A Comprehensive Polyphenolic Characterization of Five Montmorency Tart Cherry (Prunus cerasus L.) Product Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Extraction
2.3. Triple Quadrupole Liquid Chromatography–Mass Spectrophotometry (LC–MS–MS)
3. Results and Discussion
3.1. Polyphenolics in MTC Products
3.1.1. Hydroxycinnamic Acids
3.1.2. Flavonols
3.1.3. Anthocyanins
3.1.4. Flavanols (Flavan-3-ols)
3.1.5. Flavanones
3.1.6. Hydroxybenzoic Acids
3.2. Summary
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanase, C.; Bujor, O.-C.; Popa, V.I. Chapter 3—Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–58. [Google Scholar]
- Tuladhar, P.; Sasidharan, S.; Saudagar, P. 17—Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. In Biocontrol Agents and Secondary Metabolites; Jogaiah, S., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 419–441. [Google Scholar]
- Bertelli, A.; Biagi, M.; Corsini, M.; Baini, G.; Cappellucci, G.; Miraldi, E. Polyphenols: From Theory to Practice. Foods 2021, 10, 2595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Remón, A.; M’Hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database J. Biol. Databases Curation 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Bell, P.G.; Gaze, D.C.; Davison, G.W.; George, T.W.; Scotter, M.J.; Howatson, G. Montmorency tart cherry (Prunus cerasus L.) concentrate lowers uric acid, independent of plasma cyanidin-3-O-glucosiderutinoside. J. Funct. Foods 2014, 11, 82–90. [Google Scholar] [CrossRef]
- Chai, S.C.; Davis, K.; Zhang, Z.; Zha, L.; Kirschner, K.F. Effects of Tart Cherry Juice on Biomarkers of Inflammation and Oxidative Stress in Older Adults. Nutrients 2019, 11, 228. [Google Scholar] [CrossRef]
- Martinelli, I.; Tomassoni, D.; Bellitto, V.; Roy, P.; Di Bonaventura, M.V.M.; Amenta, F.; Amantini, C.; Cifani, C.; Tayebati, S.K. Anti-Inflammatory and Antioxidant Properties of Tart Cherry Consumption in the Heart of Obese Rats. Biology 2022, 11, 646. [Google Scholar] [CrossRef] [PubMed]
- Shukitt-Hale, B.; Kelly, M.E.; Bielinski, D.F.; Fisher, D.R. Tart Cherry Extracts Reduce Inflammatory and Oxidative Stress Signaling in Microglial Cells. Antioxidants 2016, 5, 33. [Google Scholar] [CrossRef]
- Traustadóttir, T.; Davies, S.S.; Stock, A.A.; Su, Y.; Heward, C.B.; Roberts, L.J., II; Harman, S.M. Tart Cherry Juice Decreases Oxidative Stress in Healthy Older Men and Women. J. Nutr. 2009, 139, 1896–1900. [Google Scholar] [CrossRef]
- Schumacher, H.; Pullman-Mooar, S.; Gupta, S.; Dinnella, J.; Kim, R.; McHugh, M. Randomized double-blind crossover study of the efficacy of a tart cherry juice blend in treatment of osteoarthritis (OA) of the knee. Osteoarthr. Cartil. 2013, 21, 1035–1041. [Google Scholar] [CrossRef]
- Keane, K.M.; Bell, P.G.; Lodge, J.K.; Constantinou, C.L.; Jenkinson, S.E.; Bass, R.; Howatson, G. Phytochemical uptake following human consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of phenolic acids on vascular smooth muscle cells in vitro. Eur. J. Nutr. 2016, 55, 1695–1705. [Google Scholar] [CrossRef]
- Keane, K.M.; George, T.W.; Constantinou, C.L.; Brown, M.A.; Clifford, T.; Howatson, G. Effects of Montmorency tart cherry (Prunus cerasus L.) consumption on vascular function in men with early hypertension. Am. J. Clin. Nutr. 2016, 103, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Kimble, R.; Keane, K.M.; Lodge, J.K.; Howatson, G. The Influence of Tart Cherry (Prunus cerasus, cv Montmorency) Concentrate Supplementation for 3 Months on Cardiometabolic Risk Factors in Middle-Aged Adults: A Randomised, Placebo-Controlled Trial. Nutrients 2021, 13, 1417. [Google Scholar] [CrossRef] [PubMed]
