Cooking Increased the Postprandial Glycaemic Response but Enhanced the Preload Effect of Air-Dried Jujube
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Measurement of Viscosity of Simulated Digested Chyme In Vitro
2.3. Determination of Total Phenol and Total Flavonoid Contents
2.4. Determination of α-Amylase and α-Glucosidase Inhibition Capacity
2.5. Participants
2.6. Test Meal and Trial Procedures
2.6.1. Blood Glucose and Insulin Response of AJ and CAJ
2.6.2. Blood Glucose and Insulin Responses to Rice Meal with AJ and CAJ as Preload
2.7. Statistical Analyses
3. Results
3.1. Total Phenol and Flavonoid Contents
3.2. α-Amylase and α-Glucosidase Inhibitory Activity
3.3. In Vitro Digest Viscosity
3.4. Participant Characteristics
3.5. Effect of Cooking on the Postprandial Physiological Response of Air-Dried Jujube
3.6. Impact of Cooking on the Preloading Effect of Air-Dried Jujube
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Available carbohydrate |
GI | Glycaemic index |
AJ | Air-dried jujube |
CAJ | Cooked air-dried jujube |
OGTT | Oral glucose tolerance test |
AJ+R | Preprandial load of dried jujubes and rice |
CAJ+R | Preprandial load of cooked dried jujubes and rice |
W+R | Preprandial load of water and rice |
IAUC | Incremental area under the curve |
NAUC | Negative area under the curve |
CONGA1glu and CONIA1ins | Consecutive 1 h intervals of net glucose/insulin action |
Appendix A
References
- Kahn, R.; Amer, D.A. Postprandial blood glucose. Diabetes Care 2001, 24, 775–778. [Google Scholar] [CrossRef]
- Rok, H.; Jaka, S.; Mojca, J.; Andrej, J.; Vita, D. Insulin Metabolism in Polycystic Ovary Syndrome: Secretion, Signaling, and Clearance. Int. J. Mol. Sci. 2023, 24, 3140. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Colagiuri, S. International diabetes federation guideline for management of postmeal glucose: A review of recommendations. Diabet. Med. 2008, 25, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Song, Y.Q.; Ford, E.S.; Liu, S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med. 2004, 164, 2147–2155. [Google Scholar] [CrossRef]
- Sun, L.J.; Jie, W.K.T.; Sook, M.C.H.; Melvin, K.-S.L.; Christiani, J.H. Impact of preloading either dairy or soy milk on postprandial glycemia, insulinemia and gastric emptying in healthy adults. Eur. J. Nutr. 2017, 56, 77–87. [Google Scholar] [CrossRef]
- Akhavan, T.; Luhovyy, B.L.; Panahi, S.; Kubant, R.; Brown, P.H.; Anderson, G.H. Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. J. Nutr. Biochem. 2014, 25, 36–43. [Google Scholar] [CrossRef]
- Lubransky, A.; Monro, J.; Mishra, S.; Yu, H.; Haszard, J.J.; Venn, B.J. Postprandial glycaemic, hormonal and satiety responses to rice and kiwifruit preloads in chinese adults: A randomised controlled crossover trial. Nutrients 2018, 10, 1110. [Google Scholar] [CrossRef]
- Mishra, S.; McLaughlin, A.; Monro, J. Food Order and Timing Effects on Glycaemic and Satiety Responses to Partial Fruit-for-Cereal Carbohydrate Exchange: A Randomized Cross-Over Human Intervention Study. Nutrients 2023, 15, 3269. [Google Scholar] [CrossRef]
- Saito, Y.; Nitta, A.; Imai, S.; Kajiyama, S.; Miyawaki, T.; Ozasa, N. Tomato juice preload has a significant impact on postprandial glucose concentration in healthy women: A randomized cross-over trial. Asian Pac. J. Clin. Nutr. 2020, 29, 491–497. [Google Scholar] [CrossRef]
