Occurrence of Moulds and Yeasts in the Slaughterhouse: The Underestimated Role of Fungi in Meat Safety and Occupational Health
Abstract
:1. Introduction
2. Impact of Fungi on Meat Safety and Occupational Health
2.1. Fungi as Meat-Borne Pathogens
2.2. Fungi as Occupational Hazards
3. Occurrence of Moulds in the Slaughterhouse
3.1. Aspergillus spp.
3.1.1. Aspergillus flavus
3.1.2. Aspergillus fumigatus
3.1.3. Aspergillus ochraceus
3.1.4. Aspergillus parasiticus
3.1.5. Aspergillus niger
3.1.6. Aspergillus terreus
3.1.7. Other Isolated Aspergillus spp.
3.1.8. Eurotium (Reclassified as Aspergillus) spp.
3.2. Fusarium spp.
3.3. Penicillium spp.
3.4. Mucor spp.
3.5. Rhizopus spp.
3.6. Cladosporium spp.
3.7. Alternaria spp.
3.8. Botrytis spp.
3.9. Geotrichum spp.
3.10. Scopulariopsis spp.
3.11. Other Moulds Isolated in Slaughterhouses
4. Occurrence of Yeasts in the Slaughterhouse
4.1. Candida spp.
4.2. Cryptococcus spp.
4.3. Rhodoturula spp.
4.4. Other Yeasts Isolated in Slaughterhouses
5. Microbiological Monitoring in Slaughterhouses: The Overlooked Impact of Fungi
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Nimsi, K.A.; Manjusha, K.; Hatha, A.A.M.; Kathiresan, K. Diversity, distribution, and bioprospecting potentials of manglicolous yeasts: A review. FEMS Microbiol. Ecol. 2023, 99, fiad044. [Google Scholar] [CrossRef]
- Kumar, P.; Kausar, M.A.; Singh, A.B.; Singh, R. Biological contaminants in the indoor air environment and their impacts on human health. Air Qual. Atmos. Health 2021, 14, 1723–1736. [Google Scholar] [CrossRef]
- Kraft, S.; Buchenauer, L.; Polte, T. Mould, mycotoxins and a dysregulated immune system: A combination of concern? Int. J. Mol. Sci. 2021, 22, 12269. [Google Scholar] [CrossRef]
- Perricone, M.; Gallo, M.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Yeasts. In The Microbiological Quality of Food: Foodborne Spoilers; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 121–131. [Google Scholar] [CrossRef]
- Lee, E.S.; Kim, J.H.; Kang, S.M.; Kim, B.M.; Oh, M.H. Inhibitory effects of ultraviolet-C light and thermal treatment on four fungi isolated from pig slaughterhouses in Korea. J. Anim. Sci. Technol. 2022, 64, 343. [Google Scholar] [CrossRef] [PubMed]
- Coton, M.; Deniel, F.; Mounier, J.; Joubrel, R.; Robieu, E.; Pawtowski, A.; Jeuge, S.; Taminiau, B.; Daube, G.; Coton, E.; et al. Microbial ecology of French dry fermented sausages and mycotoxin risk evaluation during storage. Front. Microbiol. 2021, 12, 737140. [Google Scholar] [CrossRef]
- Almashhadany, D.A. Meat borne diseases. In Meat and Nutrition; IntechOpen: London, UK, 2021; Volume 97391. [Google Scholar] [CrossRef]
- Franco, L.T.; Ismail, A.; Amjad, A.; Oliveira, C.A.F.D. Occurrence of toxigenic fungi and mycotoxins in workplaces and human biomonitoring of mycotoxins in exposed workers: A systematic review. Toxin Rev. 2021, 40, 576–591. [Google Scholar] [CrossRef]
- Pleadin, J.; Lešić, T.; Milićević, D.; Markov, K.; Šarkanj, B.; Vahčić, N.; Kmetič, I.; Zadravec, M. Pathways of mycotoxin occurrence in meat products: A review. Processes 2021, 9, 2122. [Google Scholar] [CrossRef]
- Zadravec, M.; Markov, K.; Freke, J.; Perković, I.; Jakopović, Ž.; Lešić, T.; Mitak, M.; Pleadin, J. Toxicogenic fungi and the occurrence of mycotoxins in traditional meat products. Croat. J. Food Sci. Technol. 2019, 11, 272–282. [Google Scholar] [CrossRef]
- Mahdy, A.; Salem, A.; Zaghloul, M. Some organic acids as antifungal on frozen duck meat. Benha Vet. Med. J. 2019, 37, 73–76. [Google Scholar] [CrossRef]
- Sharma, K.; Chattopadhyay, U.; Naskar, K. Prevalence of Candida albicans in raw chicken and mutton meat samples sold in the open markets of Kolkata city of West Bengal. Int. J. Livest. Res. 2017, 7, 243–249. [Google Scholar] [CrossRef]