- Moosavian, S.P.; Maharat, M.; Chambari, M.; Moradi, F.; Rahimlou, M. Effects of tart cherry juice consumption on cardio-metabolic risk factors: A systematic review and meta-analysis of randomized-controlled trials. Complement. Ther. Med. 2022, 71, 102883. [Google Scholar] [CrossRef]
- Kelley, D.S.; Adkins, Y.; Laugero, K.D. A Review of the Health Benefits of Cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Sabou, V.R.; O’Leary, M.F.; Liu, Y.; Brown, P.N.; Murch, S.; Bowtell, J.L. Review of Analytical Methods and Reporting of the Polyphenol Content of Tart Cherry Supplements in Human Supplementation Studies Investigating Health and Exercise Performance Effects: Recommendations for Good Practice. Front. Nutr. 2021, 8, 652094. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Seymour, E.M.; Urcuyo Llanes, D.E.; Kaufman, P.B.; Bolling, S.F. Chemical profile and antioxidant capacities of tart cherry products. Food Chem. 2009, 115, 20–25. [Google Scholar] [CrossRef]
- Ou, B.; Bosak, K.N.; Brickner, P.R.; Iezzoni, D.G.; Seymour, E.M. Processed Tart Cherry Products—Comparative Phytochemical Content, in vitro Antioxidant Capacity and in vitro Anti-inflammatory Activity. J. Food Sci. 2012, 77, H105–H112. [Google Scholar] [CrossRef]
- Brown, M.A.; Stevenson, E.J.; Howatson, G. Montmorency tart cherry (Prunus cerasus L.) supplementation accelerates recovery from exercise-induced muscle damage in females. Eur. J. Sport Sci. 2019, 19, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.R.; Orange, T.; Gruber, M.T.; Darakjian, A.A.; Conway, K.L.; Hausenblas, H.A. Broad Spectrum Polyphenol Supplementation from Tart Cherry Extract on Markers of Recovery from Intense Resistance Exercise. J. Int. Soc. Sports Nutr. 2021, 18, 47. [Google Scholar] [CrossRef]
- Wangdi, J.T.; O’leary, M.F.; Kelly, V.G.; Jackman, S.R.; Tang, J.C.Y.; Dutton, J.; Bowtell, J.L. Tart Cherry Supplement Enhances Skeletal Muscle Glutathione Peroxidase Expression and Functional Recovery after Muscle Damage. Med. Sci. Sports Exerc. 2022, 54, 609–621. [Google Scholar] [CrossRef]
- Bell, P.G.; Stevenson, E.; Davison, G.W.; Howatson, G. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise. Nutrients 2016, 8, 441. [Google Scholar] [CrossRef]
- Levers, K.; Dalton, R.; Galvan, E.; O’Connor, A.; Goodenough, C.; Simbo, S.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; Riechman, S.; et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J. Int. Soc. Sports Nutr. 2016, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-O.; Heo, H.J.; Kim, Y.J.; Yang, H.S.; Lee, C.Y. Sweet and Sour Cherry Phenolics and Their Protective Effects on Neuronal Cells. J. Agric. Food Chem. 2005, 53, 9921–9927. [Google Scholar] [CrossRef]
- Aguilar-Rosas, S.; Ballinas-Casarrubias, M.; Nevarez-Moorillon, G.; Martin-Belloso, O.; Ortega-Rivas, E. Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. J. Food Eng. 2007, 83, 41–46. [Google Scholar] [CrossRef]
- Andlauer, W.; Stumpf, C.; Hubert, M.; Rings, A.; Fürst, P. Influence of cooking process on phenolic marker compounds of vegetables. Int. J. Vitam. Nutr. Res. 2003, 73, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.P.; Rossiter, J.T. Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus officinalis): Effect on flavonol content and antioxidant status. J. Agric. Food Chem. 2001, 49, 3216–3222. [Google Scholar] [CrossRef]
