Effect of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food
1. Enhancing the Nutritional Value and Functionality of Traditional Foods
2. Reuse of Processing By-Products
3. Effects of Different Processing and Cooking Methods on Food Quality Characteristics
4. Application of New Food Processing Technologies
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Shiau, S.-Y.; Yu, Y.; Li, J.; Huang, W.; Feng, H. Phytochemical-Rich Colored Noodles Fortified with an Aqueous Extract of Clitoria ternatea Flowers. Foods 2023, 12, 1686. https://doi.org/10.3390/foods12081686.
- Zhou, Q.; Nan, X.; Zhang, S.; Zhang, L.; Chen, J.; Li, J.; Wang, H.; Ruan, Z. Effect of 3D Food Printing Processing on Polyphenol System of Loaded Aronia melanocarpa and Post-Processing Evaluation of 3D Printing Products. Foods 2023, 12, 2068. https://doi.org/10.3390/foods12102068.
- Syu, P.-C.; Zhang, Q.-F.; Lin, S.-D. Physicochemical, Antioxidant, Sensory, and Starch Digestibility Properties of Steamed Bread Fortified with Tamarillo Powder. Foods 2023, 12, 2306. https://doi.org/10.3390/foods12122306.
- Shang, J.; Zhang, Q.; Wang, T.; Xu, Y.; Zang, Z.; Wan, F.; Yue, Y.; Huang, X. Effect of Ultrasonic Pretreatment on the Far-Infrared Drying Process and Quality Characteristics of Licorice. Foods 2023, 12, 2414. https://doi.org/10.3390/foods12122414.
- Chen, S.-Y.; Tseng, J.; Wu, C.-R.; Lin, S.-D. Quality Evaluation of Shiitake Blanched and Centrifuged Broths as Functional Instant Drinks. Foods 2023, 12, 2925. https://doi.org/10.3390/foods12152925.
- Chien, H.-I.; Hwang, C.-C.; Lee, Y.-C.; Huang, C.-Y.; Chen, S.-C.; Kuo, C.-H.; Tsai, Y.-H. Determining the Optimal Vacuum Frying Conditions for Silver Herring (Spratelloides gracilis) Using the Response Surface Methodology. Foods 2023, 12, 3533. https://doi.org/10.3390/foods12193533.
- Panduang, T.; Phucharoenrak, P.; Karnpanit, W.; Trachootham, D. Cooking Methods for Preserving Isothiocyanates and Reducing Goitrin in Brassica Vegetables. Foods 2023, 12, 3647. https://doi.org/10.3390/foods12193647.
- Radman, S.; Brzovi’c, P.; Raduni’c, M.; Rako, A.; Šaroli’c, M.; Runjić, T.N.; Urlić, B.; Mekinić, I.G. Vinegar-Preserved Sea Fennel: Chemistry, Color, Texture, Aroma, and Taste. Foods 2023, 12, 3812. https://doi.org/10.3390/foods12203812.
- Bekiroglu, H.; Ozulku, G.; Sagdic, O. Effects of Casein Hydrolysate Prepared with Savinase on the Quality of Bread Made by Frozen Dough. Foods 2023, 12, 3845. https://doi.org/10.3390/foods12203845.
- Akhter, K.T.; Shozib, H.B.; Islam, M.H.; Sarwar, S.; Islam, M.M.; Akanda, M.R.; Siddiquee, M.A.; Mohiduzzaman, M.; Rahim, A.T.M.A.; Shaheen, N. Variations in the Major Nutrient Composition of Dominant High-Yield Varieties (HYVs) in Parboiled and Polished Rice of Bangladesh. Foods 2023, 12, 3997. https://doi.org/10.3390/foods12213997.
- Wang, Z.; Nie, T.; Zhang, H.; Wang, W.; Chen, H.; Wang, S.; Sun, B. Correlation Analysis between Volatile Compounds and Quality Attributes in Pork Tenderloin in Response to Different Stir-Frying Processes. Foods 2023, 12, 4299. https://doi.org/10.3390/foods12234299.
- Pérez, L.; Pincay, R.; Salazar, D.; Flores, N.; Escolastico, C. Evaluation of the Quality and Lipid Content of Artisan Sausages Produced in Tungurahua, Ecuador. Foods 2023, 12, 4288. https://doi.org/10.3390/foods12234288.