- Adesola, R.O.; Hossain, D.; Ogundijo, O.A.; Idris, I.; Hamzat, A.; Gulumbe, B.H.; Bakre, A.A.; Banwo, O.G.; Lucero-Prisno, D.E. Challenges, Health Risks and Recommendations on Meat Handling Practices in Africa: A Comprehensive Review. Environ. Health Insights 2024, 18, 11786302241301991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, J.; Wang, B.; Lv, Y.; Xie, J. Indoor air design parameters of air conditioners for mould-prevention and antibacterial in island residential buildings. Int. J. Environ. Res. Public Health 2020, 17, 7316. [Google Scholar] [CrossRef]
- Al-haddad, Z.A. Isolation and Identification of Yeasts from Slaughterhouses in Baghdad province. Al-Salam J. Med. Sci. 2024, 3, 75–81. [Google Scholar] [CrossRef]
- Nakamura, A.; Takahashi, H.; Kondo, A.; Koike, F.; Kuda, T.; Kimura, B.; Kobayashi, M. Distribution of psychrophilic microorganisms in a beef slaughterhouse in Japan after cleaning. PLoS ONE 2022, 17, e0268411. [Google Scholar] [CrossRef]
- Viegas, C.; Faria, T.; Dos Santos, M.; Carolino, E.; Sabino, R.; Quintal Gomes, A.; Viegas, S. Slaughterhouses fungal burden assessment: A contribution for the pursuit of a better assessment strategy. Int. J. Environ. Res. Public Health 2016, 13, 297. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.G.; Rowan, N.J.; MacGregor, S.J.; Fouracre, R.A.; Farish, O. Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Trans. Plasma Sci. 2000, 28, 83–88. [Google Scholar] [CrossRef]
- Viegas, C.; Caetano, L.A.; Viegas, S. Occupational exposure to Aspergillus section Fumigati: Tackling the knowledge gap in Portugal. Environ. Res. 2021, 194, 110674. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Marcelloni, A.M.; Pigini, D.; Chiominto, A.; Gioffrè, A.; Paba, E. Exposure to airborne mycotoxins: The riskiest working environments and tasks. Ann. Work. Expo. Health 2024, 68, 19–35. [Google Scholar] [CrossRef]
- Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy 2020, 10, 509. [Google Scholar] [CrossRef]
- Schlosser, O.; Robert, S.; Noyon, N. Airborne mycotoxins in waste recycling and recovery facilities: Occupational exposure and health risk assessment. Waste Manag. 2020, 105, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Lohinova, A.; Arsenyeva, L. Knowledge of the factors affecting the storage life of raw meat is the key to the rational use of production resources. Food Sci. Technol. 2022, 16, 2073–8684. [Google Scholar] [CrossRef]
- Aljazzar, A.; El-Ghareeb, W.R.; Darwish, W.S.; Abdel-Raheem, S.M.; Ibrahim, A.M. Mould contamination of buffalo and cattle meat and offal: A comparative study. Buffalo Bull 2021, 40, 59–69. [Google Scholar]
- Hussein, M.A.; Tharwat, A.E.; Ali, R.M.; Abo-Almagd, E.E.; Fakhry, B.A. Prevalence of mould and aflatoxin in raw and heat-treated meat products. J. Adv. Vet. Res. 2023, 13, 1252–1256. [Google Scholar]
- Ghanem, A.; Shaltout, F.; Heikal, G.I. Mycological quality of some chicken meat cuts in Gharbiya governorate with special reference to Aspergillus flavus virulent factors. Benha Vet. Med. J. 2022, 42, 12–16. [Google Scholar] [CrossRef]
- Vesković-Moračanin, S.M.; Borović, B.R.; Velebit, B.M.; Rašeta, M.P.; Milićević, D.R. Identification of mycobiota in Serbian slaughterhouses. Zb. Matice Srp. Za Prir. Nauk. 2009, 117, 45–49. [Google Scholar] [CrossRef]
- Ja’afaru, M.I.; Bernard, A.L.; Adeyemo, O.M.; Ogwuche, J.O. Isolation, prevalence of bacteria and fungi from carcasses and different locations within Yola abattoir and antimicrobial resistance profile of Escherichia coli O157: H7. Environ. Adv. 2024, 10, 200102. [Google Scholar] [CrossRef]
- European Agency for Safety and Health at Work. Exposure to Biological Agents and Related Health Problems in Animal-Related Occupations: Health Effects Related to Exposure to Biological Agents in the Workplace. 2019. Available online: https://osha.europa.eu/en/publications/exposure-biological-agents-and-related-health-problems-animal-related-occupations (accessed on 17 February 2025).
