder incorporated chitosan-zinc oxide (OPP@CS-ZnO) biopolymer nanocomposites. Proc. Indian Natl. Sci. Acad. 2025, 91, 512–522. [Google Scholar] [CrossRef]
- de Moraes Crizel, T.; de Oliveira Rios, A.; Alves, V.D.; Bandarra, N.; Moldão-Martins, M.; Hickmann Flôres, S. Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food Bioprocess Technol. 2018, 11, 536–550. [Google Scholar] [CrossRef]
- Pawle, P.; Pandey, S.; Kumar, A.; Agarwal, A.; Tripathi, A.D.; Saeed, M.; Rab, S.O.; Mahato, D.K.; Kumar, P.; Kamle, M. Valorization of raw papaya (Carica papaya) and citrus peels for development of antimicrobial and biodegradable edible film. Food Chem. X 2025, 25, 102129. [Google Scholar] [CrossRef]
- Abinaya, N.; Sivaranjana, P.; Rajini, N.; Krishnan, K. Performance analysis of biodegradable composite using polyvinyl alcohol and pomegranate peel powder for sustainable dry packaging applications. Discov. Mater. 2024, 4, 63. [Google Scholar] [CrossRef]
- Ali, A.; Chen, Y.; Liu, H.; Yu, L.; Baloch, Z.; Khalid, S.; Zhu, J.; Chen, L. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol. 2019, 129, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, A.; Mohammadi Nafchi, A.; Baghaei, H.; Nouri, L. Fabrication and characterization of a smart film based on cassava starch and pomegranate peel powder for monitoring lamb meat freshness. Food Sci. Nutr. 2022, 10, 3293–3301. [Google Scholar] [CrossRef]
- Hanani, Z.N.; Husna, A.A.; Syahida, S.N.; Khaizura, M.N.; Jamilah, B. Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Packag. Shelf Life 2018, 18, 201–211. [Google Scholar] [CrossRef]
- Hanani, Z.N.; Yee, F.C.; Nor-Khaizura, M.A.R. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll. 2019, 89, 253–259. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocoll. 2020, 104, 105735. [Google Scholar] [CrossRef]
- Rathinavel, S.; Saravankumar, S.S.; Senthilkumar, T.S.; Barile, C.; Kumar, S.S.; Prithviraj, M. Utilization of bio-waste material pomegranate peel powder along with silver nitrate and polyvinyl alcohol to form a hybrid biofilm. Biomass Convers. Biorefinery 2024, 14, 24305–24316. [Google Scholar] [CrossRef]
- Rathinavel, S.; Senthilkumar, T.S.; Saravanakumar, S.S.; Kumar, S.S.; Prinsula, J.; Barile, C. Development and analysis of environmental friendly biocomposite films with pomegranate peel as filler for conventional applications. Biomass Convers. Biorefinery 2024, 14, 29949–29961. [Google Scholar] [CrossRef]
- Zeng, J.; Ren, X.; Zhu, S.; Gao, Y. Fabrication and characterization of an economical active packaging film based on chitosan incorporated with pomegranate peel. Int. J. Biol. Macromol. 2021, 192, 1160–1168. [Google Scholar] [CrossRef]
- Aparicio-Fernández, X.; Vega-Ahuatzin, A.; Ochoa-Velasco, C.E.; Cid-Pérez, S.; Hernández-Carranza, P.; Ávila-Sosa, R. Physical and antioxidant characterization of edible films added with red prickly pear (Opuntia ficus-indica L.) cv. San Martín peel and/or its aqueous extracts. Food Bioprocess Technol. 2018, 11, 368–379. [Google Scholar] [CrossRef]
- Arora, R.; Agarwal, A.; Haleem, R.; Shukla, S.K. Synergistic evolution of stable bioactivity and better mechanical strength in polyvinyl alcohol and sweet lime peel film. J. Polym. Res. 2024, 31, 110. [Google Scholar] [CrossRef]
- Ahad, N.A.; Rosli, N.A. Absorption ability and degradable of thin film from orange peel waste. Int. J. Nanoelectron. Mater. 2024, 17, 291–297. [Google Scholar]
