Effects of Supplemental Antioxidative Substances on Micronutrient Retention and Antioxidative Capacity in Rapeseed Oil During Low-Temperature Ethanol Steam Deodorization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Deodorized Rapeseed Oil Samples
2.3. Preparation of Model Oil Samples
2.4. Determination of Tocopherols by Ultra Performance Liquid Chromatography (UPLC)
2.5. Determination of Total Phenols by Spectrophotometry
2.6. Determination of Total Carotenoids by Spectrophotometry
2.7. Determination of Phytosterols and Squalene by Gas Chromatography
2.8. Determination of 2,2-Diphenyl-1-Picrylhydrazyl Scavenging Capacity
2.9. Calculation of the Synergistic Effect (SE) of Antioxidative Substance Mixtures
2.10. Statistical Analysis
3. Results
3.1. Effect of Antioxidative Substances on the Retention of Micronutrients in Rapeseed Oils
3.1.1. Tocopherols
3.1.2. Phenols
3.1.3. Carotenoids
3.1.4. Phytosterols
3.1.5. Squalene
3.2. Antioxidative Capacity of Rapeseed Oil Supplemented with Different Antioxidative Substances After ESD
3.3. Synergistic and/or Antagonistic Effects Between Antioxidative Substances in Model Oils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| L-ESD | low-temperature ethanol steam deodorization |
| H-WSD | high-temperature water steam deodorization |
| PRO | pre-deodorized rapeseed oil |
| α-TP | α-tocopherol |
| PG | propyl gallate |
| PS | phytosterols |
| SQ | squalene |
| CE | β-carotene |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| ESC | experimental scavenging capacity |
| TSC | theoretical scavenging capacity |
| SE | synergistic effect |
References
- Cheng, C.; Yu, K.; Yu, X.; Geng, F.; Huang, F.; Wang, L.; Huang, Q.; Quan, S.; Deng, Q. Optimized endogenous lipid concomitants in flaxseed oil by different oil extraction technologies: Their positive roles in emulsions. LWT-Food Sci. Technol. 2022, 155, 113000. [Google Scholar] [CrossRef]
- Wu, G.; Chang, C.; Hong, C.; Zhang, H.; Huang, J.; Jin, Q.; Wang, X. Phenolic compounds as stabilizers of oils and antioxidative mechanisms under frying conditions: A comprehensive review. Trends Food Sci. Technol. 2019, 92, 33–45. [Google Scholar] [CrossRef]
- Latib, F.; Zafendi, M.A.I.; Mohd Lazaldin, M.A. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. Food Chem. Mol. Sci. 2024, 9, 100224. [Google Scholar] [CrossRef]
- Jie, F.; Yang, X.; Wu, L.; Wang, M.; Lu, B. Linking phytosterols and oxyphytosterols from food to brain health: Origins, effects, and underlying mechanisms. Crit. Rev. Food Sci. Nutr. 2022, 62, 3613–3630. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, A.; Pospisil, P. Formation of α-tocopherol hydroperoxide and α-tocopheroxyl radical: Relevance for photooxidative stress in Arabidopsis. Sci. Rep. 2020, 10, 19646. [Google Scholar] [CrossRef]
- Ma, G.; Wang, Y.; Li, Y.; Zhang, L.; Gao, Y.; Li, Q.; Yu, X. Antioxidant properties of lipid concomitants in edible oils: A review. Food Chem. 2023, 422, 136219. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, 13394. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, Z.; Liu, Y. Lipophilic antioxidants in edible oils: Mechanisms, applications and interactions. Food Res. Int. 2025, 200, 115423. [Google Scholar] [CrossRef]
- Yao, Y.; Zheng, Y.; Dai, H.; Jia, Y.; Li, C. Kinetics of Squalene Quenching Singlet Oxygen and the Thermal Degradation Products Identification. J. Agric. Food Chem. 2024, 72, 15755–15764. [Google Scholar] [CrossRef]
- Zhang, H.; Han, M.; Nie, X.; Fu, X.; Hong, K.; He, D. Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization. Foods 2024, 13, 1430. [Google Scholar] [CrossRef]
- Shi, L.; Cui, Z.; Liu, W. Effect of Chemical Refining on the Reduction of β-Carboline Content in Sesame Seed Oil. Molecules 2023, 28, 4503. [Google Scholar] [CrossRef]
- Mariia Andreevna, M.; Alexey Dmitrievich, M.; Vladimir Vladimirovich, B. Change in Sunflower Oil Quality and Safety Depending on Number of Deodorisation Cycles Used. Foods 2024, 13, 2555. [Google Scholar] [CrossRef]