- Alean, J.; Chejne, F.; Rojano, B. Degradation of polyphenols during the cocoa drying process. J. Food Eng. 2016, 189, 99–105. [Google Scholar] [CrossRef]
- Aydin, E.; Gocmen, D. The influences of drying method and metabisulfite pre-treatment on the color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. LWT—Food Sci. Technol. 2015, 60, 385–392. [Google Scholar] [CrossRef]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009, 228, 441–448. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmiański, J. Effect of Convective and Vacuum–Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food Bioprocess Technol. 2014, 7, 829–841. [Google Scholar] [CrossRef]
- Dalmau, M.E.; Bornhorst, G.M.; Eim, V.; Rosselló, C.; Simal, S. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chem. 2017, 215, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of Freezing and Storage on the Phenolics, Ellagitannins, Flavonoids, and Antioxidant Capacity of Red Raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef] [PubMed]
- Yanat, M.; Baysal, T. Effect of freezing rate and storage time on quality parameters of strawberry frozen in modified and home type freezer. Hrvat Časopis Prehrambenu Tehnol. Biotehnol. Nutr. 2018, 13, 154–158. [Google Scholar] [CrossRef]
- Chaovanalikit, A.; Wrolstad, R.E. Anthocyanin and Polyphenolic Composition of Fresh and Processed Cherries. J. Food Sci. 2004, 69, FCT73–FCT83. [Google Scholar] [CrossRef]
- Garcia-Viguera, C.; Zafrilla, P.; Tomás-Barberán, F.A. The use of acetone as an extraction solvent for anthocyanins from straw-berry fruit. Phytochem. Anal. 1998, 9, 274–277. [Google Scholar] [CrossRef]
- Wang, S.Y.; Stretch, A.W. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J. Agric. Food Chem. 2001, 49, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Maurya, D.K.; Devasagayam, T.P.A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol. 2010, 48, 3369–3373. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Typek, R. Transformation of phenolic acids during radical neutralization. J. Food Sci. Technol. 2024, 61, 790–797. [Google Scholar] [CrossRef]
- Lee, S.; Han, J.-M.; Kim, H.; Kim, E.; Jeong, T.-S.; Lee, W.S.; Cho, K.-H. Synthesis of cinnamic acid derivatives and their inhibitory effects on LDL-oxidation, acyl-CoA:cholesterol acyltransferase-1 and -2 activity, and decrease of HDL-particle size. Bioorganic Med. Chem. Lett. 2004, 14, 4677–4681. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Neog, M.K.; Pragasam, S.J.; Krishnan, M.; Rasool, M. p-Coumaric acid, a dietary polyphenol ameliorates inflammation and curtails cartilage and bone erosion in the rheumatoid arthritis rat model. BioFactors 2017, 43, 698–717. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hydroxycinnamic acids on gut microbiota and health. Compr. Rev. Food Sci. Food Saf. 2021, 20, 710–737. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.-V.; Doan, M.-D.; Thi, B.-H.B.; Nguyen, M.-T.; Minh, D.T.; Nguyen, A.-D.; Le, T.-M.; Nguyen, T.-H.; Tran, V.-C.; Hoang, V.-C. The effect of drying methods on chlorophyll, polyphenol, flavonoids, phenolic compounds contents, color and sensory properties, and in vitro antioxidant and anti-diabetic activities of dried wild guava leaves. Dry. Technol. 2023, 41, 1291–1302. [Google Scholar] [CrossRef]