- Ortiz Cabrera, N.J.; Miranda Zanardi, L.F.; Masuelli, M.A. Mechanical characteristics of tara gum/orange peel films influenced by the synergistic effect on the rheological properties of the film-forming solutions. Polymers 2025, 17, 1767. [Google Scholar] [CrossRef] [PubMed]
- Kamel, N.A.; Wissa, D.A.; Abd-El-Messieh, S.L. Novel nano composites from Citrus limon and Citrullus colocynthis agricultural wastes for biomedical applications. Sci. Rep. 2024, 14, 17343. [Google Scholar] [CrossRef]
- Kotancilar, S.K.; Gerigitmez, Y.; Akin, Z.S.; Senturk, K.; Ozekmekci, M. Biodegradable hydroxyethyl cellulose (HEC)–chitosan (CS)–lemon peel composite films: A sustainable alternative to synthetic food packaging. Packag. Technol. Sci. 2025, in press. [Google Scholar] [CrossRef]
- Techawinyutham, L.; Techawinyutham, W.; Rangappa, S.M.; Siengchin, S. Lignocellulose based biofiller reinforced biopolymer composites from fruit peel wastes as natural pigment. Int. J. Biol. Macromol. 2024, 257, 128767. [Google Scholar] [CrossRef]
- Vijayakumar, T.L.; Udhayakumar, P.; Balavairavan, B. Influence of Selenicereus undatus (dragon fruit) peel powder as a reinforcement filler on the mechanical, water absorption, UV shielding, and biodegradation properties of polyvinyl alcohol biocomposite film. Polym. Eng. Sci. 2025, 65, 4070–4082. [Google Scholar] [CrossRef]
- Singha, P.; Rani, R.; Badwaik, L.S. Influence of sugarcane bagasse fibre on the properties of sweet lime peel-and polyvinyl alcohol-based biodegradable films. Sustain. Food Technol. 2023, 1, 610–620. [Google Scholar] [CrossRef]
- Singha, P.; Rani, R.; Badwaik, L.S. Sweet lime peel-, polyvinyl alcohol-and starch-based biodegradable film: Preparation and characterization. Polym. Bull. 2023, 80, 589–605. [Google Scholar] [CrossRef]
- León-López, A.; Flores-Gutiérrez, E.V.; Cenobio-Galindo, A.D.J.; Islas-Moreno, A.; Aguirre-Álvarez, G.; Carreño-Márquez, I.J.A. Gelatin-based films containing extracts of prickly pear (Opuntia guerrana): Characterization and evaluation of bioactive properties. Foods 2025, 14, 3911. [Google Scholar] [CrossRef]
- Gulzar, S.; Tagrida, M.; Prodpran, T.; Li, L.; Benjakul, S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods—A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4451–4483. [Google Scholar] [CrossRef]
- Kunam, P.K.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Bio-based materials for barrier coatings on paper packaging. Biomass Convers. Biorefinery 2024, 14, 12637–12652. [Google Scholar] [CrossRef]
- Liu, X.; Xu, F.; Huang, X.; Sun, J.; Kan, J.; Liu, J. Preparation of hydrophobic purple sweet potato-based intelligent packaging films by stearic acid coating and heat pressing Treatments. Foods 2025, 14, 1276. [Google Scholar] [CrossRef]
- Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef]
- Liu, X.; Xu, F.; Yong, H.; Chen, D.; Tang, C.; Kan, J.; Liu, J. Recent advances in chitosan-based active and intelligent packaging films incorporated with flavonoids. Food Chem. X 2025, 25, 102200. [Google Scholar] [CrossRef]
- Singh, B.; Soni, S.K.; Mathur, P.; Garg, N. Microbial multienzyme viz., pectinase, cellulase and amylase production using fruit and vegetable waste as substrate—A review. Appl. Microbiol. 2024, 4, 1232–1246. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, Q.; Li, H.; Wu, P.; Waterhouse, G.I.; Li, Y.; Ai, S. A pectocellulosic bioplastic from fruit processing waste: Robust, biodegradable, and recyclable. Chem. Eng. J. 2023, 463, 142452. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Ezati, P.; Rhim, J.W. Recent advances in intelligent food packaging applications using natural food colorants. ACS Food Sci. Technol. 2021, 1, 124–138. [Google Scholar] [CrossRef]
