Rheological, Technological, and Nutritional Profile of Sustainable Crops: Bread Wheat Evolutionary Populations
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Physico-Chemical Characterization
2.3. Nutritional Characterization
2.4. Technological and Rheological Characterization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Characterization
3.2. Nutritional Characterization
3.3. Technological and Rheological Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2023. Available online: https://www.fao.org (accessed on 20 May 2025).
- Keneni, G.; Bekele, E.; Imtiaz, M.; Dagne, K. Genetic vulnerability of modern crop cultivars: Causes, mechanism and remedies. Int. J. Plant Res. 2012, 2, 69–79. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Biodiversity for Food and Agriculture. In FAO Commission on Genetic Resources for Food and Agriculture 12 Review Assessments; Be ’langer, J., Pilling, D., Eds.; FAO: Rome, Italy, 2019; p. 572. [Google Scholar]
- Ceccarelli, S.; Grando, S. Organic agriculture and evolutionary populations to merge mitigation and adaptation stategies to fight climate change. South Sustain. 2020, 1, e013. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Evolutionary Plant Breeding as a Response to the Complexity of Climate Change. Iscience 2020, 23, 101815. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S. ICARDA Evolutionary Populations. 2020. Available online: https://salvatorececcarelli.wordpress.com/2020/04/06/icarda-evolutionary-populations/ (accessed on 20 May 2025).
- Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32018R0848 (accessed on 19 November 2024).
- Batur, F.; Bocci, R.; Bartha, B. Marketing farmers’ varieties in Europe: Encouraging pathways with missing links for the recognition and support of farmer seed systems. Agronomy 2021, 11, 2159. [Google Scholar] [CrossRef]
- Petitti, M.; Bocci, R.; Bussi, B.; Ceccarelli, S.; Spillane, C.; McKeown, P. Evolutionary-participatory breeding generates populations adapted for organic agriculture in Italy. In Symposium on Breeding for Diversification; Bacanovic-Sisic, J., Dennenmoser, D., Finckh, M.R., Eds.; Kassel University Press: Witzenhausen, Germany; University of Kassel: Witzenhausen, Germany, 2018; pp. 39–41. [Google Scholar]
- Galassi, E.; Natale, C.; Nocente, F.; Taddei, F.; Visioli, G.; Ceccarelli, S.; Galaverna, G.; Gazza, L. Regenerative Agronomic Approaches: Technological, Biochemical and Rheological Characterization of Four Perennial Wheat Lines Grown in Italy. Agronomy 2025, 15, 939. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Bartkiene, E.; Florença, S.G.; Djekic’, I.; Bizjak, M.Č.; Tarcea, M.; Leal, M.; Ferreira, V.; Rumbak, I.; Orfanos, P.; et al. Environmental Issues as Drivers for Food Choice: Study from a Multinational Framework. Sustainability 2021, 13, 2869. [Google Scholar] [CrossRef]
- Method 520:2010; Cereals and Pulses-Determination of the Mass of 1000 Grains. International Organization for Standardization (ISO 2010): Geneva, Switzerland, 2010; p. 10.
- Method 7971-1:2009; Determination of Bulk Density, Called Mass per Hectolitre-Part 1: Reference Method. International Organization for Standardization (ISO 2009): Geneva, Switzerland, 2009; p. 8.