- Kim, D.-W.; Jung, D.-H.; Sung, J.; Min, I.S.; Lee, S.-J. Tart Cherry Extract Containing Chlorogenic Acid, Quercetin, and Kaempferol Inhibits the Mitochondrial Apoptotic Cell Death Elicited by Airborne PM10 in Human Epidermal Keratinocytes. Antioxidants 2021, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, N.P.; Bondonno, C.P.; Hodgson, J.M.; Ward, N.C.; Croft, K.D. The Efficacy of Quercetin in Cardiovascular Health. Curr. Nutr. Rep. 2015, 4, 290–303. [Google Scholar] [CrossRef]
- Feliciano, R.P.; Pritzel, S.; Heiss, C.; Rodriguez-Mateos, A. Flavonoid intake and cardiovascular disease risk. Curr. Opin. Food Sci. 2015, 2, 92–99. [Google Scholar] [CrossRef]
- Ackland, M.L.; Van De Waarsenburg, S.; Jones, R. Synergistic Antiproliferative Action of the Flavonols Quercetin and Kaempferol in Cultured Human Cancer Cell Lines. In Vivo 2005, 19, 69–76. [Google Scholar]
- Pang, J.L.; Ricupero, D.A.; Huang, S.; Fatma, N.; Singh, D.P.; Romero, J.R.; Chattopadhyay, N. Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem. Pharmacol. 2006, 71, 818–826. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Q.; Wufuer, H.; Li, Z.; Sun, R.; Jiang, Z.; Dou, X.; Fu, Q.; Campisi, J.; Sun, Y. Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy. Aging Cell 2024, 23, e13921. [Google Scholar] [CrossRef]
- Pravin, B.; Nanaware, V.; Ashwini, B.; Wondmie, G.F.; Bin Jardan, Y.A.; Bourhia, M. Assessing the antioxidant properties of Naringin and Rutin and investigating their oxidative DNA damage effects in breast cancer. Sci. Rep. 2024, 14, 15314. [Google Scholar] [CrossRef] [PubMed]
- Khorsheed, S.M.; Abu Raghif, A.R. Anti-proliferative, Anti-oxidant and Anti-inflammatory Effects of Topical Rutin on Imiquimod-Induced Psoriasis in Mice. Pak. J. Life Soc. Sci. PJLSS 2024, 22, 1962–1976. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, S.; Zhao, A.; Mi, Y.; Zhang, C. Protective effect of rutin on ferroptosis-induced oxidative stress in aging laying hens through Nrf2/HO-1 signaling. Cell Biol. Int. 2023, 47, 598–611. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.; Yu, H.; Wang, S.; Sun, J.; Chai, X.; Sun, X.; Qi, X.; Zhang, R.; Jiao, Y.; Li, Z.; et al. Dietary rutin alleviated the damage by cold stress on inflammation reaction, tight junction protein and intestinal microbial flora in the mice intestine. J. Nutr. Biochem. 2024, 130, 109658. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Elkomy, M.H.; Fahim, H.I.; Ashour, M.B.; Naguib, I.A.; Alghamdi, B.S.; Mahmoud, H.U.R.; Ahmed, N.A. Rutin and Quercetin Counter Doxorubicin-Induced Liver Toxicity in Wistar Rats via Their Modulatory Effects on Inflammation, Oxidative Stress, Apoptosis, and Nrf2. Oxidative Med. Cell. Longev. 2022, 2022, 2710607. [Google Scholar] [CrossRef]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin Reduces Blood Pressure in Hypertensive Subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [CrossRef]
- Ferenczyova, K.; Kalocayova, B.; Kindernay, L.; Jelemensky, M.; Balis, P.; Berenyiova, A.; Zemancikova, A.; Farkasova, V.; Sykora, M.; Tothova, L.; et al. Quercetin Exerts Age-Dependent Beneficial Effects on Blood Pressure and Vascular Function, But Is Inefficient in Preventing Myocardial Ischemia-Reperfusion Injury in Zucker Diabetic Fatty Rats. Molecules 2020, 25, 187. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J.; Andriantsitohaina, R. Endothelial function and cardiovascular disease: Effects of quercetin and wine polyphenols. Free Radic. Res. 2006, 40, 1054–1065. [Google Scholar] [CrossRef]
- Hubbard, G.P.; Wolffram, S.; de Vos, R.; Bovy, A.; Gibbins, J.M.; Lovegrove, J.A. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: A pilot study. Br. J. Nutr. 2006, 96, 482–488. [Google Scholar] [CrossRef]