- Ingale, O.S.; Bora, P.P.; Pawase, P.A.; Bashir, O.; Shams, R.; Patharkar, S.R.; Roy, S. A review on intelligent packaging systems using betalain-rich biobased composite films in monitoring freshness of fish, shrimp, and meat. Food Bioprocess Technol. 2025, 18, 8154–8183. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Oliveira, G.; Ahmad, M.; Mustafa, A.; Herculano, R.D.; Farias, F.O. Halochromic properties of carotenoid-based films for smart food packaging. Food Packag. Shelf Life 2024, 44, 101325. [Google Scholar] [CrossRef]





| Type of FPP | Particle Size of FPP | FPP Content | Polymers | Plasticizers (Content) | Reinforcing Agents | Preparation Methods of the Films | Impact of FPP on the Physical Properties of the Films | Functional Properties of the Films | Factors Affecting the Properties of the Films | Applications of the Films | References |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Kinnow peel powder | 5%, 10%, 15%, 20%, 25% | Soybean meal protein isolate | Glycerol (50%) | Solvent casting | Thickness ↑, MC ↓, WS ↓, SR ↓, WVP ↓, LT ↓, TS ↑, EAB ↑, YM ↑, thermal stability ↑ | Antioxidant activity; Antimicrobial activity | The content of FPP | [13] | |||
| Pomegranate peel powder | 75 µm | 10% | Corn starch | Glycerol (20%) | Solvent casting | Antioxidant activity; Antimicrobial activity | The condition of homogenization | Active packaging for fresh-cut strawberry through wrapping | [16] | ||
| Sweet lime peel powder | 150 µm | Gum Arabic/starch composite | Glycerol | Solvent casting | [17] | ||||||
| Grapefruit peel powder | 2.5%, 5% | PVA | Glycerol (30%) | V2O5 nanoparticles | Solvent casting | Thickness ↑, MC ↓, WS ↓, WVP ↓, thermal stability ↑ | [18] | ||||
| Quince peel powder | 250 µm | Potato starch | Glycerol | Solvent casting | Active packaging for cured cheese through wrapping | [19] | |||||
| Dragon fruit peel powder | 150 µm | Konjac glucomannan/kappa carrageenan composite | Glycerol | Solvent casting | [21] | ||||||
| Feijoa peel powder | 75 µm | 8%, 20%, 40%, 60%, 80% | Pinhão starch/citric pectin composite | Glycerol (40%) | Solvent casting | Thickness ↑, WS ↓, WCA ↔, LT ↓, TS ↔, EAB ↔, YM ↑, thermal stability ↑ | Antioxidant activity; Antimicrobial activity | The content of FPP | [22] | ||
| Avocado peel powder | 300 µm | Pectin | Polyglycerine (30%) | CaCl2 | Solvent casting | Antioxidant activity | [54] | ||||
| Banana peel powder | 333 µm | 5%, 10%, 15%, 20%, 25% | PVA | Solvent casting | WS ↑, SR ↑, WVP ↑, LT ↓, TS ↑, EAB ↓, YM ↑, thermal stability ↓, biodegradability ↑ | The content of FPP | [55] | ||||
| Banana peel powder | 25 µm | 5%, 10%, 15%, 20%, 25% | Cellulose | Knife coating | TS ↑, EAB ↓, YM ↑, thermal stability ↑ | The content of FPP | [56] | ||||
| Blueberry and jaboticaba peel powder | 150 µm | 12.5% | Corn starch | Glycerol (30%) | Solvent casting | pH sensitivity | The type of FPP | [57] | |||
| Dragon fruit peel powder | 106 µm | 9.60% | Sodium alginate | Glycerol (30%) | MgO nanoparticles | Solvent casting | Thickness ↑, MC ↔, WS ↓, WVP ↓, WCA ↑, LT ↓, TS ↑, EAB ↔, thermal stability ↑, biodegradability ↓ | Antioxidant activity | The presence of MgO nanoparticles | [58] | |
| Dragon fruit peel powder | 150 µm | Gelatin | Glycerol | Solvent casting | [59] | ||||||
| Dragon fruit peel powder | 150 µm | Konjac glucomannan | Glycerol | Solvent casting | pH sensitivity | Intelligent packaging for monitoring chicken meat freshness | [60] | ||||