- Yang, C.; Wang, C.; Wang, M.; Qin, X.; Hao, G.; Kang, M.; Hu, X.; Cheng, Y.; Shen, J. A novel deodorization method of edible oil by using ethanol steam at low temperature. J. Food Sci. 2021, 86, 394–403. [Google Scholar] [CrossRef]
- Peng, L.; Yang, C.; Wang, C.; Xie, Q.; Gao, Y.; Liu, S.; Fang, G.; Zhou, Y. Effects of deodorization on the content of polycyclic aromatic hydrocarbons (PAHs), 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in rapeseed oil using ethanol steam distillation at low temperature. Food Chem. 2023, 413, 135616. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, Y.; Liu, F.; Niu, A.; Liu, S.; Li, W.; Wang, C. Mechanisms of deodorizing rapeseed oil with ethanol steam at a low temperature: A focus on free fatty acids, tocopherols, and phytosterols. Food Chem. 2025, 481, 143957. [Google Scholar] [CrossRef]
- Kitts, D.D.; Singh, A.; Fathordoobady, F.; Doi, B.; Singh, A.P. Plant Extracts Inhibit the Formation of Hydroperoxides and Help Maintain Vitamin E Levels and Omega-3 Fatty Acids During High Temperature Processing and Storage of Hempseed and Soybean Oils. J. Food Sci. 2019, 84, 3147–3155. [Google Scholar] [CrossRef]
- Guo, M.; Yang, L.; Li, X.; Tang, H.; Li, X.; Xue, Y.; Duan, Z. Antioxidant Efficacy of Rosemary Extract in Improving the Oxidative Stability of Rapeseed Oil during Storage. Foods 2023, 12, 3583. [Google Scholar] [CrossRef]
- Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Ozogul, F. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2985–3001. [Google Scholar] [CrossRef]
- Kmiecik, D.; Fedko, M.; Siger, A.; Kowalczewski, P.L. Nutritional Quality and Oxidative Stability during Thermal Processing of Cold-Pressed Oil Blends with 5:1 Ratio of ω6/ω3 Fatty Acids. Foods 2022, 11, 1081. [Google Scholar] [CrossRef]
- Mikolajczak, N.; Sobiechowska, D.A.; Tanska, M. Edible flowers as a new source of natural antioxidants for oxidative protection of cold-pressed oils rich in omega-3 fatty acids. Food Res. Int. 2020, 134, 109216. [Google Scholar] [CrossRef]
- Chen, J.; Xia, P. Health effects of synthetic additives and the substitution potential of plant-based additives. Food Res. Int. 2024, 197, 115177. [Google Scholar] [CrossRef]
- Kosuru, R.Y.; Roy, A.; Bera, S. Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr. Microbiol. 2021, 78, 3843–3852. [Google Scholar] [CrossRef]
- Liu, R.R.; Xu, Y.; Chang, M.; Tang, L.; Lu, M.Y.; Liu, R.J.; Jin, Q.Z.; Wang, X.G. Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chem. 2021, 343, 128431. [Google Scholar] [CrossRef]
- Tang, L.; Liu, R.; Xu, Y.; Zhang, X.; Liu, R.; Chang, M.; Wang, X. Synergistic and antagonistic interactions of α-tocopherol, γ-oryzanol and phytosterol in refined coconut oil. LWT-Food Sci. Technol. 2022, 154, 112789. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, W.; Wu, S.; Wu, J.; Zhang, Y.; Liao, L. Effect of different pretreatment techniques on quality characteristics, chemical composition, antioxidant capacity and flavor of cold-pressed rapeseed oil. LWT-Food Sci. Technol. 2024, 201, 116157. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, T.; Tse, T.J.; Reaney, M.J.T.; Zhao, S.; Cao, Z.; Wang, S.; Hu, Z.; Li, B.; Hu, C.; et al. Physicochemical properties, antioxidant stability and micronutrients preservation analyses of rice bran oil by joint acid and multi-enzymes degumming. J. Food Compos. Anal. 2025, 143, 107565. [Google Scholar] [CrossRef]
- Rhazi, L.; Depeint, F.; Ayerdi Gotor, A. Loss in the Intrinsic Quality and the Antioxidant Activity of Sunflower (Helianthus annuus L.) Oil during an Industrial Refining Process. Molecules 2022, 27, 916. [Google Scholar] [CrossRef]
- Yan, B.; Meng, L.; Huang, J.; Liu, R.; Zhang, N.; Jiao, X.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Changes in oxidative stability of rapeseed oils under microwave irradiation: The crucial role of polar bioactive components. LWT-Food Sci. Technol. 2023, 185, 115100. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Wang, X.; Wang, Q.; El-Maksoud, A.A.A.; Wang, M.; Chen, F.; Cheng, K.-W. Inhibition effects of typical antioxidants on the formation of glycidyl esters in rice oil and chemical model during high temperature exposure. LWT-Food Sci. Technol. 2022, 166, 113794. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Ye, Z.; Li, Y.D.; Li, J.W.; Liu, Y.F. Comparative Study of the Oxidation Stability of High Oleic Oils and Palm Oil during Thermal Treatment. J. Oleo Sci. 2020, 69, 573–584. [Google Scholar] [CrossRef]