- Lu, X.; Lu, J.; Fan, Z.; Liu, A.; Zhao, W.; Wu, Y.; Zhu, R. Both isocarbohydrate and hypercarbohydrate fruit preloads curbed postprandial glycemic excursion in healthy subjects. Nutrients 2021, 13, 2470. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Jenkins, A.L.; Mejia, S.B.; Sievenpiper, J.L.; Kendall, C.W.C. Effect of dried fruit on postprandial glycemia: A randomized acute-feeding trial. Nutr. Diabetes 2018, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Fan, Z.; Dong, Y.; Liu, M.; Wang LPan, H. Postprandial glycaemic responses of dried fruit-containing meals in healthy adults: Results from a randomised trial. Nutrients 2018, 10, 694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, L.; Fan, Z.; Lu, J.; Zhu, R.; Wu, Y.; Lu, X. Co-ingested vinegar-soaked or preloaded dried apple mitigated acute postprandial glycemia of rice meal in healthy subjects under equicarbohydrate conditions. Nutr. Res. 2020, 83, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, X.; Ren, D.; Wang, D.; Xuan, Y. Preventive effects of jujube polysaccharides on fructose-induced insulin resistance and dyslipidemia in mice. Food Funct. 2014, 5, 1771–1778. [Google Scholar] [CrossRef]
- Huang, F.; Xing, K.; Xie, H.; Shao, P.; Lu, Q. Hypoglycaemic effect of jujube pigment on tetraoxymethylene diabetic mice. Food Sci. Technol. 2020, 45, 293–297. (In Chinese) [Google Scholar] [CrossRef]
- Kawabata, K.; Kitamura, K.; Irie, K.; Naruse, S.; Matsuura, T.; Uemae, T.; Kawakami, B. Triterpenoids isolated from Ziziphus jujuba enhance glucose uptake activity in skeletal muscle cells. J. Nutr. Sci. Vitaminol. 2017, 63, 193–199. [Google Scholar] [CrossRef]
- Zhu, R.; Dong, Y.; Fan, Z.; Ye, T.; Wang, L.; Lin, J. Post-meal glycaemic res-ponse to a mixed meal of dried jujube and rice-jujube. Food Sci. 2019, 40, 203–207. (In Chinese) [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Paula, A.; Ricardo, A.; Simon, B. Infogest static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Wu, P.; Dhital, S.; Williams, B.A.; Chen, X.; Gidleyet, M.J. Rheological and microstructural properties of porcine gastric digesta and diets containing pectin or mango powder. Carbohydr. Polym. 2016, 148, 216–226. [Google Scholar] [CrossRef]
- Jakobek, L.; Boc, M.; Barron, A.R. Optimization of ultrasonic-assisted extraction of phenolic compounds from apples. Food Anal. Methods 2015, 8, 2612–2625. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.; Liu, R. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tu, Z.-C.; Yuan, T.; Hui, W.; Xie, X.; Fu, Z. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chem. 2016, 208, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yao, F.; Du, J.; Deng, X.; Li, C. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. J. Agric. Food Chem. 2018, 66, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, P.; Berry, S.E.; Finlayson, G.; O’Driscoll, R.; Hadjigeorgiou, G.; Drew, D.A.; Khatib, H.A.; Nguyen, L.H.; Linenberg, I.; Chan Andrew, T.; et al. Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat. Metab. 2021, 3, 523–529. [Google Scholar] [CrossRef]