- Soares, S.D.; dos Santos, O.V.; da Conceição, L.R.V.; Costi, H.T.; Silva Júnior, J.O.C.; Nascimento, F.d.C.A.d.; Pena, R.d.S. Nutritional and Technological Properties of Albino Peach Palm (Bactris gasipaes) from the Amazon: Influence of Cooking and Drying. Foods 2023, 12, 4344. https://doi.org/10.3390/foods12234344.
- Xie, L.; Guo, S.; Rao, H.; Lan, B.; Zheng, B.; Zhang, N. Characterization of Volatile Flavor Compounds and Aroma Active Components in Button Mushroom (Agaricus bisporus) across Various Cooking Methods. Foods 2024, 13, 685. https://doi.org/10.3390/foods13050685.
- Cao, Z.; Li, X.; Song, H.; Jie, Y.; Liu, C. Effect of Intermittent Low-Pressure Radiofrequency Helium Cold Plasma Treatments on Rice Gelatinization, Fatty Acid, and Hygroscopicity. Foods 2024, 13, 1056. https://doi.org/10.3390/foods13071056.
- Wang, C.-W.; Shen, H.-S.; Yang, C.-W.; Syu, P.-C.; Lin, S.-D. Physicochemical, Antioxidant, Starch Digestibility, and Sensory Properties of Wheat Bread Fortified with Taiwanese Cocoa Bean Shells. Foods 2024, 13, 2854. https://doi.org/10.3390/foods13172854.
References
- Guo, Y.; Zhang, H.; Shao, S.; Sun, S.; Yang, D.; Lv, S. Anthocyanin: A review of plant sources, extraction, stability, content determination and modifications. Int. J. Food Sci. Technol. 2022, 57, 7573–7591. [Google Scholar] [CrossRef]
- Nolden, A.A.; Forde, C.G. The nutritional quality of plant-based foods. Sustainability 2023, 15, 3324. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-based diets for cardiovascular disease prevention: All plant foods are not created equal. Curr. Atheroscler. Rep. 2019, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Diep, T.T.; Rush, E.C.; Yoo, M.J.Y. Tamarillo (Solanum betaceum Cav.): A review of physicochemical and bioactive properties and potential applications. Food Rev. Int. 2022, 38, 1343–1367. [Google Scholar] [CrossRef]
- McClements, D.J.; Grossmann, L. Next-generation plant-based foods: Challenges and opportunities. Annu. Rev. Food Sci. Technol. 2024, 15, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tang, W.; Chen, S.; He, J.; Li, X.; Zhu, X.; Li, H.; Peng, Y. Phytochemical Properties and In Vitro Biological Activities of Phenolic Compounds from Flower of Clitoria ternatea L. Molecules 2022, 27, 6336. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Zhang, Q.-F.; Lin, S.-D. Nutritional and phytochemical composition of the red tamarillo grown in Taiwan. J. Food Compos. Anal. 2024, 131, 106258. [Google Scholar] [CrossRef]
- Naito, S.; Fukami, S.; Mizokami, Y.; Ishida, N.; Takano, H.; Koizumi, M.; Kano, H. Effect of freeze-thaw cycles on the gluten fibrils and crumb grain structures of breads made from frozen doughs. Cereal Chem. 2004, 81, 80–86. [Google Scholar] [CrossRef]
- Bekiroglu, H.; Bozkurt, F.; Karadag, A.; Ahhmed, A.M.; Sagdic, O. The effects of different protease treatments on the technofunctional, structural, and bioactive properties of bovine casein. Prep. Biochem. Biotechnol. 2022, 52, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Galali, Y.; Omar, Z.A.; Sajadi, S.M. Biologically active components in by-products of food processing. Food Sci. Nutr. 2020, 8, 3004–3022. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa bean shell—A by-product with nutritional properties and biofunctional potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Oloyede, O.O.; Wagstaff, C.; Methven, L. The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (Brassica oleracea) Accessions. Foods 2021, 10, 2908. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P.; Moreno, D.A. Influence of Cooking Methods on Glucosinolates and Isothiocyanates Content in Novel Cruciferous Foods. Foods 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Díaz, I.M.; Breidt, F.; Buescher, R.W.; Arroyo-López, F.N.; Jiménez-Díaz, R.; Garrido-Fernández, A.; Bautista-Gallego, J.; Yoon, S.S.; Johanningsmeier, S.D. Fermented and Acidified Vegetables. In Compendium of Methods for the Microbiological Examination of Foods; American Journal of Public Health: Washington, DC, USA, 2015; Available online: https://ajph.aphapublications.org/doi/10.2105/MBEF.0222.056 (accessed on 2 March 2025).