| Dragon fruit peel powder | Thermoplastic starch/agar composite | Glycerol | Compression molding | [32] | |||||||
| Grape peel powder | 75 µm | 2%, 4%, 6%, 8% | k-Carrageenan/hydroxypropyl methylcellulose composite | Sorbitol (40%) | Solvent casting | Thickness ↑, LT ↓, TS ↓, EAB ↓, | pH sensitivity | The content of FPP | Intelligent packaging for monitoring pork freshness | [33] | |
| Jackfruit peel powder | 250–500 µm | 10%, 20%, 30%, 40% | PLA | Thymol | Extrusion and compression molding | TS ↓, EAB ↓, YM ↑, thermal stability ↓, biodegradability ↑ | The content of FPP | [61] | |||
| Kinnow peel powder | 20% | Soybean meal protein isolate | Glycerol (50%) | Montmorillonite | Solvent casting | Antioxidant activity; Antimicrobial activity | The content of montmorillonite | [62] | |||
| Kurugua peel powder | 180 µm | 6.25%, 12.5% | Cassava starch | Glycerol (30%) | Solvent casting | Thickness ↑, MC ↔, WS ↑, WCA ↑, LT ↓, thermal stability ↓ | pH sensitivity | The content of FPP | Intelligent packaging for monitoring chicken meat freshness | [63] | |
| Lychee peel powder | 180 µm | 2.5%, 5%, 7.5%, 10% | Chitosan | Glycerol (30%) | Solvent casting | Thickness ↑, MC ↓, WS ↓, SR ↓, WVP ↓, LT ↓, TS ↑, EAB ↓, YM ↑ | Antioxidant activity; Antimicrobial activity | The content of FPP | Active packaging for fresh-cut apple and apple juice through wrapping | [64] | |
| Mango peel powder | 180 µm | 40%, 80% | Corn starch | Sorbitol (40%) | Phosphoric acid | Solvent casting | TS ↑, EAB ↑ | Antioxidant activity | The content of FPP | Active packaging for fresh-cut apple through edible coating | [65] |
| Mangosteen peel powder | 180 µm | 2.5%, 5%, 10% | Chitosan | Glycerol (30%) | Solvent casting | Thickness ↑, MC ↓, WS ↓, WVP ↑, LT ↓, TS ↑, EAB ↓, YM ↓, thermal stability ↑ | Antioxidant activity; Antimicrobial activity | The content of FPP | Active packaging for soybean oil through wrapping | [66] | |
| Orange peel powder | 1 mm | 20%, 30%, 40%, 50% | Corn starch | Glycerol (50%) | Solvent casting | Thickness ↔, MC ↓, WS ↓, SR ↑, TS ↑, EAB ↓, biodegradability ↑ | The content of FPP | [67] | |||
| Orange, mandarin and lemon peel powder | 40–50 µm | 10% | PLA | Solvent casting | SR ↓, OP ↓, TS ↑, EAB ↓, YM ↑ | Antioxidant activity | The type of FPP | [68] | |||
| Orange peel powder | 90 µm | 83% | LLDPE | Extrusion and compression molding | Antimicrobial activity | [69] | |||||
| Orange peel powder | 30–40 µm | 5%, 10%, 15%, 20% | PVA | Solvent casting | thermal stability ↓ | The content of FPP | [70] | ||||
| Orange peel powder | 100 µm | 10%, 20%, 40%, 60% | PLA | Solvent casting | SR ↑, WCA ↑, TS ↓, EAB ↑, YM ↓, biodegradability ↑ | The content of FPP | [71] | ||||
| Orange peel powder | 180 µm | 3%, 6%, 9%, 12%, 15% | Gelatin | Glycerol (30%) | Solvent casting | Thickness ↑, MC ↑, WVP ↑, TS ↑, EAB ↓ | Antioxidant activity; Antimicrobial activity | The content of FPP | [72] | ||
| Orange peel powder | 100 µm | 0.25%, 0.5%, 1%, 1.25% | Chitosan/PVA composite | Glycerol (20%) | Solvent casting | Thickness ↑, WS ↑, WCA ↓, WVP ↑, OP ↓, TS ↓, EAB ↑, YM ↔, thermal stability ↑ | Antioxidant activity | The content of FPP | [34] | ||
| Orange peel powder | 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6% | Chitosan | ZnO nananoparticles | Solvent casting | Thickness ↑, SR ↓, TS ↑, EAB ↓, biodegradability ↓ | The content of FPP and ZnO nananoparticles | [73] | ||||
| Papaya peel powder | 500 µm | 2.5%, 5%, 7.5% | Gelatin | Solvent casting | MC ↔, WS ↓, WVP ↑, LT ↓, TS ↓, EAB ↓, YM ↓ | Antioxidant activity | The micro-encapsulation of FPP | Active packaging for lard through wrapping | [74] | ||
