Association Between Herd Size and the Chemical Composition and Technological Properties of Milk Intended for Parmigiano Reggiano PDO Cheese
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling Procedure
2.2. Analytical Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Council Regulation (EU) No PDO-IT-02202 of 14 November 2016. Official Journal of the European Union of 13 April 2018, C132/17-19. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018XC0413(01) (accessed on 11 November 2024).
- Galama, P.J.; Ouweltjes, W.; Endres, M.I.; Sprecher, J.R.; Leso, L.; Kuipers, A.; Klopčič, M. Symposium review: Future of housing for dairy cattle. J. Dairy Sci. 2020, 103, 5759–5772. [Google Scholar] [CrossRef] [PubMed]
- Lovarelli, D.; Tamburini, A.; Garimberti, S.; D’Imporzano, G.; Adani, F. Life cycle assessment of Parmigiano Reggiano PDO cheese with product environmental footprint method: A case study implementing improved slurry management strategies. Sci. Total Environ. 2022, 842, 156856. [Google Scholar] [CrossRef] [PubMed]
- Oleggini, J.H.; Ely, L.O.; Smith, J.W. Effect of herd size on management variables in Holstein herds. J. Dairy Sci. 2001, 84, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Hovinen, M.; Rasmussen, M.D.; Pÿrälä, S. Udder health of cows changing from tie stalls to free stalls with conventional milking to free stalls either with conventional or automatic milking. J. Dairy Sci. 2008, 92, 3696–3703. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A.; Bogucky, M. Effect of housing system and milk yield on cow fertility. Archiv. Tierz. 2011, 54, 249–256. [Google Scholar] [CrossRef]
- Smith, J.W.; Guthrie, L.D.; Ely, L.O. Effect of herd size on management variables in Holstein herds. J. Dairy Sci. 1995, 98 (Suppl. 1), 318. [Google Scholar]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Righi, F.; Summer, A. Chemical composition, hygiene characteristics, and coagulation aptitude of milk for Parmigiano Reggiano cheese from farms yielding different milk levels. Rev. Brasil. Zootec. 2020, 49, e20180113. [Google Scholar] [CrossRef]
- Beresford, T.P.; Fitzsimons, N.A.; Brennan, N.L.; Cogan, T.M. Recent advances in cheese microbiology. Int. Dairy J. 2011, 11, 259–274. [Google Scholar] [CrossRef]
- Verdier-Metz, I.; Coulon, J.B.; Pradel, P. Relationship between milk fat and protein contents and cheese yield. Anim. Res. 2001, 50, 365–371. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Summer, A. Quantification of the effect of the cattle breed on milk cheese yield: Comparison between Italian Brown Swiss and Italian Friesian. Animals 2020, 10, 1331. [Google Scholar] [CrossRef]
- Le Maréchal, C.; Thiéry, R.; Vautor, E.; Le Loir, Y. Mastitis impact on technological properties of milk and quality of milk products—A review. Dairy Sci. Technol. 2011, 91, 247–282. [Google Scholar] [CrossRef]
- Franceschi, P.; Faccia, M.; Malacarne, M.; Formaggioni, P.; Summer, A. Quantification of cheese yield reduction in manufacturing Parmigiano Reggiano from milk with non-compliant somatic cells count. Foods 2020, 9, 212. [Google Scholar] [CrossRef]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otte, D.E. Invited review: Organic and conventionally produced milk— An evaluation of factors influencing milk composition. J. Dairy Sci. 2015, 98, 721–746. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; Buckley, F.; Berry, D.P.; Rath, M.; Pierce, K.; Byrne, N.; Dillon, P. Effects of breed, feeding system, and parity on udder health and milking characteristics. J. Dairy Sci. 2007, 90, 5767–5779. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Cipolat-Gotet, C.; Stocco, G.; Summer, A. Effect of season and factory on cheesemaking efficiency in Parmigiano Reggiano manufacture. Foods 2019, 8, 315. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Lewis, M.J.; Grandison, A.S. Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chem. 2014, 158, 216–223. [Google Scholar] [CrossRef]
- O’Connell, A.; Mc Parland, S.; Ruegg, P.L.; O’Brien, B.; Gleeson, D. Seasonal trends in milk quality in Ireland between 2007 and 2011. J. Dairy Sci. 2015, 98, 3778–3790. [Google Scholar] [CrossRef]
- Bertocchi, L.; Vitali, A.; Lacetera, N.; Varisco, G.; Bernabucci, U. Seasonal variations in the composition of Holstein cow’s milk and temperature-humidity index relationship. Animal 2014, 8, 667–674. [Google Scholar] [CrossRef]
- Bernabucci, U.; Basiricò, L.; Morera, P.; Dipasquale, D.; Vitali, A.; Piccioli Cappelli, F.; Calamari, L. Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci. 2015, 98, 1815–1827. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Cowley, F.C.; Barber, D.G.; Houlihan, A.V.; Poppi, D.P. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef]
- IDF Standard 50/ISO707; Milk and Milk Products, Guidance on Sampling. International Dairy Federation: Brussels, Belgium, 2008.