- Chakravarty, P. Mycobiota and mycotoxin-producing fungi in southern California: Their colonisation and in vitro interactions. Mycology 2022, 13, 293–304. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Almeida, A.; dos Santos, M.; Carolino, E.; Viegas, C. Occupational exposure to aflatoxin B1 in a Portuguese poultry slaughterhouse. Ann. Occup. Hyg. 2016, 60, 176–183. [Google Scholar] [CrossRef]
- Borkar, S.G.; Shinde, K. Yeast species of diverse functionality in health sciences: A concise report. GSC Biol. Pharm. Sci. 2023, 25, 149–168. [Google Scholar] [CrossRef]
- Vargová, M.; Sasáková, N.; Laktičová, K.V.; Zigo, F. Evaluation of the hygienic condition of the slaughterhouse. Acta Fytotech. Zootech 2021, 24, 37–40. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization: Copenhagen, Denmark, 2009. [Google Scholar]
- Nunes, J.; Da Silva, P.D.; Andrade, L.P.; Domingues, L.; Gaspar, P.D. Energy assessment of the Portuguese meat industry. Energy Effic. 2016, 9, 1163–1178. [Google Scholar] [CrossRef]
- Wahab, S.N.A.; Mohammed, N.I.; Khamidi, M.F.; Ahmad, N.A.; Noor, Z.M.; Ghani, A.A.A.; Ismail, M.R. Sampling and identifying of mould in the library building. In Proceedings of the 4th International Building Control Conference 2016, Kuala, Lumpur, 7 March 2016. [Google Scholar] [CrossRef]
- Earle, K.; Valero, C.; Conn, D.P.; Vere, G.; Cook, P.C.; Bromley, M.J.; Bowyer, P.; Gago, S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023, 14, 2172264. [Google Scholar] [CrossRef]
- Rizwan, M.; Imran, M.M.; Irshad, H.; Umair, M.; Najaf, H.D.; Ali, S.; Saeed, L. Aspergillosis: An Occupational Zoonotic Disease. In Zoonosis; Unique Scientific Publishers: Faisalabad, Pakistan, 2023; Volume 4, pp. 380–391. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; Houbraken, J.; Lombardi, L.; Garcia-Rubio, R.; Jenks, J.; Rivero-Menendez, O.; Aljohani, R.; Jacobsen, I.; Berman, J.; et al. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud. Mycol. 2021, 100, 100115. [Google Scholar] [CrossRef]
- dos Santos, R.A.C.; Steenwyk, J.L.; Rivero-Menendez, O.; Mead, M.E.; Silva, L.P.; Bastos, R.W.; Alastruey-Izquierdo, A.; Goldman, G.H.; Rokas, A. Genomic and phenotypic heterogeneity of clinical isolates of the human pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front. Genet. 2020, 11, 459. [Google Scholar] [CrossRef]
- Haas, D.; Posch, J.; Schmidt, S.; Wüst, G.; Sixl, W.; Feierl, G.; Marth, E.; Reinthaler, F.F. A case study of airborne culturable microorganisms in a poultry slaughterhouse in Styria, Austria. Aerobiologia 2005, 21, 193–201. [Google Scholar] [CrossRef]
- Adeeb, F.; Shooter, D. Emission and evolution of air-borne microflora in slaughter houses. Indoor Built Environ. 2003, 12, 179–184. [Google Scholar] [CrossRef]
- Berekaa, M.; Salama, K. Comprehensive assessment of microbiological and bioaerosol contaminants in Dammam slaughterhouse, Saudi Arabia. J. Pure Appl. Microbiol. 2015, 9, 69–78. [Google Scholar]
- Humbal, C.; Joshi, S.K.; Trivedi, U.K.; Gautam, S. Evaluating the colonization and distribution of fungal and bacterial bio-aerosol in Rajkot, western India using multi-proxy approach. Air Qual. Atmos. Health 2019, 12, 693–704. [Google Scholar] [CrossRef]