- Wright, B.; Moraes, L.A.; Kemp, C.F.; Mullen, W.; Crozier, A.; Lovegrove, J.A.; Gibbins, J.M. A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. Br. J. Pharmacol. 2010, 159, 1312–1325. [Google Scholar] [CrossRef]
- Sun, C.; Wang, T.; Wang, C.; Zhu, Z.; Wang, X.; Xu, J.; An, H. The Protective Effect of Kaempferol Against Ischemia/Reperfusion Injury Through Activating SIRT3 to Inhibit Oxidative Stress. Rev. Bras. Cir. Cardiovasc. 2021, 37, 335–342. [Google Scholar] [CrossRef]
- Yao, H.; Sun, J.; Wei, J.; Zhang, X.; Chen, B.; Lin, Y. Kaempferol Protects Blood Vessels from Damage Induced by Oxidative Stress and Inflammation in Association with the Nrf2/HO-1 Signaling Pathway. Front. Pharmacol. 2020, 11, 1118. [Google Scholar] [CrossRef]
- Bian, Y.; Lei, J.; Zhong, J.; Wang, B.; Wan, Y.; Li, J.; Liao, C.; He, Y.; Liu, Z.; Ito, K.; et al. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J. Nutr. Biochem. 2022, 99, 108840. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Festa, J.; Da Boit, M.; Hussain, A.; Singh, H. Potential Benefits of Berry Anthocyanins on Vascular Function. Mol. Nutr. Food Res. 2021, 65, 2100170. [Google Scholar] [CrossRef]
- Garcia, C.; Blesso, C.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef]
- Chuntakaruk, H.; Kongtawelert, P.; Pothacharoen, P. Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling. Sci. Rep. 2021, 11, 1895. [Google Scholar] [CrossRef]
- Pomilio, A.B.; Szewczuk, N.A.; Duchowicz, P.R. Dietary anthocyanins balance immune signs in osteoarthritis and obesity—Update of human in vitro studies and clinical trials. Crit. Rev. Food Sci. Nutr. 2024, 64, 2634–2672. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, H.; Luo, C.; Hu, W.; Weng, T.-J.; Shuang, F. Pelargonidin ameliorates inflammatory response and cartilage degeneration in osteoarthritis via suppressing the NF-κB pathway. Arch. Biochem. Biophys. 2023, 743, 109668. [Google Scholar] [CrossRef]
- Filaferro, M.; Codeluppi, A.; Brighenti, V.; Cimurri, F.; González-Paramás, A.M.; Santos-Buelga, C.; Bertelli, D.; Pellati, F.; Vitale, G. Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models. Antioxidants 2022, 11, 211. [Google Scholar] [CrossRef]
- Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 2001, 8, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Capanoglu, E.; Boyacioglu, D.; de Vos, R.C.; Hall, R.D.; Beekwilder, J. Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). J. Berry Res. 2011, 1, 137–146. [Google Scholar] [CrossRef]
- Dai, S.; Lian, Z.; Qi, W.; Chen, Y.; Tong, X.; Tian, T.; Lyu, B.; Wang, M.; Wang, H.; Jiang, L. Non-covalent interaction of soy protein isolate and catechin: Mechanism and effects on protein conformation. Food Chem. 2022, 384, 132507. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Prigent, S.V.; Voragen, A.G.; Visser, A.J.; van Koningsveld, G.A.; Gruppen, H. Covalent interactions between proteins and oxidation products of caffeoylquinic acid (chlorogenic acid). J. Sci. Food Agric. 2007, 87, 2502–2510. [Google Scholar] [CrossRef]
- Ottaviani, J.I.; Britten, A.; Lucarelli, D.; Luben, R.; Mulligan, A.A.; Lentjes, M.A.; Fong, R.; Gray, N.; Grace, P.B.; Mawson, D.H.; et al. Biomarker-estimated flavan-3-ol intake is associated with lower blood pressure in cross-sectional analysis in EPIC Norfolk. Sci. Rep. 2020, 10, 1796. [Google Scholar] [CrossRef]