- IDF Standard 141/ISO9622; Milk and Liquid Milk Products, Guidelines for the Application of Mid-Infrared Spectrometry. International Dairy Federation: Brussels, Belgium, 2013.
- IDF Standard 150/ISO11869; Milk and Milk Products—Determination of Titratable Acidity—Potentiometric Method. International Dairy Federation: Brussels, Belgium, 2012.
- IDF Standard 161/ISO16297; Milk Bacterial Count: Protocol for the Evaluation of Alternative Methods. International Dairy Federation: Brussels, Belgium, 2013.
- IDF Standard 148-2/ISO13366-2; Milk, Enumeration of Somatic Cells, Part. 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters. International Dairy Federation: Brussels, Belgium, 2006.
- Association of Official Analytical Chemists [AOAC]. Detection and confirmed quantitation of coliforms and E. coli in foods, method no. 996.23. In Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 27–31. [Google Scholar]
- Franceschi, P.; Malacarne, M.; Bortolazzo, E.; Coloretti, F.; Formaggioni, P.; Garavaldi, A.; Musi, V.; Summer, A. Automatic milking systems in the production of Parmigiano Reggiano cheese: Effects on the milk quality and on cheese characteristics. Agriculture 2022, 12, 104. [Google Scholar] [CrossRef]
- Franceschi, P.; Brasca, M.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Natrella, G.; Summer, A. Effects of the cooling temperature at the farm on milk maturation and cheesemaking process in the manufacture of Parmigiano Reggiano PDO Cheese. Animals 2021, 11, 2835. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited review: Milk lactose—Current status and future challenges in dairy cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef]
- Osorio, J.S.; Lohakare, J.; Bionaz, M. Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttran- scriptional regulation. Physiol. Genom. 2016, 48, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Cant, J.P.; Trout, D.R.; Qiao, F.; Purdie, N.G. Milk synthetic response of the bovine mammary gland to an increase in the local concentration of arterial glucose. J. Dairy Sci. 2002, 85, 494–503. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahoni, J.A. Dairy Chemistry and Biochemistry; Springer International Publishing: Basel, Switzerland, 2015. [Google Scholar]
- Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 2009, 92, 5335–5352. [Google Scholar] [CrossRef] [PubMed]
- Teshome, D.; Fita, L.; Feyissa, F.; Kitaw, G.; Wondatir, Z. Effect of total mixed ratio on dry matter intake, milk yield and composition of early lactation Jersey cows. J. Biol. Agric. Healthc. 2017, 7, 19–24. [Google Scholar]
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Zebeli, Q.; Aschenbach, J.R.; Tafaj, M.; Boguhn, J.; Ametaj, B.N.; Drochner, W. Role of physically effective fibre and estimation of dietary fibre adequacy in high producing dairy cattle. J. Dairy Sci. 2012, 95, 1041–1056. [Google Scholar] [CrossRef]
- AlZahal, O.; Or-Rashid, M.M.; Greenwood, S.L.; Douglas, M.S.; McBride, B.W. The effect of dietary fibre level on milk fat concentration and fatty acid profile of cows fed diets containing low levels of polyunsaturated fatty acids. J. Dairy Sci. 2009, 92, 1108–1116. [Google Scholar] [CrossRef]
- Oetzel, G.R. Update on milk fat depression in dairy herds. West Dairy News 2012, 25, 39–40. [Google Scholar]
- Moharrery, A.; Larsen, M.; Weisbjerg, M.R. Starch digestion in the rumen, small intestine, and hind gut of dairy cows. A meta-analysis. Anim. Feed Sci. Technol. 2014, 192, 1–14. [Google Scholar] [CrossRef]
- Emmons, D.B.; Dubé, C.; Modler, H.W. Transfer of protein from milk to cheese. J. Dairy Sci. 2003, 86, 469–485. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Faccia, M.; Rossoni, A.; Santus, E.; Formaggioni, P.; Summer, A. New insights of cheese yield capacity between Italian Brown and Italian Friesian milks in the production of high moisture mozzarella. Food Technol. Biotechnol. 2020, 58, 91–97. [Google Scholar] [CrossRef]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004, Laying Down Specific Hygiene Rules for on the Hygiene of Foodstuffs, Web Site. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0055:0205:en:PDF (accessed on 11 November 2024).