- Al-Fattly, H.H.H.H. Comparative study of bacteria and fungi air polluted slaughterhouse of Al-Diwaniya city. Kufa J. Vet. Med. Sci. 2013, 4, 81–89. [Google Scholar] [CrossRef]
- Arire, E.O.; Sulaimon, A.O.; Samuel, C.M. Microbial Assessment of Slaughter Slabs at the Central Slaughterhouse of Ado Ekiti. Asian Res. J. Agric. 2022, 15, 102–107. [Google Scholar] [CrossRef]
- Al-Yousef, A.F. Isolation of fungi from house fly (Musca domestica) at slaughter house and public places in Riyadh. Egypt. Acad. J. Biol. Sci. 2014, 7, 151–155. [Google Scholar] [CrossRef]
- GR, L.A.A. Role of the Housefly as a Biological Vector for Bacteria and Fungi at Some Slaughterhouses. Pak. J. Biol. Sci. 2022, 25, 353–357. [Google Scholar] [CrossRef]
- Davari, B.; Khodavaisy, S.; Ala, F. Isolation of fungi from housefly (Musca domestica L.) at Slaughter House and Hospital in Sanandaj, Iran. J. Prev. Med. Hyg. 2012, 53, 172–174. [Google Scholar]
- Paba, E.; Chiominto, A.; Marcelloni, A.M.; Proietto, A.R.; Sisto, R. Exposure to airborne culturable microorganisms and endotoxin in two Italian poultry slaughterhouses. J. Occup. Environ. Hyg. 2014, 11, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Hareeri, R.H.; Aldurdunji, M.M.; Abdallah, H.M.; Alqarni, A.A.; Mohamed, S.G.; Mohamed, G.A.; Ibrahim, S.R. Aspergillus ochraceus: Metabolites, bioactivities, biosynthesis, and biotechnological potential. Molecules 2022, 27, 6759. [Google Scholar] [CrossRef] [PubMed]
- Lorán, S.; Carramiñana, J.J.; Juan, T.; Ariño, A.; Herrera, M. Inhibition of Aspergillus parasiticus growth and aflatoxins production by natural essential oils and phenolic acids. Toxins 2022, 14, 384. [Google Scholar] [CrossRef]
- Yu, R.; Liu, J.; Wang, Y.; Wang, H.; Zhang, H. Aspergillus niger as a secondary metabolite factory. Front. Chem. 2021, 9, 701022. [Google Scholar] [CrossRef]
- Gautam, A.K.; Sharma, S.; Avasthi, S.; Bhadauria, R. Diversity, pathogenicity and toxicology of A. niger: An important spoilage fungi. Res. J. Microbiol. 2011, 6, 270–280. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Dietl, A.M.; Kontoyiannis, D.P.; Brock, M. Aspergillus terreus species complex. Clin. Microbiol. Rev. 2021, 34, e00311-20. [Google Scholar] [CrossRef]
- Karmakar, B.; Saha, B.; Jana, K.; Bhattacharya, S.G. Identification and biochemical characterization of Asp t 36, a new fungal allergen from Aspergillus terreus. J. Biol. Chem. 2020, 295, 17852–17864. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, Y.; Yuan, Y.; Yin, F.; Chao, J.; Huang, J.; Liu, Z.; Wang, K.; Zhu, M. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods 2023, 12, 4452. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Mwanza, M. Fusarium fungi pathogens, identification, adverse effects, disease management, and global food security: A review of the latest research. Agriculture 2023, 13, 1810. [Google Scholar] [CrossRef]
- Ajmal, M.; Hussain, A.; Ali, A.; Chen, H.; Lin, H. Strategies for Controlling the Sporulation in Fusarium spp. J. Fungi 2022, 9, 10. [Google Scholar] [CrossRef]
- Shabeer, S.; Tahira, R.; Jamal, A. Fusarium spp. mycotoxin production, diseases and their management: An overview. Pak. J. Agric. Res. 2021, 34, 278. [Google Scholar] [CrossRef]