| Papaya and citrus peel powder | 25 µm | 50% | Corn starch | Glycerol (75%) | Solvent casting | The ratio of two FPP | Active packaging for muffins | [75] | |||
| Pomegranate peel powder | 35 µm | 4%, 8%, 12%, 16%, 20% | PVA | Solvent casting | MC ↑, WVP ↓, OP ↓, thermal stability ↑ | The content of FPP | [76] | ||||
| Pomegranate peel powder | 80 µm | 2%, 4%, 6%, 8%, 10%, 12%, 14% | Hydroxypropyl high-amylose starch | Polyethylene glycol (20%) | Solvent casting | Thickness ↑, TS ↑, EAB ↓, YM ↑, LT ↓ | Antimicrobial activity | The content of FPP | [77] | ||
| Pomegranate peel powder | 2%, 4%, 6%, 8% | Cassava starch | Glycerol (30%) | Solvent casting | TS ↓, EAB ↓, YM ↓ | pH sensitivity; Antioxidant activity | The content of FPP | Intelligent packaging for monitoring lamb meat freshness | [78] | ||
| Pomegranate, papaya and jackfruit peel powder | 1%, 3%, 5%, 7%, 9% | Gelatin | Glycerol (30%) | Solvent casting | Thickness ↑, MC ↑, WS ↓, WCA ↑ | Antioxidant activity; Antimicrobial activity | The type and content of FPP | [79] | |||
| Pomegranate peel powder | 1%, 2%, 3%, 4%, 5% | Gelatin | Glycerol (30%) | Solvent casting | Thickness ↑, MC ↔, WS ↓, WVP ↑, TS ↑, EAB ↓ | Antioxidant activity; Antimicrobial activity | The content of FPP | [80] | |||
| Pomegranate peel powder | 80 µm | Polycaprolactone/starch composite | Stearic acid | Extrusion and compression molding | Antimicrobial activity | [35] | |||||
| Pomegranate peel powder | 13 µm | PLA/starch composite | Stearic acid and citric acid | Extrusion | Antimicrobial activity | [36] | |||||
| Pomegranate peel powder | 0.67%, 6.7%, 33%, 46.7%, 66.7% | Collagen/sodium alginate composite | Glycerol (0.1%, 1%, 5%, 7%, 10%) | Citric acid | Solvent casting | Antimicrobial activity | The content of FPP, glycerol and citric acid | [37] | |||
| Pomegranate peel powder | 2.5%, 12.5%, 25% | Mung bean protein | Glycerol (50%) | Solvent casting | Thickness ↑, MC ↓, WS ↓, WCA ↑, WVP ↑, TS ↑, EAB ↑ | Antioxidant activity; Antimicrobial activity | The content of FPP | [81] | |||
| Pomegranate peel powder | 50 μm | PVA | Ag nanoparticles | Solvent casting | Antimicrobial activity | The content of Ag nanoparticles | [82] | ||||
| Pomegranate peel powder | 50 μm | PVA | Solvent casting | WVP ↓, TS ↑, EAB ↓, YM ↑, thermal stability ↑, biodegradability ↓ | Antimicrobial activity | The content of FPP | [83] | ||||
| Pomegranate peel powder | 150 µm | 3%, 6%, 9% | Chitosan | Glycerol (30%) | Solvent casting | Thickness ↑, MC ↓, WS ↑, WVP ↑, LT ↓, TS ↓, EAB ↓, YM ↓ | Antioxidant activity; Antimicrobial activity | The content of FPP | [84] | ||
| Prickly pear peel powder | 40%, 80% | Carboxymethyl cellulose | Glycerol (40%) | Solvent casting | Antioxidant activity | [85] | |||||
| Sweet lime peel powder | 106 µm | 15% | PVA | Glycerol (20%) | Solvent casting | Thickness ↑, SR ↓, TS ↑, WVP ↓, thermal stability ↑, biodegradability ↑ | Antimicrobial activity | Active packaging for bean sprout through covering | [86] | ||
| Orange peel powder | 115 µm | 25%, 43%, 67%, 100% | Corn starch | Glycerol (50%) | Solvent casting | Biodegradability ↑ | The content of FPP | [87] | |||
| Orange peel powder | 20%, 50% | Tara gum | Glycerol (30%, 50%) | Solvent casting | WS ↓, WVP ↑, TS ↑, EAB ↓ | The contents of FPP and glycerol | [88] | ||||
| Lemon and colocynth peel powder | 2% | Wheat starch/PVA composite | Glycerol (30%) | Glutaraldehyde | Solvent casting | Antimicrobial activity | The type of FPP | [89] | |||