- American Association of Cereal Chemists. Approved Methods of Analysis, Method 08-01.01 Ash; AACC International: St. Paul, MN, USA, 2013. [Google Scholar]
- American Association of Cereal Chemists. Approved Methods of Analysis, Method 46-30 Crude Protein-Combustion Method; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, Method 996.11, 18th ed.; Cunniff, P., Ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, Method 991.42, 16th ed.; Cunniff, P., Ed.; AOAC: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Martini, D.; Taddei, F.; Nicoletti, I.; Ciccoritti, R.; Corradini, D.; D’Egidio, M.G. Effects of genotype and environment on phenolic acids content and total antioxidant capacity in durum wheat. Cereal Chem. 2014, 91, 310–317. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods of Analysis, Method 54-30.02 Alveograph Method for Soft and Hard Wheat Flour, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- American Association of Cereal Chemists. Approved Methods of Analysis, Method 56-70.01 Sodium Dodecyl Sulfate Sedimentation Test for Durum Wheat; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- American Association of Cereal Chemists. Approved Methods of Analysis, Method 38-12 Wet Gluten, Dry Gluten, Water-Binding Capacity, and Gluten Index; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- ISO 5530-1:2013; Part 1: Determination of Water Absorption and Rheological Properties Using a Farinograph. International Organization for Standardization (ISO 2013): Geneva, Switzerland, 2013.
- American Association of Cereal Chemists. Approved Methods of Analysis, Method 56-81B Determination of Falling Number, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Pogna, N.E.; Autran, J.C.; Mellini, F.; Lafiandra, D.; Feillet, P. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: Genetics and relationship to gluten strength. J. Cereal Sci. 1990, 11, 15–34. [Google Scholar] [CrossRef]
- VSN International. Genstat for Windows, 24th ed.; VSN International: Hemel Hempstead, UK, 2024. [Google Scholar]
- Wang, K.; Fu, B.X. Inter-Relationships between Test Weight, Thousand Kernel Weight, Kernel Size Distribution and Their Effects on Durum Wheat Milling, Semolina Composition and Pasta Processing Quality. Foods 2020, 9, 1308. [Google Scholar] [CrossRef]
- UNI 10709:1998; Durum Wheat Grains Qualitative Requirements, Classification and Test Methods. UNI—Ente Italiano di Normazione: Via Sannio, Italy, 1998.
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Núñez, V.; Del Moral, L.G. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Ficco, D.B.; Beleggia, R.; Pecorella, I.; Giovanniello, V.; Frenda, A.S.; Vita, P.D. Relationship between seed morphological traits and ash and mineral distribution along the kernel using debranning in durum wheats from different geographic sites. Foods 2020, 9, 1523. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.S.; Hauggaard-Nielsen, H. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 2003, 252, 177–186. [Google Scholar] [CrossRef]
- Metcalfe, M.C.; Estrada, H.E.; Jones, S.S. Climate-changed wheat: The effect of smaller kernels on the nutritional value of wheat. Sustainability 2022, 14, 6546. [Google Scholar] [CrossRef]
- Paznocht, L.; Kotíková, Z.; Šulc, M.; Lachman, J.; Orsák, M.; Eliášová, M.; Martinek, P. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chem. 2018, 240, 670–678. [Google Scholar] [CrossRef]
- AbuHammad, W.A.; Elias, E.M.; Manthey, F.A.; Alamri, M.S.; Mergoum, M.A. Comparison of methods for assessing dough and gluten strength of durum wheat and their relationship to pasta cooking quality. Int. J. Food Sci. Technol. 2012, 47, 2561–2573. [Google Scholar] [CrossRef]
- Gaines, C.S.; Reid, J.F.; Vander Kant, C.; Morris, C.F. Comparison of methods for gluten strength assessment. Cereal Chem. 2006, 83, 284–286. [Google Scholar] [CrossRef]
- Clarke, F.R.; Clarke, J.M.; Ames, N.A.; Knox, R.E.; Ross, R.J. Gluten index compared with SDS-sedimentation volume for early generation selection for gluten strength in durum wheat. Can. J. Plant Sci. 2010, 90, 1–11. [Google Scholar] [CrossRef]
- UNI 10940:2001; Durum Wheat Products for Pasta Making Definition, Characteristics and Quality Grades. UNI—Ente Italiano di Normazione: Via Sannio, Italy, 2001.