- Huang, S.W.; Frankel, E.N.; German, J.B. Effects of Individual Tocopherols and Tocopherol Mixtures on the Oxidative Stability of Corn-Oil Triglycerides. J. Agric. Food Chem. 1995, 43, 2345–2350. [Google Scholar] [CrossRef]
- Shi, J.; Gu, Q.; Yuan, D.; Yi, X.; Wang, Z. Degradation behavior of tocopherol content during Rancimat accelerated oxidation of olive oil. China Oils Fats 2016, 41, 41–44. [Google Scholar]
- Symoniuk, E.; Rosa, A.; Siger, A.; Grygier, A.; Kruszewski, B. The effect of ultrasound-assisted maceration of selected cold-pressed oils with lyophilized mullein flowers (Verbascum thapsus L.) on their oxidative stability and chemical composition. Food Chem. 2025, 472, 142843. [Google Scholar] [CrossRef]
- Klisovic, D.; Novoselic, A.; Lukic, M.; Kraljic, K.; Bubola, K.B. Thermal-Induced Alterations in Phenolic and Volatile Profiles of Monovarietal Extra Virgin Olive Oils. Foods 2024, 13, 3525. [Google Scholar] [CrossRef]
- Xiang, X.; Wen, L.; Wang, Z.; Yang, G.; Mao, J.; An, X.; Kan, J. A comprehensive study on physicochemical properties, bioactive compounds, and emulsified lipid digestion characteristics of Diels fruits oil. Food Chem. 2023, 404, 134634. [Google Scholar] [CrossRef]
- Chen, T.; Liao, X.; Gao, L.e. Hydrogen bonding and Hirshfeld surface analysis of gallic acid and its monohydrate based on terahertz spectroscopy. Chem. Phys. 2024, 578, 112159. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, J.; Wu, L.; Zhang, Y.; Li, J. Simultaneous determination of squalene, tocopherols and phytosterols in edible vegetable oil by SPE combined with saponification and GC-MS. LWT-Food Sci. Technol. 2022, 169, 114026. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, J.; Chen, X.-W.; Sun, S.-D.; Wang, Y.-H.; Wei, A.C. Towards the development of novel bicomponent phytosterol-based oleogels with natural phenolics. Food Chem. 2023, 429, 136895. [Google Scholar] [CrossRef]
- Xi, Y.; Chen, L.; Zeng, X.; Jiang, T.; Yang, S.; Li, X.; Ma, Y.; Cao, D.; Che, H.; Jiang, W. Cholesterol plus dietary tannins play a key role in formation of urinary stone. Food Biosci. 2024, 59, 104174. [Google Scholar] [CrossRef]
- Hwang, H.S.; Winkler Moser, J.K.; Vermillion, K.; Liu, S.X. Enhancing Antioxidant Activity of Sesamol at Frying Temperature by Addition of Additives through Reducing Volatility. J. Food Sci. 2014, 79, C2164–C2173. [Google Scholar] [CrossRef]
- Barouh, N.; Bourlieu-Lacanal, C.; Figueroa-Espinoza, M.C.; Durand, E.; Villeneuve, P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr. Rev. Food. Sci. Food Saf. 2022, 21, 642–688. [Google Scholar] [CrossRef]
- Ali, M.A.; Chew, S.C. Efficacy of exogenous natural antioxidants in stability of polyunsaturated oils under frying temperature. J. Food Meas. Charact. 2023, 17, 408–429. [Google Scholar] [CrossRef]
- Ortiz-Escarza, J.M.; Medina, M.E.; Trigos, A. On the peroxyl radical scavenging ability of β-sitosterol in lipid media: A theoretical study. J. Phys. Org. Chem. 2021, 34, e4123. [Google Scholar] [CrossRef]
- Monika, F.; Aleksander, S.; Aleksandra, S.-C.; Dobrochna, R.-K.; Alicja, T.; Katarzyna, W.; Dominik, K. The Effect of High-Temperature Heating on Amounts of Bioactive Compounds and Antiradical Properties of Refined Rapeseed Oil Blended with Rapeseed, Coriander and Apricot Cold-Pressed Oils. Foods 2024, 13, 2336. [Google Scholar] [CrossRef]
- Secmeler, O.; Ustundag, O.G. Behavior of lipophilic bioactives during olive oil processing. Eur. J. Lipid Sci. Technol. 2017, 119, 1600404. [Google Scholar] [CrossRef]
- GB 2760-2024; National Food Safety Standard Standard for the Use of Food Additives. National Health and Family Planning Commission: Beijing, China, 2024.
- Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environ. Res. 2021, 201, 111531. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Liu, L.; Li, Z.; Yang, Q.; Zhu, W.; Zhang, W.; Wang, J. Highly specific and sensitive determination of propyl gallate in food by a novel fluorescence sensor. Food Chem. 2018, 256, 45–52. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Hu, H.; Chen, Y.; Wang, R.; Li, D.; Liu, S. Design and straightforward synthesis of novel galloyl phytosterols with excellent antioxidant activity. Food Chem. 2014, 163, 171–177. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Zhou, X.; Zhang, M.; Chen, Y.; Nie, S.; Xie, M. Combined application of gallate ester and α-tocopherol in oil-in-water emulsion: Their distribution and antioxidant efficiency. J. Dispers. Sci. Technol. 2020, 41, 909–917. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Zhang, H.; Luo, S.; Wang, X.; Wang, L.; Yu, D. Effects of α-Tocopherol, β-Carotene and Epigallocatechin Gallate on the Oxidative Stability of Sunflower Oil. J. Oleo Sci. 2023, 72, 521–531. [Google Scholar] [CrossRef]
- Guo, Y.; Baschieri, A.; Amorati, R.; Valgimigli, L. Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chem. 2021, 345, 128468. [Google Scholar] [CrossRef] [PubMed]





| Primary Substances | Paired Substances | α-TP | PG | PS | SQ | CE |
|---|---|---|---|---|---|---|
| α-TP | PG | 77.96 | 2.00 | - | - | - |
| α-TP | PS | 77.96 | - | 414.72 | - | - |
| α-TP | SQ | 77.96 | - | - | 1.83 | - |
| α-TP | CE | 77.96 | - | - | - | 2.45 |
| PG | α-TP | 26.91 | 4.34 | - | - | - |
| PG | PS | - | 4.34 | 422.57 | - | - |
| PG | SQ | - | 4.34 | - | 1.91 | - |
| PG | CE | - | 4.34 | - | - | 2.41 |
| PS | α-TP | 26.46 | - | 455.54 | - | - |
| PS | PG | - | 2.59 | 455.54 | - | - |
| PS | SQ | - | - | 455.54 | 1.74 | - |
| PS | CE | - | - | 455.54 | - | 2.14 |
| SQ | α-TP | 26.48 | - | - | 40.10 | - |
| SQ | PG | - | 2.42 | - | 40.10 | - |
| SQ | PS | - | - | 421.56 | 40.10 | - |
| SQ | CE | - | - | - | 40.10 | 2.37 |
| Components | PRO (CK) | α-T-PRO | PS-PRO | SQ-PRO | PG-PRO |
|---|---|---|---|---|---|
| α-Tocopherol (mg/kg) | 277.15 ± 5.58 b | 815.82 ± 17.19 a | 278.63 ± 9.07 b | 278.91 ± 7.95 b | 277.02 ± 5.10 b |
| γ-Tocopherol (mg/kg) | 349.32 ± 6.19 b | 343.61 ± 7.86 a | 346.94 ± 5.49 b | 345.63 ± 5.80 b | 347.07 ± 8.05 b |
| δ-Tocopherol (mg/kg) | 15.39 ± 0.29 b | 15.28 ± 0.25 a | 15.35 ± 0.14 b | 15.44 ± 0.32 b | 15.48 ± 0.42 b |
| Total tocopherols (mg/kg) | 642.22 ± 5.67 b | 1174.71 ± 23.56 a | 641.27 ± 9.84 b | 640.34 ± 7.14 b | 639.92 ± 7.55 b |