| Lemon peel powder | 106 µm | 1%, 2%, 3%, 4% | Hydroxyethyl cellulose/chitosan composite | Glycerol (25%) | Solvent casting | Thickness ↑, WS ↑, SR ↑, WVP ↑, TS ↓, EAB ↓ | Antioxidant activity; Antimicrobial activity | The content of FPP | Active packaging for blueberries through wrapping | [90] | |
| Mangosteen and durian peel powder | 150 and 300 µm | PBAT | Extrusion and compression molding | The type and content of FPP | [91] | ||||||
| Dragon fruit peel powder | 100 µm | PVA | Solvent casting | The content of FPP | [92] |
| Type of FPP | Particle Size of FPP | Polymers (Content) | Plasticizers (Content) | Reinforcing Agents | Preparation Methods of the Films | Functional Properties of the Films | Factors Affecting the Properties of the Films | Applications of the Films | References |
|---|---|---|---|---|---|---|---|---|---|
| Pomegranate and orange peel powder | 150–125 µm, 106–75 µm, 75–53 µm, 53 µm | Glycerol (7% and 10%) | Citric acid | Solvent casting | Antioxidant activity; Antimicrobial activity | The particle size of FPP, the content of glycerol and the content of citric acid | [14] | ||
| Yellow peach peel powder | 75 µm | Sodium alginate (24%) | Glycerol (32%) | Solvent casting | Antioxidant activity | The presence of sodium alginate and glycerol | Active packaging for soybean oil | [20] | |
| Banana peel powder | 500 µm | Carboxymethyl cellulose (20%) | Glycerol (15%) | Knife coating | Antioxidant activity; Antimicrobial activity | The pretreatment of FPP | [23] | ||
| Passion fruit peel powder | 150 µm | Sodium alginate (10%) | Glycerol (30%) | Stearic acid | Solvent casting | Antioxidant activity; pH sensitivity | The presence of stearic acid | Intelligent packaging for monitoring shrimp freshness | [24] |
| Orange, lemon, pomelo and mandarin peel powder | 150 µm | Sodium alginate (10%) | Glycerol (30%) | Solvent casting | Antioxidant activity; Antimicrobial activity | The variety of citrus fruits | Active packaging for corn oil through wrapping | [25] | |
| Banana peel powder | 355 µm | Corn starch (40%) | Glycerol (20%) | Banana leaf wax | Solvent casting | The presence of banana leaf wax | [45] | ||
| Dragon fruit peel powder | 180 µm | Glycerol | Knife coating | Antioxidant activity; pH sensitivity | The content of FPP and glycerol | Intelligent packaging for monitoring pork freshness | [38] | ||
| Dragon fruit peel powder | 150 µm | Cassava starch | Glycerol (30%) | Solvent casting | Antioxidant activity; Antimicrobial activity; pH sensitivity | Intelligent packaging for monitoring shrimp freshness | [39] | ||
| Lemon peel powder | Xanthan gum (0.25%, 0.5%, 0.75%) | Glycerol (20%) | TiO2–Ag nanoparticles | Solvent casting | Antioxidant activity; Antimicrobial activity | [46] | |||
| Mango and orange peel powder | 180 µm | Sodium alginate (10%) | Glycerol; sorbitol | Aloe vera gel and essential oils | Solvent casting | Antimicrobial activity | The type of plasticizer and essential oils, and the addition of aloe vera gel | Active packaging for plum, grape and fresh-cut apple through edible coating | [43] |
| Orange, mango, banana, and sapodilla peel powder | Corn starch (100%) | Glycerol (100%) or Sorbitol (100%) | Solvent casting | Antimicrobial activity | The type of FPP and plasticizer | [44] | |||
| Orange peel powder | 180 µm | Glycerol (30% based on FPP) | Wheat straw and rice husk powder | Solvent casting | Antioxidant activity; Antimicrobial activity | The content of wheat straw and rice husk powder | [47] | ||