- Hof, H. The medical relevance of Fusarium spp. J. Fungi 2020, 6, 117. [Google Scholar] [CrossRef]
- Tarazona, A.; Mateo, E.M.; Gómez, J.V.; Romera, D.; Mateo, F. Potential use of machine learning methods in assessment of Fusarium culmorum and Fusarium proliferatum growth and mycotoxin production in treatments with antifungal agents. Fungal Biol. 2021, 125, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Demjanová, S.; Jevinová, P.; Pipová, M.; Regecová, I. Identification of Penicillium verrucosum, Penicillium commune, and Penicillium crustosum isolated from chicken eggs. Processes 2020, 9, 53. [Google Scholar] [CrossRef]
- Assaf, C.E.H.; Zetina-Serrano, C.; Tahtah, N.; El Khoury, A.; Atoui, A.; Oswald, I.P.; Puel, O.; Lorber, S. Regulation of secondary metabolism in the Penicillium genus. Int. J. Mol. Sci. 2020, 21, 9462. [Google Scholar] [CrossRef]
- Damiano, S.; Longobardi, C.; De Marchi, L.; Piscopo, N.; Meucci, V.; Lenzi, A.; Ciarcia, R. Detection of Ochratoxin A in Tissues of Wild Boars (Sus scrofa) from Southern Italy. Toxins 2025, 17, 74. [Google Scholar] [CrossRef]
- Martín, J.F. Insight into the genome of diverse Penicillium chrysogenum strains: Specific genes, cluster duplications and DNA fragment translocations. Int. J. Mol. Sci. 2020, 21, 3936. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, A.; Corre, E.; Jany, J.-L.; Brillet-Guéguen, L.; Pèrez-Arques, C.; Garre, V.; Monsoor, M.; Debuchy, R.; Le Meur, C.; Coton, E.; et al. Comparative genomics applied to Mucor species with different lifestyles. BMC Genom. 2020, 21, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, W.A.; Daba, G.M. Insight into secondary metabolites of Circinella, Mucor and Rhizopus the three musketeers of order Mucorales. Biomed. J. Sci. Tech. Res. 2022, 41, 32534–32540. [Google Scholar]
- González-Jartín, J.M.; Ferreiroa, V.; Rodríguez-Cañás, I.; Alfonso, A.; Sainz, M.J.; Aguín, O.; Vieytes, M.R.; Gomes, A.; Ramos, I.; Botana, L.M. Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int. J. Food Microbiol. 2022, 365, 109556. [Google Scholar] [CrossRef]
- Wagner, L.; Stielow, J.; de Hoog, G.; Bensch, K.; Schwartze, V.; Voigt, K.; Alastruey-Izquierdo, A.; Kurzai, O.; Walther, G. A new species concept for the clinically relevant Mucor circinelloides complex. Pers. Mol. Phylogeny Evol. Fungi 2020, 44, 67–97. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wang, C.; Zeng, T.; Wang, H.; Suo, H. Whole-genome and comparative genome analysis of Mucor racemosus C isolated from Yongchuan Douchi. Int. J. Biol. Macromol. 2023, 234, 123397. [Google Scholar] [CrossRef]
- Samundi, S.P.; Parameswaran, S.; Pichaivel, M.; Gopal, M. An overview of mucormycosis. Innovare J. Health Sci. 2022, 10, 1–7. [Google Scholar] [CrossRef]
- López-Fernández, L.; Sanchis, M.; Navarro-Rodríguez, P.; Nicolás, F.E.; Silva-Franco, F.; Guarro, J.; Garre, V.; Navarro-Mendoza, M.I.; Pérez-Arques, C.; Capilla, J. Understanding Mucor circinelloides pathogenesis by comparative genomics and phenotypical studies. Virulence 2018, 9, 707–720. [Google Scholar] [CrossRef]
- Opara, N.U. A rare case of pulmonary and gastrointestinal mucormycosis due to Rhizopus spp. in a child with chronic granulomatous disease. Infect. Dis. Rep. 2022, 14, 579–586. [Google Scholar] [CrossRef]
