Probiotics Attenuate Food Allergy via Short-Chain Fatty Acids-Mediated Immune Modulation and Gut Barrier Restoration
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Probiotic Culture Conditions and OVA Solution Preparations
2.3. Construction of OVA-Induced Food Allergy Mouse Model
2.4. Detection of OVA-Specific Antibodies in Mouse Serum
2.5. Quantification of Allergic Mediators and Cytokines by ELISA in Mice
2.6. Extraction and Analysis of Mouse Spleen Cells Related to Inflammatory Cytokines
2.7. Detection of Treg Differentiation Rate in Mouse Spleen Cells
2.8. Histopathological Analysis of Mouse Duodenal Tissue
2.9. Detection of Tight Junction Protein Expression in Mouse Colon
2.10. Changes in Gut Microbiota in Mouse Feces
2.11. Short-Chain Fatty Acid Contents in Allergic Fecal Mice
2.12. Statistical Analysis
3. Results
3.1. Probiotic Administration Attenuated Food Allergy Manifestations in Mice
3.2. Probiotic Treatment Modulated Allergic Antibody and Inflammatory Mediator Profiles
3.3. Probiotics Alleviated Allergic Responses via Immune Modulation
3.4. Probiotics Restore Duodenal Integrity and Enhance Tight Junction Proteins in Allergic Mice
3.5. Probiotics Restore Gut Microbiota Homeostasis in OVA-Induced Food Allergy Mice
3.6. Probiotics Modulate Gut Microbiota-Derived SCFAs in OVA-Sensitized Mice
3.7. Correlation Analysis Between Immune Markers, Gut Microbiota, and SCFAs in Allergic Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACE index | Abundance-based coverage estimator index |
| CD4+CD25+T | Cluster of differentiation 4+ cluster of differentiation 25+ T cells (Regulatory T cells) |
| ELISA | Enzyme-linked immunosorbent assay |
| FA | Food allergy |
| H&E stained | Hematoxylin and Eosin stained |
| IFN-γ | Interferon-gamma |
| IgE | Immunoglobulin E |
| IgG | Immunoglobulin G |
| IgG1 | Immunoglobulin G1 |
| IL-2 | Interleukin-2 |
| IL-4 | Interleukin-4 |
| IL-5 | Interleukin-5 |
| MCP-1 | Monocyte Chemoattractant protein-1 |
| OVA | Ovalbumin |
| PCoA | Principal coordinates analysis |
| PBS | Phosphate-buffered saline |
| SDS-PAGE | Sodium dodecyl sulfate-polyacrylamide gel electrophoresis |
| SCFAs | Short-chain fatty acids |
| TGF-β1 | Transforming growth factor-beta 1 |
| Th1/Th2 | T helper 1/T helper 2 cells |
| TNF-α | Tumor necrosis factor-alpha |
| Treg | Regulatory T cell |
| ZO-1 | Zonula Occludens-1 |
References
- Shao, H.; Min, F.; Huang, M.; Wang, Z.; Bai, T.; Lin, M.; Li, X.; Chen, H. Novel perspective on the regulation of food allergy by probiotic: The potential of its structural components. Crit. Rev. Food Sci. Nutr. 2024, 64, 172–186. [Google Scholar] [CrossRef]
- Fu, L.; Cherayil, B.J.; Shi, H.; Wang, Y.; Zhu, Y. Risk Assessment and Control Management of Food Allergens. In Food Allergy: From Molecular Mechanisms to Control Strategies; Springer: Singapore, 2019; pp. 195–216. [Google Scholar]
- Sathe, S.K.; Liu, C.; Zaffran, V.D. Food Allergy. Annu. Rev. Food Sci. Technol. 2016, 7, 191–220. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; He, C.; Cong, Y.; Liu, Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol. 2015, 8, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.-Y.; Shin, H.S.; Choi, D.W.; Shon, D.-H. Citrus Tachibana Leaf Extract Mitigates Symptoms of Food Allergy by Inhibiting Th2-Associated Responses. J. Food Sci. 2016, 81, H1537–H1545. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; See, H.J.; Jung, S.Y.; Choi, D.W.; Kwon, D.A.; Bae, M.J.; Sung, K.S.; Shon, D.H. Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy. J. Ethnopharmacol. 2015, 175, 21–29. [Google Scholar] [CrossRef]