- Mcdonnell, C.M.; Donath, S.M.; Vidmar, S.I.; Werther, G.A.; Cameron, F.J. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol. Ther. 2005, 7, 253–263. [Google Scholar] [CrossRef]
- Borer, K.T.; Lin, P.; Wuorinen, E. Timing of meals and exercise affects hormonal control of glucoregulation, insulin resistance, substrate metabolism, and gastrointestinal hormones, but has little effect on appetite in postmenopausal women. Nutrients 2021, 13, 4342. [Google Scholar] [CrossRef]
- Chonnikant, V.; Pichet, S.; Suphab, A.; Pathama, S.; Sirinuch, C. Glycemic index and glycemic load of common fruit juices in Thailand. J. Health Popul. Nutr. 2022, 41, 5. [Google Scholar] [CrossRef]
- Atkinson, F.; Brand-Miller, J.; Forest-Powell, K.; Buyken, A.E.; Janina, G. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Esperanza, D.; Bornhorst, G.; Eim, V.; Rosselló, C.; Simal, S. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chem. 2017, 215, 7–16. [Google Scholar] [CrossRef]
- Anderson, W.J.; Waters, R.A. Raisin consumption by humans: Effects on glycemia and insulinemia and cardiovascular risk factors. J. Food Sci. 2013, 78 (Suppl. S1), A11–A17. [Google Scholar] [CrossRef]
- Repin, N.; Kay, B.A.; Cui, S.W.; Wright, A.J.; Alison, M.D.; Douglas, G.H. Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. Food Funct. 2017, 8, 2142–2154. [Google Scholar] [CrossRef] [PubMed]
- Wolever TM, S.; Tosh, S.M.; Spruill, S.E.; Jenkins, A.L.; Ezatagha, A.; Duss, R.; Steinert, R.E. Increasing oat beta-glucan viscosity in a breakfast meal slows gastric emptying and reduces glycemic and insulinemic responses but has no effect on appetite, food intake, or plasma ghrelin and pyy responses in healthy humans: A randomized, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 2020, 111, 319–328. [Google Scholar] [CrossRef] [PubMed]
- O’donovan, D.G.; Doran, S.; Feinle-Bisset, C.; Jones, K.L.; Meyer, J.H.; Wishart, J.M.; Horowitz, M. Effect of variations in small intestinal glucose delivery on plasma glucose, insulin, and incretin hormones in healthy subjects and type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 3431–3435. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.K.; Russo, A.; Wishart, J.M.; Tonkin, A.; Horowitz, M.; Jones, K.L. Effect of solid meal on gastric emptying of, and glycemic and cardiovascular responses to, liquid glucose in older subjects. Am. J. Physiol.-Gastrointest. Liver Physiol. 2003, 284, G655–G662. [Google Scholar] [CrossRef]
- Del, P.S.; Tiengo, A. The importance of first-phase insulin secretion: Implications for the therapy of type 2 diabetes mellitus. Diabetes-Metab. Res. Rev. 2001, 17, 164–174. [Google Scholar] [CrossRef]
- Liu, S.; Lv, Y.; Tang, Z.; Zhang, Y.; Bo, X.H.; Zhang, D.B.; Wei, S.M. Ziziphus jujuba mill., A plant used as medicinal food: A review of its phytochemistry, pharmacology, quality control and future research. Phytochem. Rev. 2021, 20, 507–541. [Google Scholar] [CrossRef]
- Castro-Acosta, M.L.; Stone, S.G.; Mok, J.E.; Mhajan, R.K.; Fu, C.I.; Lenihan-Geels, G.N.; Hall, W.L. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J. Nutr. Biochem. 2017, 49, 53–62. [Google Scholar] [CrossRef]
- Sun, L.; Miao, M. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 541–555. [Google Scholar] [CrossRef]