- Rees, A.; Dodd, G.F.; Spencer, J.P.E. The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients 2018, 10, 1852. [Google Scholar] [CrossRef]
- Liu, X.; Xing, Y.; Yuen, M.; Yuen, T.; Yuen, H.; Peng, Q. Anti-Aging Effect and Mechanism of Proanthocyanidins Extracted from Sea buckthorn on Hydrogen Peroxide-Induced Aging Human Skin Fibroblasts. Antioxidants 2022, 11, 1900. [Google Scholar] [CrossRef]
- Liu, X.; Yuen, M.; Yuen, T.; Yuen, H.; Wang, M.; Peng, Q. Anti-skin aging effect of sea buckthorn proanthocyanidins in D-galactose-induced aging mice. Food Sci. Nutr. 2024, 12, 1082–1094. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. IJBS 2008, 4, 89. [Google Scholar]
- Zahra, M.; Abrahamse, H.; George, B.P. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants 2024, 13, 922. [Google Scholar] [CrossRef]
- Kometsi, L.; Govender, K.; Mato, E.P.M.; Hurchund, R.; Owira, P.M.O. By reducing oxidative stress, naringenin mitigates hyperglycaemia-induced upregulation of hepatic nuclear factor erythroid 2-related factor 2 protein. J. Pharm. Pharmacol. 2020, 72, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.; Vishwakarma, V.; Kumar, S.; Aggarwal, N.K.; Gupta, R.; Yadav, A. Ameliorative role of naringenin against lead-induced genetic damage and oxidative stress in cultured human lymphocytes. J. Biochem. Mol. Toxicol. 2022, 36, e23036. [Google Scholar] [CrossRef]
- Naeini, F.; Namkhah, Z.; Tutunchi, H.; Rezayat, S.M.; Mansouri, S.; Yaseri, M.; Hosseinzadeh-Attar, M.J. Effects of naringenin supplementation on cardiovascular risk factors in overweight/obese patients with nonalcoholic fatty liver disease: A pilot double-blind, placebo-controlled, randomized clinical trial. Eur. J. Gastroenterol. Hepatol. 2022, 34, 345–353. [Google Scholar] [CrossRef]
- Namkhah, Z.; Naeini, F.; Rezayat, S.M.; Yaseri, M.; Mansouri, S.; Hosseinzadeh-Attar, M.J. Does naringenin supplementation improve lipid profile, severity of hepatic steatosis and probability of liver fibrosis in overweight/obese patients with NAFLD? A randomised, double-blind, placebo-controlled, clinical trial. Int. J. Clin. Pract. 2021, 75, e14852. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.M.; Khalifa, M.M.; Atia, T.; Ahmed, R.R.; Abdel-Hafez, D.A.; Rahman, F.E.-Z.S.A.; Damanhory, A.A.; Metawee, M.E.; Elagali, A.M.; Alqassimi, S.; et al. The Anti-Arthritic Role of Naringenin through Modulating Different T Helper Cells’ Cytokines, Inflammatory Mediators, Oxidative Stress and Anti-Oxidant Defense System. J. Biol. Regul. Homeost. Agents 2024, 38, 5393–5405. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Zhang, J.; Deng, C.; Zhang, C. Naringenin ameliorates collagen-induced arthritis through activating AMPK-mediated autophagy in macrophages. Immun. Inflamm. Dis. 2023, 11, e983. [Google Scholar] [CrossRef]
- Madureira, M.B.; Concato, V.M.; Cruz, E.M.S.; de Morais, J.M.B.; Inoue, F.S.R.; Santos, N.C.; Gonçalves, M.D.; de Souza, M.C.; Scandolara, T.B.; Mezoni, M.F.; et al. Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants 2023, 12, 586. [Google Scholar] [CrossRef]
- Qi, Z.; Kong, S.; Zhao, S.; Tang, Q. Naringenin inhibits human breast cancer cells (MDA-MB-231) by inducing programmed cell death, caspase stimulation, G2/M phase cell cycle arrest and suppresses cancer metastasis. Cell. Mol. Biol. 2021, 67, 8–13. [Google Scholar] [CrossRef]
- Rathi, A.; Chaudhury, A.; Anjum, F.; Ahmad, S.; Haider, S.; Khan, Z.F.; Taiyab, A.; Chakrabarty, A.; Islam, A.; Hassan, I.; et al. Targeting prostate cancer via therapeutic targeting of PIM-1 kinase by Naringenin and Quercetin. Int. J. Biol. Macromol. 2024, 276, 133882. [Google Scholar] [CrossRef]