- Fu, W.; Chen, C.; Xie, Q.; Gu, S.; Tao, S.; Xue, W. Pediococcus acidilactici Strain Alleviates Gluten-Induced Food Allergy and Regulates Gut Microbiota in Mice. Front. Cell. Infect. Microbiol. 2022, 12, 845142. [Google Scholar] [CrossRef]
- Danshiitsoodol, N.; Noda, M.; Kanno, K.; Uchida, T.; Sugiyama, M. Plant-Derived Lactobacillus paracasei IJH-SONE68 Improves the Gut Microbiota Associated with Hepatic Disorders: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients 2022, 14, 4492. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Du, M.; Yang, H.; Shi, R.; Shi, Y.; Zhang, S.; Zhao, Y.; Lan, J. Short-chain fatty acid—A critical interfering factor for allergic diseases. Chem. Biol. Interact. 2023, 385, 110739. [Google Scholar] [CrossRef]
- Li, H.; Shen, N.; Ren, J.; Yang, S.; Chen, Y.; Gao, Z. Biotransformation characteristics of urate-lowering probiotic fermented apple juice and potential regulatory mechanisms for ameliorating hyperuricemia via mediating gut microbiota and metabolic pathways. Food Chem. 2024, 460, 140462. [Google Scholar] [CrossRef]
- Entezami, A.; Zarrini, G. The Science behind Probiotics: Exploring their Mechanisms and Therapeutic Potential. Probiotics Antimicrob. Proteins 2025. Epub ahead of print. [Google Scholar] [CrossRef]
- Christina, B.; Poongkuzhali, S.; Muninathan, N.; Bhaskaran, K.; Suresh, A. The mechanisms and therapeutic potential of the microbiome-immune interface in cancer. Discov. Biotechnol. 2025, 2, 25. [Google Scholar] [CrossRef]
- Jang, S.E.; Jeong, J.J.; Choi, S.Y.; Kim, H.; Han, M.J.; Kim, D.H. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice. Nutrients 2017, 9, 6–531. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.S.; Gopal, P.K.; Gill, H.S. Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int. J. Food Microbiol. 2001, 63, 81–90. [Google Scholar] [CrossRef]
- Pan, M.; O’Flaherty, S.; Hibberd, A.; Gerdes, S.; Morovic, W.; Barrangou, R. The curated Lactobacillus acidophilus NCFM genome provides insights into strain specificity and microevolution. BMC Genom. 2025, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E.; Klaenhammer, T.R. Invited Review: The Scientific Basis of Lactobacillus acidophilus NCFM Functionality as a Probiotic. J. Dairy. Sci. 2001, 84, 319–331. [Google Scholar] [CrossRef]
- D’Ambrosio, S.; Dabous, A.; Sadiq, S.; Casillo, A.; Schiraldi, C.; Cassese, E.; Bedini, E.; Corsaro, M.M.; Cimini, D. Bifidobacterium animalis subsp. lactis HN019 live probiotics and postbiotics: Production strategies and bioactivity evaluation for potential therapeutic properties. Front. Bioeng. Biotechnol. 2024, 12, 1379574. [Google Scholar] [CrossRef]
- Wei, B.; Peng, Z.; Xiao, M.; Huang, T.; Yang, S.; Liu, K.; Wu, M.; Zheng, W.; Xie, M.; Xiong, T. Modulation of the Microbiome–Fat–Liver Axis by Lactic Acid Bacteria: A Potential Alleviated Role in High-Fat-Diet-Induced Obese Mice. J. Agric. Food Chem. 2023, 71, 10361–10374. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, P.; Xiong, S.; Wei, B.; Du, T.; Huang, T.; Yu, Q.; Xie, M.; Xiong, T. Lacticaseibacillus rhamnosus NCUH061012 alleviates hyperuricemia via modulating gut microbiota and intestinal metabolites in mice. Food Biosci. 2024, 58, 103699. [Google Scholar] [CrossRef]
- Tang, M.L.K.; Ponsonby, A.-L.; Orsini, F.; Tey, D.; Robinson, M.; Su, E.L.; Licciardi, P.; Burks, W.; Donath, S. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J. Allergy Clin. Immunol. 2015, 135, 737–744.e738. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Ye, L.; Lin, X.; Huang, S.; Yue, W.; Wu, X. Aggravation of food allergy symptoms by treatment with acrylamide in a mouse model. Food Chem. Toxicol. 2023, 176, 113808. [Google Scholar] [CrossRef]