- Williams, L.K.; Zhang, X.; Caner, S. The amylase inhibitor montbretin a reveals a new glycosidase inhibition motif. Nat. Chem. Biol. 2015, 11, 691. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Lv, Z.; Yang, W.; Zhang, C.; Chen, D.; Jiao, Z. Effect of dehydration techniques on bioactive compounds in hawthorn slices and their correlations with antioxidant properties. J. Food Sci. Technol. 2019, 56, 2446–2457. [Google Scholar] [CrossRef]
- María, R.C.; Alicia, O.; Gerardo, L.Z.; Hugo, N.M. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle). Plant Foods Hum. Nutr. 2015, 70, 85–90. [Google Scholar] [CrossRef]
- Fardet, A.; Richonnet, C. Nutrient density and bioaccessibility, and the antioxidant, satiety, glycemic, and alkalinizing potentials of fruit-based foods according to the degree of processing: A narrative review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3233–3258. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Godos, J.; Ghelfi, F.; Tieri, M.; Titta, L.; Lafranconi, A. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2019, 70, 652–667. [Google Scholar] [CrossRef]
- Rinta, A.; Adriyan, P.; Nur, D.A.; Etika, R.N.; Muflihatul, M.; Andri, C.K. Mangrove fruit (Bruguiera gymnorhiza) increases circulating GLP-1 and PYY, modulates lipid profiles, and reduces systemic inflammation by improving SCFA levels in obese wistar rats. Heliyon 2022, 8, e10887. [Google Scholar] [CrossRef]
- Klosterbuer, A.; Greaves, K.; Slavin, J. Fiber intake inconsistently alters gut hormone levels in humans following acute or chronic intake. J. Food Res. 2012, 1, 255–273. [Google Scholar] [CrossRef]
- Holt, S.; Brand, J.; Soveny, C.; Hansky, J. Relationship of satiety to postprandial glycemic, insulin and cholecystokinin responses. Appetite 1992, 18, 129–141. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Zhou, Y.; Yuan, Y.Q.; Fan, Z.; Wu, Y.; Liu, A.; Lu, X. Potato preload mitigated postprandial glycemic excursion in healthy subjects: An acute randomized trial. Nutrients 2020, 12, 2759. [Google Scholar] [CrossRef]
- Freitas, D.; Boue, F.; Benallaoua, M.; Airinei, G.; Benamouzig, R.; Le, F.S. Lemon juice, but not tea, reduces the glycemic response to bread in healthy volunteers: A randomized trial. Eur. J. Nutr. 2021, 60, 113–122. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. Chronic diseases are first associated with the degradation and artifcialization of food matrices rather than with food composition: Calorie quality matters more than calorie quantity. Eur. J. Nutr. 2022, 61, 2239–2253. [Google Scholar] [CrossRef]
- Fardet, A. Nutrient bioavailability and kinetics of release is a neglected key issue when comparing complex food versus supplement health potential. J. Nutr. Health Food Eng. 2015, 2, 00045. [Google Scholar] [CrossRef]
- Sensoy, I. A review on the relationship between food structure, processing, and bioavailability. Crit. Rev. Food Sci. Nutr. 2014, 54, 902–909. [Google Scholar] [CrossRef]
Preload | Rice Meal | |||||||
---|---|---|---|---|---|---|---|---|
Food (g) | Water (g) | AC (g) | Glucose b (g) | Sucrose (g) b | Fructose (g) b | Rice (g) | AC (g) | |
AJ+R | 20.96 | 116.04 | 15 | 2.2 | 2.2 | 6.0 | 69.9 | 35 |