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Summer, A. Effects of milk storage temperature at the farm on the characteristics of Parmigiano Reggiano cheese: Chemical composition and proteolysis. Animals 2021, 11, 879. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, P.; Formaggioni, P.; Brasca, M.; Natrella, G.; Faccia, M.; Malacarne, M.; Summer, A. Fatty acids composition and lipolysis of Parmigiano Reggiano PDO cheese: Effect of the milk cooling temperature at the farm. Anim. Biosci. 2023, 11, 132–143. [Google Scholar] [CrossRef]
- Sadeghi-Sefidmazgi, A.; Rayatdoost-Baghal, F. Effects of herd management practices on somatic cell counts in an arid climate. Rev. Brasil. Zootec. 2014, 43, 499–504. [Google Scholar] [CrossRef]
- Dang, A.K.; Suman, K.; Charan, S.; Sehgal, J.P. Milk differential cell counts and compositional changes in cows during different physiological stages. Milchwissenschaft 2008, 63, 239–242. [Google Scholar]
- Pretto, D.; De Marchi, M.; Penasa, M.; Cassandro, M. Effect of milk composition and coagulation traits on Grana Padano cheese yield under field conditions. J. Dairy Res. 2013, 80, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, P.; Martuzzi, F.; Formaggioni, P.; Malacarne, M.; Summer, A. Seasonal Variations of the Protein Fractions and the Min- eral Contents of the Cheese Whey in the Parmigiano Reggiano Cheese Manufacture. Agriculture 2023, 13, 165. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Friggens, N.C.; Larsen, T.; Andersen, J.B.; Nielsen, M.O.; Ingvartsen, K.L. Effect of changes in diet energy density on feed intake, milk yield and metabolic parameters in dairy cows in early lactation. Animal 2007, 1, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Buttchereit, N.; Stamer, E.; Junge, W.; Thaller, G. Evaluation of five lactation curve models fitted for fat: Protein in ratio of milk and daily energy balance. J. Dairy Sci. 2010, 93, 1702–1712. [Google Scholar] [CrossRef]
- van Knegsel, A.T.M.; van den Brand, H.; Dijkstra, J.; van Straalen, W.M.; Heetkamp, M.J.W.; Tamminga, S.; Kemp, B. Dietary energy source in dairy cows in early lactation: Energy partitioning and milk composition. J. Dairy Sci. 2007, 90, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Changes in physical properties of bovine milk from the colostrum period to earlylactation. J. Dairy Sci. 2007, 90, 5012–5017. [Google Scholar] [CrossRef]
- Hagnestam-Nielsen, C.; Emanuelson, U.; Berglund, B.; Strandberg, E. Relationship between somatic cell count and milk yield in different stages of lactation. J. Dairy Sci. 2009, 92, 3124–3133. [Google Scholar] [CrossRef] [PubMed]
- Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy, R. Mastitis detection: Current trends and future perspectives. Trends Biotechnol. 2009, 27, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Urech, E.; Puhan, Z.; Schällibaum, M. Changes in milk protein fraction as affected by subclinical mastitis. J. Dairy Sci. 1999, 82, 2402–2411. [Google Scholar] [CrossRef]