- Feng, X.; Chen, J.; Yang, Z.; Madjirebaye, P.; Xu, Z.; Yan, L.; Fan, Y.; Shu, X.; Wu, X. Exploring the Role of Acrylamide in Food Allergy via Dendritic Cell-Dependent Th2 Immune Responses. Food Front. 2025, 1–14. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, X.; Madjirebaye, P.; Fan, Y.; Yan, L.; Xu, Z.; Wu, X. Dietary Sodium Nitrite Promotes Food Allergy through Dendritic Cell-Mediated Immune Disruption. J. Agric. Food Chem. 2025, 73, 25017–25027. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Xu, Z.; Madjirebaye, P.; Xiang, Z.; Tang, Z.; Deng, X.; Fan, Y.; Feng, X.; Yang, Z.; Wu, X. Dietary Sucralose Exacerbates Ovalbumin-Induced Food Allergy via Dendritic Cells Modulation: In Vitro and In Vivo Studies. J. Agric. Food Chem. 2025, 73, 23644–23655. [Google Scholar] [CrossRef]
- Madjirebaye, P.; Peng, F.; Mueed, A.; Huang, T.; Mahamat, B.; Pahane, M.M.; Xi, Q.; Chen, X.; Moussa, K.; Kadebe, Z.T.; et al. Exploring Impact of Probiotic-Fermented Soymilk on Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Modulating Inflammation and Gut Microbiota Profile. Mol. Nutr. Food Res. 2024, 68, e2300586. [Google Scholar] [CrossRef]
- Fan, Y.; Li, L.; Madjirebaye, P.; Yang, Z.; Shu, X.; Li, X.; Wu, X. Probiotics with ABCG2 expression ability and gut microbiota homeostasis exhibit anti-hyperuricemia potential by promoting uric acid excretion. J. Funct. Foods 2025, 128, 106814. [Google Scholar] [CrossRef]
- Madjirebaye, P.; Peng, Z.; Mueed, A.; Huang, T.; Peng, F.; Allasra, Y.; Benar, M.E.; Hu, Z.; Xie, M.; Xiong, T. Promising probiotic-fermented soymilk for alleviating acute diarrhea: Insights into the microbiome and metabolomics. Food Funct. 2024, 15, 4462–4474. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, S.; Du, T.; Xu, Y.; Madjirebaye, P.; Huang, G.; Guan, Q.; Xiong, T. Effect of microbiota succession on the dynamics of characteristic flavors and physicochemical properties during the soy sauce fermentation. Food Biosci. 2023, 54, 102883. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Liu, J.; Sun, L.-Y.; Ong, H.H.; Ye, J.; Xu, Y.; Wang, D.-Y. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024, 79, 1146–1165. [Google Scholar] [CrossRef]
- Chung, H.; Pamp, S.J.; Hill, J.A.; Surana, N.K.; Edelman, S.M.; Troy, E.B.; Reading, N.C.; Villablanca, E.J.; Wang, S.; Mora, J.R.; et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012, 149, 1578–1593. [Google Scholar] [CrossRef]
- Lim, S.-M.; Kim, D.-H. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota. Nutr. Res. 2017, 41, 86–96. [Google Scholar] [CrossRef]
- Schwarzer, M.; Makki, K.; Storelli, G.; Machuca-Gayet, I.; Srutkova, D.; Hermanova, P.; Martino, M.E.; Balmand, S.; Hudcovic, T.; Heddi, A.; et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 2016, 351, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, Y.; Li, J.; Wang, H.; Zhang, Y.; Suo, H. Lactobacillus rhamnosus 2016SWU.05.0601 regulates immune balance in ovalbumin-sensitized mice by modulating expression of the immune-related transcription factors and gut microbiota. Sci. Food Agric. 2020, 100, 4930–4939. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Qian, L.; Fang, Z.; Wang, H.; Zhu, J.; Lee, Y.K.; Zhao, J.; Zhang, H.; Chen, W. Probiotic strains alleviated OVA-induced food allergy in mice by regulating the gut microbiota and improving the level of indoleacrylic acid in fecal samples. Food Funct. 2022, 13, 3704–3719. [Google Scholar] [CrossRef] [PubMed]