| Total phenols (mg GAE/kg) | 86.27 ± 0.68 b | 86.08 ± 1.98 b | 86.61 ± 1.82 b | 85.41 ± 2.93 b | 119.66 ± 6.20 a |
| Total carotenoids (mg β-CE/kg) | 48.06 ± 0.15 a | 48.22 ± 0.41 a | 47.63 ± 0.60 a | 48.25 ± 0.34 a | 47.96 ± 0.92 a |
| Brassicasterol (mg/kg) | 947.62 ± 7.76 a | 937.87 ± 36.82 a | 965.42 ± 35.44 a | 952.24 ± 3.10 a | 947.62 ± 28.14 a |
| Campesterol (mg/kg) | 2697.12 ± 17.16 a | 2682.76 ± 34.13 a | 2743.54 ± 78.80 a | 2706.55 ± 43.23 a | 2703.05 ± 43.02 a |
| β-sitosterol (mg/kg) | 4300.65 ± 46.42 b | 4291.63 ± 12.15 b | 4814.89 ± 154.35 a | 4332.77 ± 96.39 b | 4304.25 ± 17.53 b |
| Total phytosterols (mg/kg) | 7945.41 ± 58.51 b | 7912.26 ± 17.08 b | 8382.33 ± 33.00 a | 7991.56 ± 75.53 b | 7954.92 ± 86.48 b |
| Squalene (mg/kg) | 32.67 ± 2.88 b | 32.56 ± 1.92 b | 32.51 ± 1.36 b | 529.70 ± 53.95 a | 32.55 ± 0.98 b |
| Temperature | Tocopherols | Total Tocopherols | Total Phenols | Total Carotenoids | |||
|---|---|---|---|---|---|---|---|
| (°C) | α-Tocopherol | γ-Tocopherol | δ-Tocopherol | ||||
| 140 | CK | 96.18 | 96.03 | 91.36 | 95.93 | 66.63 | 87.16 |
| α-TP | 97.06 | 91.99 | 92.47 | 95.48 | 68.26 | 93.66 | |
| PG | 98.32 | 96.76 | 94.71 | 98.17 | 69.69 | 91.01 | |
| PS | 98.06 | 95.59 | 92.97 | 96.93 | 73.26 | 90.86 | |
| SQ | 97.59 | 97.13 | 93.05 | 96.92 | 71.43 | 91.71 | |
| 160 | CK | 95.07 | 93.32 | 88.11 | 93.87 | 48.97 | 73.26 |
| α-TP | 96.23 | 90.31 | 89.27 | 94.28 | 46.99 | 82.95 | |
| PG | 97.08 | 95.16 | 90.76 | 96.01 | 53.63 | 80.81 | |
| PS | 96.34 | 94.37 | 90.76 | 95.60 | 63.20 | 78.05 | |
| SQ | 96.16 | 95.30 | 89.75 | 95.77 | 54.13 | 79.44 | |
| 180 | CK | 94.30 | 91.18 | 87.26 | 92.64 | 24.81 | 43.72 |
| α-TP | 95.56 | 89.94 | 87.43 | 93.99 | 23.20 | 50.87 | |
| PG | 97.14 | 93.13 | 88.82 | 95.21 | 36.29 | 50.30 | |
| PS | 95.76 | 92.14 | 88.87 | 93.75 | 29.94 | 45.02 | |
| SQ | 95.37 | 93.99 | 88.51 | 94.24 | 28.39 | 49.10 | |
| 200 | CK | 92.51 | 89.74 | 86.87 | 90.91 | 17.49 | 14.01 |
| α-TP | 93.98 | 88.71 | 88.15 | 92.78 | 16.29 | 17.62 | |
| PG | 95.29 | 91.74 | 88.88 | 93.16 | 24.56 | 15.29 | |
| PS | 95.27 | 90.29 | 88.22 | 91.94 | 23.66 | 14.75 | |
| SQ | 93.24 | 90.43 | 86.38 | 91.67 | 22.31 | 15.34 | |
| 220 | CK | 90.50 | 88.78 | 86.22 | 89.07 | 13.21 | 8.52 |
| α-TP | 92.33 | 87.72 | 86.32 | 90.74 | 10.79 | 9.02 | |
| PG | 92.96 | 90.86 | 86.55 | 91.99 | 16.82 | 8.89 | |
| PS | 92.99 | 90.01 | 84.44 | 91.50 | 18.98 | 8.81 | |
| SQ | 91.65 | 88.82 | 86.12 | 89.84 | 17.38 | 8.76 | |
| Temperature | Phytosterols | Total Phytosterols | Squalene | |||
|---|---|---|---|---|---|---|
| (°C) | Brassicasterol | Campesterol | β-Sitosterol | |||