- de los Campos, G.; Gianola, D.; Heringstad, B. A structural equation model for describing relationships between somatic cell score and milk yield in first-lactation dairy cows. J. Dairy Sci. 2006, 89, 4445–4455. [Google Scholar] [CrossRef]
Less Than 30 | From 31 to 60 | From 61 to 100 | From 101 to 200 | Over 200 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N 1 = 1620 | N1 = 1800 | N 1 = 1620 | N 1 = 540 | N 1 = 180 | ||||||||
Parameters | Measure Units | Mean | SEM 2 | Mean | SEM 2 | Mean | SEM 2 | Mean | SEM 2 | Mean | SEM 2 | p 3 |
Milk production | kg/cows/lactation | 8133 | 128 a | 8275 | 129 a | 8633 | 128 b | 8877 | 134 c | 9109 | 159 d | *** |
Lactose | g/100 g | 4.93 | 0.01 a | 4.95 | 0.01 ab | 4.98 | 0.01 b | 4.98 | 0.01 b | 4.97 | 0.01 b | *** |
Fat | g/100 g | 3.73 | 0.04 c | 3.62 | 0.04 b | 3.63 | 0.04 b | 3.53 | 0.04 a | 3.51 | 0.04 a | *** |
Crude protein | g/100 g | 3.25 | 0.02 a | 3.28 | 0.02 ab | 3.30 | 0.02 b | 3.29 | 0.02 b | 3.29 | 0.02 b | *** |
Casein | g/100 g | 2.42 | 0.01 a | 2.52 | 0.01 b | 2.58 | 0.01 c | 2.56 | 0.02 c | 2.57 | 0.02 c | *** |
Titratable acidity | °SH/50 mL | 3.25 | 0.01 | 3.24 | 0.01 | 3.25 | 0.01 | 3.24 | 0.02 | 3.26 | 0.02 | NS |
Somatic cells | Log10 (Cells/mL) | 5.28 | 0.02 a | 5.36 | 0.03 b | 5.38 | 0.02 b | 5.39 | 0.03 b | 5.55 | 0.03 c | *** |
Total bacterial count | Log10 (CFU/mL) | 4.93 | 0.05 b | 4.92 | 0.05 b | 4.89 | 0.05 b | 4.77 | 0.05 a | 4.77 | 0.06 a | *** |
Coliform bacteria | Log10 (CFU/mL) | 3.18 | 0.03 b | 3.15 | 0.03 ab | 3.16 | 0.03 ab | 3.16 | 0.04 ab | 3.12 | 0.04 a | * |
Clostridia spores | Log10 (spores/L) | 1.78 | 0.03 a | 1.80 | 0.03 a | 1.85 | 0.03 ab | 1.91 | 0.03 b | 2.14 | 0.04 c | *** |
Number of Cows Milked | Cow Milk Production | |||
---|---|---|---|---|
r 1 | p 2 | r 1 | p 2 | |
Cow milk production | 0.247 | *** | - | - |
Lactose | 0.007 | NS | 0.228 | *** |
Fat | −0.218 | *** | −0.362 | *** |
Crude protein | 0.033 | * | 0.064 | *** |
Casein | 0.032 | * | 0.076 | *** |
Titratable acidity | 0.058 | *** | 0.123 | *** |
Somatic cells count | 0.097 | *** | 0.279 | *** |
Total bacterial count | −0.140 | *** | −0.187 | *** |
Coliform bacteria | −0.056 | *** | −0.121 | *** |
Clostridia spores | 0.242 | *** | −0.041 | ** |
Less 30 N 1 = 1620 | From 31 to 60 N 1 = 1800 | From 61 to 100 N 1 = 1620 | From 101 to 200 N 1 = 540 | Over 200 N 1 = 180 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDG 2 | Count | % | Count | % | Count | % | Count | % | Count | % | p 3 | |||||
Optimal | 901 | 55.62 | a | 1064 | 59.11 | b | 965 | 59.57 | b | 352 | 65.19 | c | 127 | 70.56 | d | *** |
Discrete | 709 | 43.77 | d | 726 | 40.33 | c | 651 | 40.19 | c | 187 | 34.63 | b | 52 | 28.89 | a | *** |
Poor | 10 | 0.62 | 10 | 0.56 | 4 | 0.25 | 1 | 0.19 | 1 | 0.56 | NS |
Parameters | Measure Units | Winter N 1 = 1440 | Spring N 1 = 1440 | Summer N 1 = 1440 | Autumn N 1 = 1440 | SEM 2 | Overall N 1 = 5760 | p 3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lactose | g/100 g | 4.98 | b | 4.95 | ab | 4.90 | a | 4.96 | b | 0.04 | 4.95 | *** |