- Payne, P.I.; Lawrence, G.J. Catalogue of alleles for the complex gene loci, GLU-Al, GLU-BI, and GLU-Dl which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Comm. 1983, 11, 29–35. [Google Scholar]
- Payne, P.I.; Nightingale, M.A.; Krattiger, A.F.; Holt, L.M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 1987, 40, 51–65. [Google Scholar] [CrossRef]
- Pogna, N.E.; Mellini, F.; Bretta, A.; Peruffo, A.D.B. The high-molecular-weight glutenin subunits of common wheat cultivars grown in Italy. J. Genet. Breed 1989, 43, 7–24. [Google Scholar]
- Rezette, L.; Saulnier, L.; Morel, M.H.; Méléard, B.; Le Gall, S.; Kansou, K. Impact of Wheat Flour Composition on Dough Properties: Focus on the Minor Components. J. Cereal Sci. 2025, 124, 104233. [Google Scholar] [CrossRef]
- Spaggiari, M.; Marchini, M.; Calani, L.; Dodi, R.; Di Pede, G.; Dall’Asta, M.; Scazzina, F.; Barbieri, A.; Righetti, L.; Folloni, S.; et al. Evolutionary Wheat Populations in High-Quality Breadmaking as a Tool to Preserve Agri-Food Biodiversity. Foods 2022, 11, 495. [Google Scholar] [CrossRef] [PubMed]
- Hadnađev, T.D.; Pojić, M.; Hadnađev, M.; Torbica, A. The role of empirical rheology in flour quality control. In Wide Spectra of Quality Control; IntechOpen: London, UK, 2011; pp. 335–360. [Google Scholar]
- Ghafoor, A.Z.; Ceglińska, A.; Karim, H.; Wijata, M.; Sobczyński, G.; Derejko, A.; Studnicki, M.; Rozbicki, J.; Cacak-Pietrzak, G. Influence of Genotype, Environment, and Crop Management on the Yield and Bread-Making Quality in Spring Wheat Cultivars. Agriculture 2024, 14, 2131. [Google Scholar] [CrossRef]
- Vida, G.; Cséplő, M.; Rakszegi, M.; Bányai, J. Effect of multi-year environmental and meteorological factors on the quality traits of winter durum wheat. Plants 2021, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Mares, D.; Mrva, K. Late-maturity α-amylase: Low falling number in wheat in the absence of preharvest sprouting. J. Cereal Sci. 2008, 47, 6–17. [Google Scholar] [CrossRef]
- Johansson, E. Effect of two wheat genotypes and Swedish environment on falling number, amylase activities, and protein concentration and composition. Euphytica 2002, 126, 143–149. [Google Scholar] [CrossRef]
- Murphy, K.; Lammer, D.; Lyon, D.; Carter, B.; Jones, S.S. Breeding for organic and low-input farming systems: An evolutionary–participatory breeding method for inbred cereal grains. Renew. Agric. Food Syst. 2005, 20, 48–55. [Google Scholar] [CrossRef]
- Brumlop, S.; Pfeiffer, T.; Finckh, M.R. Evolutionary Effects on Morphology and Agronomic Performance of Three Winter Wheat Composite Cross Populations Maintained for Six Years under Organic and Conventional Conditions. Org. Farming 2017, 3, 34–50. [Google Scholar] [CrossRef]