| Orange peel powder | 75 µm | Xanthan gum (25%, 50%, 75%, 100%) | Glycerol (50%, 100%, 200%, 300%) | Solvent casting | The content of Xanthan gum and glycerol | [48] | |||
| Orange peel powder | 150 µm | Sodium alginate (30%) | Glycerol (30%) | Solvent casting | Antioxidant activity; Antimicrobial activity | The cultivar of orange | Active packaging for corn oil through wrapping | [49] | |
| Pomegranate peel powder | 500 µm | Silk fibroin (43%) | Glycerol (9%) | Solvent casting | Antioxidant activity; Antimicrobial activity | [41] | |||
| Pomegranate and orange peel powder | 500 µm | Glycerol (20%, 25%, 30%) | CaCl2 | Solvent casting | The proportion of pomegranate and orange peel powder | Active packaging for bread through wrapping | [42] | ||
| Pomelo peel powder | 75–125 µm | Glycerol (2%, 4%, 6%) | Citric acid and AEAPTMS | Solvent casting | The kind of hydrophobic agent | [50] | |||
| Pomelo peel powder | 150 µm | Sodium alginate (5%) | Glycerol (10%) | Tea polyphenol | Solvent casting | Antioxidant activity; Antimicrobial activity | The presence of tea polyphenol | Active packaging for soybean oil through wrapping | [51] |
| Sweet lime peel powder | 500 µm | PVA (100%) | Glycerol (500%) | Sugarcane bagasse fiber | Solvent casting | The content of sugarcane bagasse fiber | [93] | ||
| Sweet lime peel powder | 500 µm | PVA and starch | Glycerol (250%) | Solvent casting | [94] | ||||
| Orange peel powder | 100 µm | PLA (14%, 20%, 33%) | Solvent casting | The content of PLA | [52] | ||||
| Orange peel powder | Gum Arabic (1%, 2%, 3%, 4%, 5%) | Glycerol (40%) | Cr2O3 nanoparticles | Solvent casting | Antimicrobial activity | The contents of gum Arabic and Cr2O3 nanoparticles | [53] | ||
| Dragon fruit peel powder | Cassava starch (1.5%, 3%, 4.5%, 6%, 7.5%, 9%) | Sorbitol (5.7%) | Eggshell powder | Solvent casting | Antioxidant activity | The content of cassava starch | Intelligent packaging for monitoring steamed chicken freshness | [40] | |
| Prickly pear peel powder | Gelatin (100%) | Glycerol (50%) | Solvent casting | Antioxidant activity | [95] |
| Film Performance | FPP-Filled Films | FPP-Based Films |
|---|---|---|
| Microstructure | Uniform and compact | Heterogeneous and cracked |
| Molecular interactions | Strong | Weak |
| Hydrophobicity | Low or high (depend on polymer matrix) | Medium |
| Mechanical properties | High | Low |
| Light barrier property | High | High |
| Water vapor and oxygen barrier properties | High | Low |
| Antioxidant and antimicrobial activities | Medium | High |
| pH sensitivity | Medium | High |
| Biodegradation | Slow or quick (depend on polymer matrix) | Quick |
| Functional stability | High | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, N.; Ahmad, B.; Xu, F.; Liu, J. Recent Advances in the Development of Active and Intelligent Packaging Films Using Fruit Peel Powders. Foods 2026, 15, 162. https://doi.org/10.3390/foods15010162
Zhang N, Ahmad B, Xu F, Liu J. Recent Advances in the Development of Active and Intelligent Packaging Films Using Fruit Peel Powders. Foods. 2026; 15(1):162. https://doi.org/10.3390/foods15010162
Chicago/Turabian StyleZhang, Nianfeng, Bilal Ahmad, Fengfeng Xu, and Jun Liu. 2026. "Recent Advances in the Development of Active and Intelligent Packaging Films Using Fruit Peel Powders" Foods 15, no. 1: 162. https://doi.org/10.3390/foods15010162
APA StyleZhang, N., Ahmad, B., Xu, F., & Liu, J. (2026). Recent Advances in the Development of Active and Intelligent Packaging Films Using Fruit Peel Powders. Foods, 15(1), 162. https://doi.org/10.3390/foods15010162