- Wu, Y.; Li, K.; Zeng, M.; Qiao, B.; Zhou, B. Serum Metabolomics Analysis of the Anti-Inflammatory Effects of Gallic Acid on Rats with Acute Inflammation. Front. Pharmacol. 2022, 13, 830439. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Thapa, R.; Goyal, A.; Gupta, G.; Bhat, A.A.; Singh, S.K.; Subramaniyan, V.; Sharma, S.; Prasher, P.; Jakhmola, V.; Singh, S.K.; et al. Recent developments in the role of protocatechuic acid in neurodegenerative disorders. EXCLI J. 2023, 22, 595–599. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | Phenolic Class | RT (min) | MW (m/z) | [M-H]− (m/z) | MS/MS (m/z) | Confirmation |
---|---|---|---|---|---|---|
Protocatechuic acid | Hydroxybenzoic Acid | 2.24 | 154.12 | 153.05 | 81.05, 91.04, 109.04 | Identified |
p-Coumaric acid | Hydroxycinnamic Acid | 3.00, 3.40 | 164.04 | 162.95 | 93.07, 117.00, 119.04 | Identified |
o-Coumaric acid | Hydroxycinnamic Acid | 3.03, 4.40 | 164.16 | 162.93 | 93.04, 117.04, 119.00 | Identified |
Gallic acid | Hydroxybenzoic Acid | 6.56 | 170.12 | 168.83 | 79.11, 97.04, 125.22 | Identified |
Caffeic acid | Hydroxycinnamic Acid | 3.61 | 180.16 | 178.99 | 89.07, 107.07, 135.07 | Identified |
Ferulic Acid | Hydroxycinnamic Acid | 4.62 | 194.18 | 192.97 | 134.04, 149.11, 178.04 | Identified |
Naringenin | Flavonol | 4.95, 6.05 | 272.25 | 270.99 | 107.04, 119.07, 151.04 | Identified |
Catechin | Flavanol (Flavan-3-ol) | 3.69 | 290.26 | 289.04 | 203.07, 204.97, 245.04 | Identified |
(-)-Epicatechin | Flavanol (Flavan-3-ol) | 3.69 | 290.26 | 289.39 | 187.54, 203.69, 245.29 | Identified |
Peonidin | Anthocyanin | 5.74 | 301.27 | 299.87 | 259.07, 202.12, 287.12 | Identified |
Quercetin | Flavonol | 5.98 | 302.23 | 301.09 | 151.04, 179.04, 121.04 | Identified |
Taxifolin * (dihydroquercetin) | Flavanol (Flavan-3-ol) * | 4.4 | 304.25 | 303.03 | 124.97, 177.04, 285.04 | Unconfirmed |
Caffeic acid glycoside | Hydroxycinnamic Acid | 3.36 | 342.30 | 341.00 | 131.01, 179.04, 220.92 | Identified |
Chlorogenic acid | Hydroxycinnamic Acid | 2.52, 3.35 | 354.31 | 353.31 | 191.05, 351.07, 354.09 | Identified |
Feruloquinic acid | Hydroxycinnamic Acid | 3.27 | 368.34 | 367.00 | 134.04, 190.95, 193.04 | Unconfirmed |
Quercetin-3-glucoside | Flavonol | 4.96 | 463.40 | 462.86 | 255.13, 271.08, 299.77 | Identified |
Cyanidin-3-glucoside | Anthocyanin | 4.65, 5.30 | 484.83 | 447.18 | 255.08, 284.13, 285.13 | Identified |
Procyanidin B2 | Flavanol (Flavan-3-ol) | 3.00, 3.34 | 578.52 | 577.53 | 289.07, 425.08, 455.07 | Identified |
Kaempferol-3-rutinoside | Flavonol | 5.31 | 594.52 | 593.00 | 285.00, 447.00, 535.00 | Identified |
Cyanidin-3-rutinoside | Anthocyanin | 3.77, 5.30 | 595.52 | 594.20 | 163.06, 307.10, 325.11 | Identified |
Peonidin-3-rutinoside | Anthocyanin | 3.98 | 609.60 | 608.00 | 145.05, 163.06, 307.10 | Identified |
Rutin (quercetin-3-O-rutinoside) | Flavonol | 4.91 | 610.51 | 609.00 | 254.97, 271.04, 300.04 | Identified |
Cyanidin-3-sophoroside | Anthocyanin | 0.16 | 611.50 | 610.50 | 535.21, 488.21, 575.20 | Identified |
Protocatechuic acid | Hydroxybenzoic Acid | 2.24 | 154.12 | 153.05 | 81.05, 91.04, 109.04 | Identified |
Polyphenol Class | Frozen Raw Cherries | Cherry Juice Concentrate | Unsweetened Dried Cherries | Freeze Dried Cherry Powder | Sweet Dried Cherries |
---|---|---|---|---|---|
Hydroxycinnamic Acids | 44,827 ± 197 (54%) | 40,476 ± 16 (66%) | 36,296 ± 15 (74%) | 9585 ± 17 (29%) | 15,519 ± 60 (83%) |