CAJ+R | 78.21 | 58.79 | 15 | 2.2 | 2.2 | 6.0 | 69.9 | 35 |
W+R | - | 137 | - | - | - | - | 171.5 a | 50 |
Glucose and Insulin Response Test (n = 14) | Pre-Meal Load Test (n = 14) | |
---|---|---|
Age | 25 2 | 23 2 |
BMI (kg/m2) | 21.4 1.6 | 22.1 2.2 |
Body fat (%) | 21.4 5.0 | 22.9 5.6 |
Waist (cm) | 73.6 7.8 | 75.3 8.3 |
Hip measurement (cm) | 92.8 4.6 | 94.5 5.3 |
Hip–waist ratio (%) | 84.9 3.9 | 79.6 6.6 |
Basal metabolic rate (kcal) | 1391.6 217.0 | 1460.0 198.6 |
Test Meal | iAUCglu (mmol × min/L) | iAUCglu0–60% | NAUCglu (mmol × min/L) | Peakglu (mmol/L) | CONGA1glu (mmol/L) | Glycemic Index |
---|---|---|---|---|---|---|
AJ | 144.1 ± 12.6 | 70.7 ± 3.832 * | 11.0 ± 3.7 ** | 2.9 ± 0.2 ** | 1.4 ± 0.61 ** | 68.0 ± 6.7 |
CAJ | 171.0 ± 10.2 | 71.9 ± 3.348 | 51.3 ± 3.4 | 3.9 ± 0.1 | 2.2 ± 0.6 | 83.0 ± 5.6 |
G | 226.9 ± 21.1 | 69.3 ± 4.493 | 32.4 ± 6.5 | 4.0 ± 0.2 | 1.9 ± 0.9 | 100 |
Test Meal | iAUCins (mIU × min/L) | iAUCins0–60% | HOMA-IR AUC (mmol × mIU\× min/L2) | Peakins (mIU/L) | CONIA1ins (mIU/L) | Insulin Index |
---|---|---|---|---|---|---|
AJ | 2520.6 ± 299.5 | 63.2 ± 3.1 | 1050.6 ± 147.7 | 37.1 ± 4.3 | 26.5 ± 9.7 | 88.0 ± 9.9 |
CAJ | 2781.9 ± 246.8 | 70.0 ± 3.8 | 1214.1 ± 142.5 | 46.4 ± 3.1 | 29.3 ± 9.5 | 94.9 ± 6.7 |
G | 2998.4 ± 208.4 | 65.7 ± 3.1 | 1329.6 ± 120.2 | 42.0 ± 4.4 | 30.1 ± 13.2 | 100 |
Test Meal | iAUCglu (mmol × min/L) | iAUCglu0–30% | IAUCglu30–90% | Peakglu (mmol/L) | CONGA1glu (mmol/L) | Peak Time (min) |
---|---|---|---|---|---|---|
AJ+R | 270.9 ± 28.2 | 10.2 ± 1.4 a | 49.9 ± 2.5 a | 3.1 ± 0.2 a | 1.5 ± 0.1 b | 61.0 ± 14.1 |
CAJ+R | 282.4 ± 31.7 | 12.6 ± 1.1 a | 38.8 ± 3.3 b | 2.5 ± 0.2 b | 1.2 ± 0.1 b | 64.0 ± 34.0 |
W+R | 264.5 ± 32.6 | 2.1 ± 0.6 b | 46.3 ± 2.3 ab | 3.4 ± 0.3 a | 1.9 ± 0.2 a | 71.0 ± 9.2 |
Test Meal | iAUCins (mIU × min/L) | iAUCins0–30% | iAUCins30–90% | HOMA-IR AUC (mmol × mIU\× min/L2) | Peakins (mIU/L) | CONIA1ins (mIU/L) |
---|---|---|---|---|---|---|
AJ+R | 3262.2 ± 509.2 | 7.0 ± 1.1 b | 53.0 ± 3.0 a | 1421.7 ± 136.5 | 41.4 ± 4.9 | 23.8 ± 2.6 b |
CAJ+R | 3470.6 ± 317.3 | 13.2 ± 1.8 a | 46.2 ± 2.5 b | 1358.0 ± 140.7 | 43.6 ± 3.8 | 20.4 ± 2.4 b |
W+R | 3228.1 ± 391.2 | 0.4 ± 0.1 c | 50.7 ± 2.8 ab | 1329.7 ± 130.6 | 46.8 ± 4.0 | 31.0 ± 2.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Liu, A.; Fan, Z.; Peng, X.; Lou, X.; Lu, X.; Hu, J. Cooking Increased the Postprandial Glycaemic Response but Enhanced the Preload Effect of Air-Dried Jujube. Foods 2025, 14, 1142. https://doi.org/10.3390/foods14071142
Wei J, Liu A, Fan Z, Peng X, Lou X, Lu X, Hu J. Cooking Increased the Postprandial Glycaemic Response but Enhanced the Preload Effect of Air-Dried Jujube. Foods. 2025; 14(7):1142. https://doi.org/10.3390/foods14071142
Chicago/Turabian StyleWei, Jinjie, Anshu Liu, Zhihong Fan, Xiyihe Peng, Xinling Lou, Xuejiao Lu, and Jiahui Hu. 2025. "Cooking Increased the Postprandial Glycaemic Response but Enhanced the Preload Effect of Air-Dried Jujube" Foods 14, no. 7: 1142. https://doi.org/10.3390/foods14071142
APA StyleWei, J., Liu, A., Fan, Z., Peng, X., Lou, X., Lu, X., & Hu, J. (2025). Cooking Increased the Postprandial Glycaemic Response but Enhanced the Preload Effect of Air-Dried Jujube. Foods, 14(7), 1142. https://doi.org/10.3390/foods14071142