- Birol, D.; Gunyar, O.A. Investigation of presence of endofungal bacteria in Rhizopus spp. ısolated from the different food samples. Arch. Microbiol. 2021, 203, 2269–2277. [Google Scholar] [CrossRef]
- Morales-Franco, B.; Nava-Villalba, M.; Medina-Guerrero, E.O.; Sánchez-Nuño, Y.A.; Davila-Villa, P.; Anaya-Ambriz, E.J.; Charles-Niño, C.L. Host-pathogen molecular factors contribute to the pathogenesis of Rhizopus spp. in diabetes mellitus. Curr. Trop. Med. Rep. 2021, 8, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, Q.; Liu, H.; Du, Y.; Jiao, W.; Sun, F.; Fu, M. Rhizopus stolonifer and related control strategies in postharvest fruit: A review. Heliyon 2024, 10, e29522. [Google Scholar] [CrossRef] [PubMed]
- Iturrieta-González, I.; García, D.; Gené, J. Novel species of Cladosporium from environmental sources in Spain. MycoKeys 2021, 77, 1. [Google Scholar] [CrossRef]
- Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef]
- Aichinger, G.; Del Favero, G.; Warth, B.; Marko, D. Alternaria toxins—Still emerging? Compr. Rev. Food Sci. Food Saf. 2021, 20, 4390–4406. [Google Scholar] [CrossRef]
- Chen, A.; Mao, X.; Sun, Q.; Wei, Z.; Li, J.; You, Y.; Zhao, J.; Jiang, G.; Wu, Y.; Wang, L.; et al. Alternaria mycotoxins: An overview of toxicity, metabolism, and analysis in food. J. Agric. Food Chem. 2021, 69, 7817–7830. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ramirez, G.; Barber, D.; Tome-Amat, J.; Garrido-Arandia, M.; Diaz-Perales, A. Alternaria as an inducer of allergic sensitization. J. Fungi 2021, 7, 838. [Google Scholar] [CrossRef]
- Jurgensen, C.W.; Madsen, A.M. Exposure to the airborne mould Botrytis and its health effects. Ann. Agric. Environ. Med. 2009, 16, 183–196. [Google Scholar]
- Román-Montes, C.M.; Sifuentes-Osornio, J.; Martínez-Gamboa, A. Cutaneous Infections by Geotrichum spp. Curr. Fungal Infect. Rep. 2024, 18, 60–68. [Google Scholar] [CrossRef]
- Pérez-Cantero, A.; Guarro, J. Current knowledge on the etiology and epidemiology of Scopulariopsis infections. Med. Mycol. 2020, 58, 145–155. [Google Scholar] [CrossRef]
- Yapıcıer, Ö.Ş.; Kaya, M.; Erol, Z.; Öztürk, D. Isolation of Scopulariopsis brevicaulis from Wistar Rats. Etlik Vet. Mikrobiyol. Derg. 2020, 31, 196–200. [Google Scholar] [CrossRef]
- Özdilli, K.; Işsever, H.; Özyildirim, B.A.; Hapçioglu, B.; Ince, N.; Ince, H.; Yeğenoğlu, Y.; Susever, S.; Erelel, M.; Işik, E.; et al. Biological hazards in tannery workers. Indoor Built Environ. 2007, 16, 349–357. [Google Scholar] [CrossRef]
- Viegas, C.; Carolino, E.; Malta-Vacas, J.; Sabino, R.; Viegas, S.; Veríssimo, C. Fungal contamination of poultry litter: A public health problem. J. Toxicol. Environ. Health. 2012, 75 Pt A, 1341–1350. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef]
- Hemaid, A.S.S.; Abdelghany, M.M.E.; Abdelghany, T.M. Isolation and identification of Candida spp. from immunocompromised patients. Bull. Natl. Res. Cent. 2021, 45, 163. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Aljasir, S.F.; Moftah, R.F.; Younis, W. Mycological evaluation of frozen meat with special reference to yeasts. Vet. World 2023, 16, 571. [Google Scholar] [CrossRef] [PubMed]