Flavonols | 16,390 ± 15 (20%) | 10,504 ± 2 (17%) | 9825 ± 4 (20%) | 16,912 ± 11 (52%) | 2340 ± 1 (13%) |
Anthocyanins | 15,204 ± 36 (18%) | 2852 ± 3 (5%) | 2171 ± 8 (4%) | 2060 ± 2 (6%) | 691 ± 4 (4%) |
Flavanols (Flavan-3-ols) | 6107 ± 7 (7%) | 6863 ± 9 (11%) | 57 ± 1 (<1%) | 911 ± 4 (2%) | 16 ± 1 (<1%) |
Flavanones | 254 ± 3 (<1%) | 262 ± 1 (<1%) | 356 ± 1 (<1%) | 928 ± 1 (3%) | 79 ± 1 (<1%) |
Hydroxybenzoic Acids | 101 ± 1 (<1%) | 480 ± 2 (<1%) | 572 ± 1 (1%) | 2531 ± 24 (8%) | 161 ± 1 (<1%) |
Polyphenol Compounds | Frozen Raw Cherries | Cherry Juice Concentrate | Unsweetened Dried Cherries | Freeze Dried Cherry Powder | Sweet Dried Cherries |
---|---|---|---|---|---|
Hydroxycinnamic Acids | |||||
Chlorogenic Acid | 29,392 ± 28 | 22,729 ± 7 | 21,362 ± 7 | 2776 ± 7 | 9544 ± 9 |
Feruloquinic Acid | 8087 ± 54 | 7226 ± 28 | 5421 ± 25 | 2906 ± 12 | 2383 ± 13 |
Ferulic Acid | 3067 ± 15 | 2582 ± 33 | 2456 ± 14 | 2588 ± 29 | 1445 ± 26 |
p-Coumaric acid | 1750 ± 8 | 3002 ±1 | 3018 ± 2 | 431 ± 0 | 850 ± 1 |
o-Coumaric acid | 1759 ± 1 | 3237 ± 3 | 3256 ± 6 | 715 ± 3 | 1031 ± 12 |
Caffeic acid glycoside | 453 ± 0 | 70 ± 0 | 42 ± 0 | 48 ± 0 | 99 ± 0 |
Caffeic acid | 169 ± 1 | 1631 ± 0 | 745 ± 0 | 133 ± 0 | 168 ± 0 |
Flavonols | |||||
Rutin (quercetin-3-O-rutinoside) | 15,940 ± 11 | 10,097 ± 1 | 9522 ± 3 | 16,080 ± 9 | 2292 ± 0 |
Quercetin-3-glucoside | 299 ± 2 | 203 ± 0 | 166 ± 0 | 436 ± 0 | 31 ± 0 |
Kaempferol-3-rutinoside | 149 ± 0 | 87 ± 0 | 75 ± 0 | 174 ± 0 | 17 ± 0 |
Quercetin | nd | 117 ± 0 | 63 ± 0 | 223 ± 0 | nd |
Anthocyanins | |||||
Cyanidin-3-Sophoroside | 9930 ± 18 | 207 ± 2 | 154 ± 5 | 279 ± 4 | 302 ± 2 |
Peonidin-3-rutinoside | 2630 ± 16 | 273 ± 0 | nd | 313 ± 0 | nd |
Cyanidin-3-Rutinoside | 1667 ± 5 | 1494 ± 1 | 1273 ± 3 | 872 ± 1 | 245 ± 0 |
Cyanidin-3-Glucoside | 981 ± 1 | 879 ± 0 | 745 ± 0 | 514 ± 4 | 144 ± 0 |
Peonidin | nd | nd | nd | 84 ± 2 | nd |
Flavanols (Flavan-3-ols) | |||||
(-)-Epicatechin | 2614 ± 15 | 2665 ± 1 | nd | 361 ± 2 | nd |
Catechin | 2157 ± 13 | 2740 ± 6 | nd | 272 ± 1 | nd |
Procyanidin B2 | 1291 ± 15 | 1323 ± 1 | 22 ± 0 | 89 ± 0 | nd |
Taxifolin (dihydroquercetin) | 43 ± 0 | 136 ± 0 | 36 ± 0 | 188 ± 0 | 16 ± 0 |
Flavanones | |||||
Naringenin | 255 ± 2 | 262 ± 1 | 356 ± 1 | 929 ± 0 | 79 ± 0 |
Hydroxybenzoic Acids | |||||
Protocatechuic acid | 102 ± 1 | 480 ± 2 | 573 ± 1 | 219 ± 0 | 161 ± 0 |
Gallic acid | nd | nd | nd | 2311 ± 24 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawad, M.; Talcott, S.T.; Hillman, A.R.; Brannan, R.G. A Comprehensive Polyphenolic Characterization of Five Montmorency Tart Cherry (Prunus cerasus L.) Product Formulations. Foods 2025, 14, 1154. https://doi.org/10.3390/foods14071154
Jawad M, Talcott ST, Hillman AR, Brannan RG. A Comprehensive Polyphenolic Characterization of Five Montmorency Tart Cherry (Prunus cerasus L.) Product Formulations. Foods. 2025; 14(7):1154. https://doi.org/10.3390/foods14071154
Chicago/Turabian StyleJawad, Muhammad, Stephen T. Talcott, Angela R. Hillman, and Robert G. Brannan. 2025. "A Comprehensive Polyphenolic Characterization of Five Montmorency Tart Cherry (Prunus cerasus L.) Product Formulations" Foods 14, no. 7: 1154. https://doi.org/10.3390/foods14071154
APA StyleJawad, M., Talcott, S. T., Hillman, A. R., & Brannan, R. G. (2025). A Comprehensive Polyphenolic Characterization of Five Montmorency Tart Cherry (Prunus cerasus L.) Product Formulations. Foods, 14(7), 1154. https://doi.org/10.3390/foods14071154