- Vaali, K.; Puumalainen, T.; Wolff, H.; Alenius, H.; Palosuo, T. Mucosal mast cell protease-1 (MMCP-1) as a marker of intestinal immunopathology in food allergy model. J. Allergy Clin. Immunol. 2005, 115, S240. [Google Scholar] [CrossRef]
- Mine, Y.; Yang, M. Recent advances in the understanding of egg allergens: Basic, industrial, and clinical perspectives. J. Agric. Food Chem. 2008, 56, 4874–4900. [Google Scholar] [CrossRef]
- Bu, L.; Li, Y.; Wang, C.; Jiang, Y.; Suo, H. Preventive effect of Lacticaseibacillus rhamnosus 2016SWU.05.0601 and its postbiotic elements on dextran sodium sulfate-induced colitis in mice. Front. Microbiol. 2024, 15, 1342705. [Google Scholar] [CrossRef]
- Peng, H.; Ning, H.; Wang, Q.; Lu, W.; Chang, Y.; Wang, T.T.; Lai, J.; Kolattukudy, P.E.; Hou, R.; Hoft, D.F.; et al. Monocyte chemotactic protein-induced protein 1 controls allergic airway inflammation by suppressing IL-5-producing T(H)2 cells through the Notch/Gata3 pathway. J. Allergy Clin. Immunol. 2018, 142, 582–594.e510. [Google Scholar] [CrossRef]
- Katayama, S.; Mine, Y. Quillaja saponin can modulate ovalbumin-induced IgE allergic responses through regulation of Th1/Th2 balance in a murine model. J. Agric. Food Chem. 2006, 54, 3271–3276. [Google Scholar] [CrossRef]
- Palomares, O.; Yaman, G.; Azkur, A.K.; Akkoc, T.; Akdis, M.; Akdis, C.A. Role of Treg in immune regulation of allergic diseases. Eur. J. Immunol. 2010, 40, 1232–1240. [Google Scholar] [CrossRef]
- Yang, G.; Geng, X.R.; Song, J.P.; Wu, Y.; Yan, H.; Zhan, Z.; Yang, L.; He, W.; Liu, Z.Q.; Qiu, S.; et al. Insulin-like growth factor 2 enhances regulatory T-cell functions and suppresses food allergy in an experimental model. J. Allergy Clin. Immunol. 2014, 133, 1702–1708.e1705. [Google Scholar] [CrossRef]
- Lin, K.H.; Lin, K.C.; Lu, W.J.; Thomas, P.A.; Jayakumar, T.; Sheu, J.R. Astaxanthin, a Carotenoid, Stimulates Immune Responses by Enhancing IFN-γ and IL-2 Secretion in Primary Cultured Lymphocytes in Vitro and ex Vivo. Int. J. Mol. Sci. 2015, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Li, Z.-R.; Green, R.S.; Holzmanr, I.R.; Lin, J. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Ishii, Y.; Rini, D.M.; Yamamoto, Y.; Suzuki, T. Microbial metabolite n-butyrate upregulates intestinal claudin-23 expression through SP1 and AMPK pathways in mouse colon and human intestinal Caco-2 cells. Life Sci. 2023, 329, 121952. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Chen, C.; Liu, C.; Zhang, K.; Xue, W. The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. Food Sci. Hum. Wellness 2023, 12, 702–710. [Google Scholar] [CrossRef]
- Shao, X.; Sun, C.; Tang, X.; Zhang, X.; Han, D.; Liang, S.; Qu, R.; Hui, X.; Shan, Y.; Hu, L.; et al. Anti-Inflammatory and Intestinal Microbiota Modulation Properties of Jinxiang Garlic (Allium sativum L.) Polysaccharides toward Dextran Sodium Sulfate-Induced Colitis. J. Agric. Food Chem. 2020, 68, 12295–12309. [Google Scholar] [CrossRef]
- Lagkouvardos, I.; Lesker, T.R.; Hitch, T.C.A.; Gálvez, E.J.C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J.F.; Abt, B.; Stecher, B.; et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7, 28. [Google Scholar] [CrossRef]
- Ormerod, K.L.; Wood, D.L.; Lachner, N.; Gellatly, S.L.; Daly, J.N.; Parsons, J.D.; Dal’Molin, C.G.; Palfreyman, R.W.; Nielsen, L.K.; Cooper, M.A.; et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4, 36. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Zhang, J.; Li, Q.; Zhang, P.; Wu, C.; Jia, Y.; Su, H.; Sun, X. Fecal microbiota transplantation alleviates food allergy in neonatal mice via the PD-1/PD-L1 pathway and change of the microbiota composition. World Allergy Organ. J. 2024, 17, 100969. [Google Scholar] [CrossRef]