- El-Diasty, E.M.; Ibrahim, M.A.E.H.; El Khalafawy, G.K. Isolation and molecular characterization of medically important yeasts isolated from poultry slaughterhouses and workers. Pak. J. Zool. 2017, 49, 609–614. [Google Scholar] [CrossRef]
- Mixão, V.; Gabaldón, T. Genomic evidence for a hybrid origin of the yeast opportunistic pathogen Candida albicans. BMC Biol. 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Kothavade, R.J.; Kura, M.M.; Valand, A.G.; Panthaki, M.H. Candida tropicalis: Its prevalence, pathogenicity and increasing resistance to fluconazole. J. Med. Microbiol. 2010, 59, 873–880. [Google Scholar] [CrossRef]
- Lima, R.; Ribeiro, F.C.; Colombo, A.L.; de Almeida, J.N., Jr. The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. Front. Fungal Biol. 2022, 3, 957021. [Google Scholar] [CrossRef]
- Daneshnia, F.; de Almeida Júnior, J.N.; Ilkit, M.; Lombardi, L.; Perry, A.M.; Gao, M.; Nobile, C.J.; Egger, M.; Perlin, D.S.; Zhai, B.; et al. Worldwide emergence of fluconazole-resistant Candida parapsilosis: Current framework and future research roadmap. Lancet Microbe 2023, 4, e470–e480. [Google Scholar] [CrossRef] [PubMed]
- Francisco, E.C.; de Jong, A.W.; Hagen, F. Cryptococcosis and cryptococcus. Mycopathologia 2021, 186, 729–731. [Google Scholar] [CrossRef]
- Islam, N.; Bharali, R.; Talukdar, S.; Hussain, S.A.; Akand, A.H.; Sarma, H.K. Occurrence and Distribution of Cryptococcus Species in Environmental Sources of Lower Assam Belt of India. J. Pure Appl. Microbiol. 2020, 14, 2781–2800. [Google Scholar] [CrossRef]
- Giro, A. Review on Cryptococcus disease. J. Trop. Dis. 2021, 9, 288. [Google Scholar]
- Gushiken, A.C.; Saharia, K.K.; Baddley, J.W. Cryptococcosis. Infect. Dis. Clin. 2021, 35, 493–514. [Google Scholar] [CrossRef]
- Jarros, I.C.; Veiga, F.F.; Corrêa, J.L.; Barros, I.L.E.; Gadelha, M.C.; Voidaleski, M.F.; Pieralisi, N.; Pedroso, R.B.; Vicente, V.A.; Negri, M.; et al. Microbiological and virulence aspects of Rhodotorula mucilaginosa. EXCLI J. 2020, 19, 687. [Google Scholar] [CrossRef]
- Gattlen, J.; Zinn, M.; Guimond, S.; Körner, E.; Amberg, C.; Mauclaire, L. Biofilm formation by the yeast Rhodotorula mucilaginosa: Process, repeatability and cell attachment in a continuous biofilm reactor. Biofouling 2011, 27, 979–991. [Google Scholar] [CrossRef]
- Gharaghani, M.; Taghipour, S.; Zarei Mahmoudabadi, A. Molecular identification, biofilm formation and antifungal susceptibility of Rhodotorula spp. Mol. Biol. Rep. 2020, 47, 8903–8909. [Google Scholar] [CrossRef]
- Hirano, R.; Mitsuhashi, T.; Osanai, K. Rhodotorula mucilaginosa fungemia, a rare opportunistic infection without central venous catheter implantation, successfully treated by liposomal amphotericin B. Case Rep. Infect. Dis. 2022, 2022, 7830126. [Google Scholar] [CrossRef]
- Neves, R.P.; de Carvalho, A.M.R.; da Silva, C.M.; Cerqueira, D.P. Rhodotorula spp. In Pocket Guide to Mycological Diagnosis; CRC Press, Taylor & Francis Goup: Boca Raton, FL, USA, 2019; pp. 63–68. [Google Scholar]
- de Menezes, G.C.; Amorim, S.S.; Gonçalves, V.N.; Godinho, V.M.; Simões, J.C.; Rosa, C.A.; Rosa, L.H. Diversity, distribution, and ecology of fungi in the seasonal snow of Antarctica. Microorganisms 2019, 7, 445. [Google Scholar] [CrossRef] [PubMed]