| Main Factors | TKW (g) | TW (Kg/hL) | ASH (%) | |
|---|---|---|---|---|
| Year | ||||
| 2022 | 43.0 a | 80.0 a | 1.98 b | |
| 2023 | 43.6 a | 75.4 b | 2.03 a | |
| Location | ||||
| Montelibretti (RM) | 44.6 a | 77.5 a | 2.03 a | |
| Parma | 42.0 b | 78.0 a | 1.98 b | |
| Preceding Crop | ||||
| Chickpea | 46.1 a | 78.2 ab | 2.05 a | |
| Clover | 43.2 b | 76.7 b | 2.02 ab | |
| Wheat | 41.6 b | 76.8 b | 1.96 b | |
| Pea | 42.4 b | 79.1 a | 2.00 ab | |
| Entries | ||||
| EP_Floriddia | 46.6 a | 76.7 a | 2.22 a | |
| EP_Li Rosi | 41.4 b | 77.8 a | 1.88 b | |
| cv Monnalisa | 42.0 b | 78.6 a | 1.91 b | |
| CV% | 4.2 | 3.5 | 3.4 | |
| Source of variation | d.f. | |||
| Years | 1 | 5.6 | 258.5 *** | 0.03 * |
| Locations | 1 | 82.1 *** | 2.7 | 0.03 * |
| Preceding crops | 2 | 28.1 | 23.7 | 0.01 ** |
| Entries | 2 | 127.4 ** | 14.1 | 0.570 |
| Entries × Precessions | 6 | 3.0 *** | 3.5 | 0.03 * |
| Entries × Years | 2 | 10.9 | 10.1 | 0.01 ** |
| Residual | 32 | 4.0 | 7.3 | 0.005 |
| Total | 47 | 12.3 | 13.5 | 0.033 |
| Main Factors | PC (%) | TS (%) | TDF (%) | TAC (mmol TEAC/kg) | |
|---|---|---|---|---|---|
| Year | |||||
| 2022 | 12.7 b | 62.4 b | 11.8 b | 42.2 a | |
| 2023 | 14.4 a | 71 a | 13 a | 35.7 b | |
| Location | |||||
| Montelibretti (RM) | 14.6 a | 63.7 b | 12.1 b | 39.8 a | |
| Parma | 12.5 b | 69.7 a | 12.7 a | 38.1 a | |
| Preceding Crop | |||||
| Chickpea | 13.9 b | 63.2 b | 12 b | 38.4 ab | |
| Clover | 15.3 a | 64.2 b | 12.2 b | 41.2 a | |
| Wheat | 11.7 c | 71.9 a | 12.6 ab | 36.2 b | |
| Pea | 13.2 b | 67.5 ab | 12.9 a | 40.0 a | |
| Entries | |||||
| EP_Floriddia | 14.9 a | 64.9 a | 12.6 a | 41.1 a | |
| EP_Li Rosi | 13.6 b | 68.3 a | 12.5 a | 39.1ab | |
| cv Monnalisa | 12.1 c | 67.0 a | 12.1 a | 36.8 b | |
| CV% | 8.7 | 8 | 6.4 | 9.9 | |
| Source of variation | d.f. | ||||
| Years | 1 | 34.8 *** | 877.4 *** | 19.00 *** | 499.33 *** |
| Locations | 1 | 53.8 *** | 435.9 *** | 5.48 ** | 33.99 |
| Preceding crops | 2 | 12.4 *** | 60.5 | 0.52 | 66.7 * |
| Entries | 2 | 31.4 *** | 48.1 | 0.97 | 74.26 * |
| Entries × Precessions | 6 | 1.8 | 33.6 | 1.40 | 7.48 |
| Entries × Years | 2 | 1.2 | 117.9 * | 0.62 | 0.77 |
| Residual | 32 | 1.4 | 28.7 | 0.63 | 14.83 |
| Total | 47 | 5.0 | 61.9 | 1.22 | 28.45 |
| Main Factors | SDS (mL) | GI (%) | Alveograph Parameters | IQ | FN (s) | |||
|---|---|---|---|---|---|---|---|---|
| W (10−4 J) | P/L | Ie (%) | ||||||
| Year | ||||||||
| 2022 | 50.1 a | 63.9 a | 96.7 a | 0.41 a | 38.0 a | 35.3 a | 362.3 a | |
| 2023 | 42.9 b | 53 b | 76.7 b | 0.41 a | 29.1 b | 29.1 b | 244.3 b | |
| Location | ||||||||
| Montelibretti (RM) | 51.7 a | 59.6 a | 114.5 a | 0.36 b | 39.2 a | 35.9 a | 268.4 b | |