| 140 | CK | 99.04 | 98.84 | 99.01 | 98.96 | 74.62 |
| α-TP | 98.41 | 98.79 | 98.16 | 98.52 | 80.90 | |
| PG | 99.31 | 99.02 | 99.46 | 99.29 | 78.65 | |
| PS | 97.20 | 99.63 | 96.31 | 99.12 | 75.35 | |
| SQ | 99.05 | 99.34 | 98.08 | 98.63 | 91.09 | |
| 160 | CK | 97.89 | 98.31 | 98.64 | 98.44 | 69.11 |
| α-TP | 97.64 | 97.38 | 97.21 | 97.44 | 69.59 | |
| PG | 98.98 | 97.84 | 98.46 | 98.31 | 73.12 | |
| PS | 96.04 | 98.88 | 95.98 | 98.56 | 73.51 | |
| SQ | 97.57 | 97.71 | 97.26 | 97.45 | 88.52 | |
| 180 | CK | 97.26 | 97.56 | 97.09 | 97.27 | 55.66 |
| α-TP | 95.62 | 96.83 | 96.63 | 96.70 | 56.20 | |
| PG | 97.62 | 97.30 | 98.18 | 97.81 | 58.68 | |
| PS | 95.50 | 97.24 | 94.61 | 97.17 | 56.33 | |
| SQ | 96.64 | 97.33 | 97.30 | 97.23 | 75.70 | |
| 200 | CK | 94.68 | 96.80 | 95.47 | 95.83 | 48.32 |
| α-TP | 93.98 | 95.50 | 96.24 | 95.83 | 50.36 | |
| PG | 95.11 | 96.24 | 97.19 | 96.62 | 54.38 | |
| PS | 94.20 | 96.50 | 94.08 | 96.48 | 51.36 | |
| SQ | 95.70 | 96.40 | 97.31 | 96.81 | 77.38 | |
| 220 | CK | 92.32 | 94.23 | 94.85 | 94.34 | 43.73 |
| α-TP | 91.81 | 94.70 | 95.05 | 94.66 | 50.98 | |
| PG | 94.62 | 95.02 | 94.80 | 94.85 | 53.15 | |
| PS | 91.07 | 94.09 | 93.36 | 94.91 | 49.83 | |
| SQ | 94.49 | 94.23 | 93.93 | 94.10 | 69.49 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Wang, C.; Niu, A.; Wang, Y.; Ling, G.; Liu, S.; Yi, Y.; Xia, M. Effects of Supplemental Antioxidative Substances on Micronutrient Retention and Antioxidative Capacity in Rapeseed Oil During Low-Temperature Ethanol Steam Deodorization. Foods 2025, 14, 3907. https://doi.org/10.3390/foods14223907
Liu F, Wang C, Niu A, Wang Y, Ling G, Liu S, Yi Y, Xia M. Effects of Supplemental Antioxidative Substances on Micronutrient Retention and Antioxidative Capacity in Rapeseed Oil During Low-Temperature Ethanol Steam Deodorization. Foods. 2025; 14(22):3907. https://doi.org/10.3390/foods14223907
Chicago/Turabian StyleLiu, Fangrong, Chengming Wang, Aifeng Niu, Yu Wang, Guowei Ling, Shilin Liu, Yuhan Yi, and Mingshuang Xia. 2025. "Effects of Supplemental Antioxidative Substances on Micronutrient Retention and Antioxidative Capacity in Rapeseed Oil During Low-Temperature Ethanol Steam Deodorization" Foods 14, no. 22: 3907. https://doi.org/10.3390/foods14223907
APA StyleLiu, F., Wang, C., Niu, A., Wang, Y., Ling, G., Liu, S., Yi, Y., & Xia, M. (2025). Effects of Supplemental Antioxidative Substances on Micronutrient Retention and Antioxidative Capacity in Rapeseed Oil During Low-Temperature Ethanol Steam Deodorization. Foods, 14(22), 3907. https://doi.org/10.3390/foods14223907