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.; Rivas-Caceres, R.R.; Salem, A.Z. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies–A review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, L338, 1–26. [Google Scholar]
- European Commission. Commission Regulation (EU) 2023/915 of 4 May 2023 on maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2023, L119, 103–157. [Google Scholar]
- Viegas, S.; Viegas, C.; Martins, C.; Assunção, R. Occupational exposure to mycotoxins—Different sampling strategies telling a common story regarding occupational studies performed in Portugal (2012–2020). Toxins 2020, 12, 513. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off. J. Eur. Communities 2000, L262, 21–45. [Google Scholar]
- European Commission. Commission Directive (EU) 2019/1833 of 24 October 2019 amending Annexes I, III, V and VI to Directive 2000/54/EC of the European Parliament and of the Council as regards purely technical adjustments. Off. J. Eur. Union 2019, L279, 54–79. [Google Scholar]
- Mayer, S. Occupational exposure to mycotoxins and preventive measures. In Environmental Mycology in Public Health; Academic Press: London, UK, 2016; pp. 325–341. [Google Scholar] [CrossRef]
- Viegas, S.; Viegas, C.; Oppliger, A. Occupational exposure to mycotoxins: Current knowledge and prospects. Ann. Work. Expo. Health 2018, 62, 923–941. [Google Scholar] [CrossRef] [PubMed]
- Al Hallak, M.; Verdier, T.; Bertron, A.; Roques, C.; Bailly, J.D. Fungal contamination of building materials and the aerosolization of particles and toxins in indoor air and their associated risks to health: A review. Toxins 2023, 15, 175. [Google Scholar] [CrossRef]
- Mothershaw, A.S.; Consolacion, F.; Kadim, I.T.; Al Raisi, A.N. The role of education and training levels of slaughterhouse workers in the cross-contamination of carcasses. Int. J. Postharvest Technol. Innov. 2006, 1, 142–154. [Google Scholar] [CrossRef]
- Ebah, E.E.; Odo, J.I.; Adah, J.A. Screening and identification of some selected fungi species from Abattoir waste water. Int. J. Sch. Res. Multidiscip. Stud. 2022, 1, 009–015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves Rodrigues, M.; Teiga-Teixeira, P.; Esteves, A. Occurrence of Moulds and Yeasts in the Slaughterhouse: The Underestimated Role of Fungi in Meat Safety and Occupational Health. Foods 2025, 14, 1320. https://doi.org/10.3390/foods14081320
Alves Rodrigues M, Teiga-Teixeira P, Esteves A. Occurrence of Moulds and Yeasts in the Slaughterhouse: The Underestimated Role of Fungi in Meat Safety and Occupational Health. Foods. 2025; 14(8):1320. https://doi.org/10.3390/foods14081320
Chicago/Turabian StyleAlves Rodrigues, Melissa, Pedro Teiga-Teixeira, and Alexandra Esteves. 2025. "Occurrence of Moulds and Yeasts in the Slaughterhouse: The Underestimated Role of Fungi in Meat Safety and Occupational Health" Foods 14, no. 8: 1320. https://doi.org/10.3390/foods14081320
APA StyleAlves Rodrigues, M., Teiga-Teixeira, P., & Esteves, A. (2025). Occurrence of Moulds and Yeasts in the Slaughterhouse: The Underestimated Role of Fungi in Meat Safety and Occupational Health. Foods, 14(8), 1320. https://doi.org/10.3390/foods14081320