Fat | g/100 g | 3.64 | b | 3.52 | ab | 3.53 | a | 3.71 | c | 0.04 | 3.63 | *** |
Crude protein | g/100 g | 3.28 | b | 3.21 | a | 3.22 | a | 3.37 | c | 0.02 | 3.26 | *** |
Casein | g/100 g | 2.56 | b | 2.50 | a | 2.52 | a | 2.63 | c | 0.01 | 2.54 | *** |
Titratable acidity | °SH/50 mL | 3.26 | b | 3.25 | b | 3.23 | a | 3.26 | b | 0.02 | 3.24 | *** |
Somatic cells | Log10 (Cells/mL) | 5.35 | a | 5.38 | b | 5.46 | c | 5.38 | b | 0.03 | 5.40 | *** |
Total bacterial count | Log10 (CFU/mL) | 4.78 | a | 4.90 | b | 5.95 | c | 4.78 | a | 0.05 | 4.61 | *** |
Coliform bacteria | Log10 (CFU/mL) | 3.08 | a | 3.18 | b | 3.26 | c | 3.10 | a | 0.03 | 3.14 | * |
Clostridia spores | Log10 (spores/L) | 1.88 | a | 1.88 | a | 1.92 | b | 1.91 | ab | 0.03 | 1.89 | *** |
Component | Before Rotation Squares | After Rotation Squares | |||
---|---|---|---|---|---|
Eigenvalues | % of Variance | Eigenvalues | % of Variance | Cumulative % | |
1 | 2.20 | 24.45 | 2.06 | 22.88 | 22.88 |
2 | 1.91 | 21.26 | 1.67 | 18.51 | 41.39 |
3 | 1.39 | 15.43 | 1.55 | 17.27 | 58.66 |
4 | 1.18 | 13.11 | 1.40 | 15.58 | 74.24 |
5 | 0.76 | 8.44 | |||
6 | 0.63 | 6.97 | |||
7 | 0.50 | 6.07 | |||
8 | 0.39 | 4.28 | |||
9 | 5.27·10−5 | 5.86·10−15 |
Components of Variance | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Number of cows milked | 0.078 | 0.243 | 0.668 | −0.204 |
Cow milk production | 0.075 | −0.357 | 0.704 | −0.120 |
Lactose | 0.184 | −0.832 | 0.043 | −0.052 |
Fat | 0.151 | 0.056 | −0.768 | −0.148 |
Crude protein | 0.992 | −0.011 | −0.013 | −0.032 |
Casein | 0.994 | −0.054 | −0.010 | −0.032 |
Somatic cells count | 0.125 | 0.871 | −0.025 | 0.154 |
Total bacterial count | −0.055 | 0.143 | −0.135 | 0.778 |
Coliform bacteria count | 0.000 | 0.048 | 0.037 | 0.831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franceschi, P.; Formaggioni, P.; Barbanti, D.; Gonzalez Torres, Y.O.; Scotti, C.; Martuzzi, F. Association Between Herd Size and the Chemical Composition and Technological Properties of Milk Intended for Parmigiano Reggiano PDO Cheese. Foods 2025, 14, 494. https://doi.org/10.3390/foods14030494
Franceschi P, Formaggioni P, Barbanti D, Gonzalez Torres YO, Scotti C, Martuzzi F. Association Between Herd Size and the Chemical Composition and Technological Properties of Milk Intended for Parmigiano Reggiano PDO Cheese. Foods. 2025; 14(3):494. https://doi.org/10.3390/foods14030494
Chicago/Turabian StyleFranceschi, Piero, Paolo Formaggioni, Davide Barbanti, Yesid Orlando Gonzalez Torres, Cristina Scotti, and Francesca Martuzzi. 2025. "Association Between Herd Size and the Chemical Composition and Technological Properties of Milk Intended for Parmigiano Reggiano PDO Cheese" Foods 14, no. 3: 494. https://doi.org/10.3390/foods14030494
APA StyleFranceschi, P., Formaggioni, P., Barbanti, D., Gonzalez Torres, Y. O., Scotti, C., & Martuzzi, F. (2025). Association Between Herd Size and the Chemical Composition and Technological Properties of Milk Intended for Parmigiano Reggiano PDO Cheese. Foods, 14(3), 494. https://doi.org/10.3390/foods14030494