- Méndez-Zamora, G.; García-Macías, J.A.; Santellano-Estrada, E.; Chávez-Martínez, A.; Durán-Meléndez, L.A.; Silva-Vázquez, R.; Quintero-Ramos, A. Fat reduction in the formulation of frankfurter sausages using inulin and pectin. Food Sci. Technol. 2015, 35, 25–31. [Google Scholar] [CrossRef]
- Pinheiro, R.C.; Ballesteros, L.F.; Cerqueira, M.A.; Rodrigues, A.M.C.; Teixeira, J.A.; Silva, L.H.M. Peach palm (Bactris gasipaes Kunth) and mammee apple (Mammea americana L.) seeds: Properties and potential of application in industry. LWT 2022, 170, 114089. [Google Scholar] [CrossRef]
- dos Santos, M.A.S.; Protázio, D.C.; da Costa, G.P.; Rebello, F.K.; Martins, C.M.; Bezerra, A.S.; da Silva Nogueira, A. Profile of peach palm fruit consumers in the metropolitan region of Belém, Pará, Brazilian Amazon. Int. J. Innov. Educ. Res. 2021, 9, 550–560. [Google Scholar] [CrossRef]
- Krishnamoorthi, R.; Srinivash, M.; Mahalingam, P.U.; Malaikozhundan, B. Dietary nutrients in edible mushroom, Agaricus bisporus and their radical scavenging, antibacterial, and antifungal effects. Process Biochem. 2022, 121, 10–17. [Google Scholar] [CrossRef]
- Montoya, J.; Medina, J.; Molina, A.; Gutiérrez, J.; Rodríguez, B.; Marín, R. Impact of viscoelastic and structural properties from starch-mango and starch-arabinoxylans hydrocolloids in 3D food printing. Addit. Manuf. 2021, 39, 101891. [Google Scholar] [CrossRef]
- Sun, W.T.; Wang, S.; Wang, M.; Xu, H.T.; Zhou, Q.C. Research Progress of Extraction, Purification and Function of Overseas Aronia melanocarpa in Recent Years. Food Ind. 2019, 40, 262–265. [Google Scholar] [CrossRef]
- Yuan, L.; He, X.; Lin, R.; Cheng, S. Effect of ultrasonic pretreatment on moisture state and hot air drying characteristics of kiwifruit. J. Agric. Eng. 2021, 37, 263–272. [Google Scholar] [CrossRef]
- Sharanabasava, M.R. Vacuum processing of food—A mini review. MOJ Food Process. Technol. 2018, 6, 283–290. [Google Scholar] [CrossRef]
- Diamante, L.M.; Shi, S.; Hellmann, A.; Busch, J. Vacuum frying foods: Products, process and optimization. Int. Food Res. J. 2015, 22, 15–22. Available online: http://www.ifrj.upm.edu.my (accessed on 7 March 2025).
- Zadeh, J.H.; Pazir, F. Invesigation of the potential application of cold plasma technology in food safety. GIDA 2023, 48, 614–626. [Google Scholar] [CrossRef]
- Warne, G.R.; Williams, P.M.; Pho, H.Q.; Tran, N.N.; Hessel, V.; Fisk, I.D. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review. J. Food Sci. 2021, 86, 3762–3777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-D. Effect of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food. Foods 2025, 14, 1598. https://doi.org/10.3390/foods14091598
Lin S-D. Effect of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food. Foods. 2025; 14(9):1598. https://doi.org/10.3390/foods14091598
Chicago/Turabian StyleLin, Sheng-Dun. 2025. "Effect of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food" Foods 14, no. 9: 1598. https://doi.org/10.3390/foods14091598
APA StyleLin, S.-D. (2025). Effect of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food. Foods, 14(9), 1598. https://doi.org/10.3390/foods14091598