- Kang, L.; Li, P.; Wang, D.; Wang, T.; Hao, D.; Qu, X. Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Sci. Rep. 2021, 11, 4628. [Google Scholar] [CrossRef]
- Lo, E.K.K.; Wang, X.; Lee, P.-K.; Wong, H.-C.; Lee, J.C.-Y.; Gómez-Gallego, C.; Zhao, D.; El-Nezami, H.; Li, J. Mechanistic insights into zearalenone-accelerated colorectal cancer in mice using integsrative multi-omics approaches. Comput. Struct. Biotechnol. J. 2023, 21, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.; Huh, J.R.; Devlin, A.S. The role of gut microbial metabolites in the T cell lifecycle. Nat. Immunol. 2025, 26, 1246–1257. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, Y.; An, S.; Ge, L.; You, J.; Ren, W. Gut microbiota-host post-translational modification axis in immunometabolic diseases. Trends Immunol. 2025, 46, 586–601. [Google Scholar] [CrossRef]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly, Y.M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mackay, C.R. High metabolite concentrations in portal venous blood as a possible mechanism for microbiota effects on the immune system and Western diseases. J. Allergy Clin. Immunol. 2024, 153, 980–982. [Google Scholar] [CrossRef]
- Saadh, M.J.; Allela, O.Q.B.; Ballal, S.; Mahdi, M.S.; Chahar, M.; Verma, R.; Al-Hussein, R.K.A.; Adil, M.; Jawad, M.J.; Al-Nuaimi, A.M.A. The effects of microbiota-derived short-chain fatty acids on T lymphocytes: From autoimmune diseases to cancer. Semin. Oncol. 2025, 52, 152398. [Google Scholar] [CrossRef]
- Włodarczyk, J.; Dziki, Ł.; Harmon, J.; Fichna, J. The role of short-chain fatty acids in the prehabilitation before colorectal surgery. Curr. Probl. Surg. 2025, 69, 101810. [Google Scholar] [CrossRef]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Y.; Fang, J.Y. Influence of the microbiota on epigenetics in colorectal cancer. Natl. Sci. Rev. 2019, 6, 1138–1148. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.P.; Zhang, Y.N.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-chain fatty acids in diseases. Cell Commun. Signal. CCS 2023, 21, 212. [Google Scholar] [CrossRef]
- Menon, R.; Ramanan, V.; Korolev, K.S. Interactions between species introduce spurious associations in microbiome studies. PLoS Comput. Biol. 2018, 14, e1005939. [Google Scholar] [CrossRef]
- Hua, X.; Goedert, J.J.; Pu, A.; Yu, G.; Shi, J. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine 2016, 3, 172–179. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Li, L.; Yan, L.; Yan, Z.; Xu, Z.; Fan, Y.; Madjirebaye, P.; Wu, X. Probiotics Attenuate Food Allergy via Short-Chain Fatty Acids-Mediated Immune Modulation and Gut Barrier Restoration. Foods 2025, 14, 3953. https://doi.org/10.3390/foods14223953
Feng X, Li L, Yan L, Yan Z, Xu Z, Fan Y, Madjirebaye P, Wu X. Probiotics Attenuate Food Allergy via Short-Chain Fatty Acids-Mediated Immune Modulation and Gut Barrier Restoration. Foods. 2025; 14(22):3953. https://doi.org/10.3390/foods14223953
Chicago/Turabian StyleFeng, Xue, Liuying Li, Li Yan, Zhencong Yan, Zhoujin Xu, Yuting Fan, Philippe Madjirebaye, and Xuli Wu. 2025. "Probiotics Attenuate Food Allergy via Short-Chain Fatty Acids-Mediated Immune Modulation and Gut Barrier Restoration" Foods 14, no. 22: 3953. https://doi.org/10.3390/foods14223953
APA StyleFeng, X., Li, L., Yan, L., Yan, Z., Xu, Z., Fan, Y., Madjirebaye, P., & Wu, X. (2025). Probiotics Attenuate Food Allergy via Short-Chain Fatty Acids-Mediated Immune Modulation and Gut Barrier Restoration. Foods, 14(22), 3953. https://doi.org/10.3390/foods14223953