| Parma | 41.3 b | 57.4 a | 58.9 b | 0.46 a | 27.9 b | 28.5 b | 338.3 a | |
| Preceding Crop | ||||||||
| Chickpea | 48 b | 61.3 a | 101.3 b | 0.34 b | 38.1 ab | 37.8 a | 255.3 c | |
| Clover | 55.4 a | 57.9 ab | 127.7 a | 0.38 b | 40.4 a | 34.0 ab | 281.5 bc | |
| Wheat | 37.4 c | 65.5 a | 44.4 d | 0.52 a | 24.7 c | 26.0 c | 325.8 ab | |
| Pea | 45.1 b | 49.3 b | 73.5 c | 0.40 b | 31.0 b | 31.1 bc | 350.8 a | |
| Entries | ||||||||
| EP_Floriddia | 44.5 a | 29.1 c | 47.8 c | 0.48 a | 21.1 c | 28.9 b | 344.9 a | |
| EP_Li Rosi | 47.6 a | 52.4 b | 85.5 b | 0.36 b | 31.1 b | 38.1 a | 283.6 b | |
| cv Monnalisa | 47.3 a | 94.0 a | 126.8 a | 0.39 b | 48.4 a | 29.6 b | 281.4 b | |
| CV% | 11.1 | 24.1 | 18.0 | 18.7 | 9.3 | 23.0 | 23.2 | |
| Source of variation | d.f. | |||||||
| Years | 1 | 623.5 *** | 1419 ** | 4816 *** | 0.008 | 950.5 *** | 456 ** | 167,088 *** |
| Locations | 1 | 1312.5 *** | 59 | 37,085 *** | 122.008 *** | 1550.4 *** | 645 ** | 58,520 ** |
| Preceding crops | 2 | 341.4 *** | 825 * | 4636 *** | 46.208 ** | 134.2 *** | 120 | 3929 |
| Entries | 2 | 47.4 | 17,314 *** | 25,004.2 *** | 59.908 *** | 3061.1 *** | 421 ** | 20,790 * |
| Entries × Precessions | 6 | 37.7 | 233 | 1339 *** | 13.375 | 42.8 * | 55 | 2701 |
| Entries × Years | 2 | 51.7 | 756 * | 14 | 236.058 *** | 122.3 *** | 141 | 13,739 |
| Residual | 32 | 26.7 | 198 | 243 | 5.868 | 13.5 | 55 | 4946 |
| Total | 47 | 82.9 | 1000 | 2565 | 23.285 | 209.0 | 100 | 10,151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natale, C.; Galassi, E.; Nocente, F.; Taddei, F.; Folloni, S.; Visioli, G.; Ceccarelli, S.; Galaverna, G.; Gazza, L. Rheological, Technological, and Nutritional Profile of Sustainable Crops: Bread Wheat Evolutionary Populations. Foods 2025, 14, 3821. https://doi.org/10.3390/foods14223821
Natale C, Galassi E, Nocente F, Taddei F, Folloni S, Visioli G, Ceccarelli S, Galaverna G, Gazza L. Rheological, Technological, and Nutritional Profile of Sustainable Crops: Bread Wheat Evolutionary Populations. Foods. 2025; 14(22):3821. https://doi.org/10.3390/foods14223821
Chicago/Turabian StyleNatale, Chiara, Elena Galassi, Francesca Nocente, Federica Taddei, Silvia Folloni, Giovanna Visioli, Salvatore Ceccarelli, Gianni Galaverna, and Laura Gazza. 2025. "Rheological, Technological, and Nutritional Profile of Sustainable Crops: Bread Wheat Evolutionary Populations" Foods 14, no. 22: 3821. https://doi.org/10.3390/foods14223821
APA StyleNatale, C., Galassi, E., Nocente, F., Taddei, F., Folloni, S., Visioli, G., Ceccarelli, S., Galaverna, G., & Gazza, L. (2025). Rheological, Technological, and Nutritional Profile of Sustainable Crops: Bread Wheat Evolutionary Populations. Foods, 14(22), 3821. https://doi.org/10.3390/foods14223821

