Effects of Spice Mixtures and Konjac Glucomannan–Whey Protein Isolate Based Edible Films on the Microbiological Stability and Textural Properties of Cheese
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Edible Film Production and Analysis
Experimental Design and Optimization of Edible Film Production
Edible Film Production
Water Vapor Permeability
- P: Permeability (G mm/m2·d·kPa)
- Δp: Partial pressure difference in gases
- x: Film thickness (mm)
- A: Surface area (m2)
Tensile Strength and Elongation Coefficient
- L0: Initial length of films
- L: Final length of films
Microstructure of Edible Films
2.2.2. Spice Mixture Production and Analysis
Experimental Design and Optimization of the Spice Mixture
Preparation of Spice Mixtures
Preparation of Mold Spores and Determination of Antifungal Effect
2.2.3. Cheese Production and Analysis
Production and Coating of Sliceable Processed Cheese
Weight Loss
Textural Analysis
Microbiological Analyses Applied to the Cheeses
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization and Optimization of Edible Films with RSM
3.1.1. Water Vapor Permeability of Edible Films
3.1.2. Elongation Coefficient of Edible Films
3.1.3. Tensile Strength of Edible Films
3.1.4. Optimization of Edible Films
3.1.5. Microstructural Properties of Optimized Edible Film
3.2. Characterization and Optimization of Spice Mix by RSM
3.2.1. Antifungal Effect of Spice Mixture Against Aspergillus niger
3.2.2. Antifungal Effect of Spice Mixture Against Mucor spp.
3.2.3. Antifungal Effect of Spice Mixture Against Penicillium spp.
3.2.4. Optimization of Spice Mixture
3.3. Cheese Analysis
3.3.1. Weight Loss of Cheeses
3.3.2. Textural Properties of Cheeses
3.3.3. Microbiological Properties of Cheeses
Number of Total Aerobic Mesophilic Bacteria
Number of Lactic Acid Bacteria
Yeast and Mold Counts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Source | Sum of Squares | Mean of Squares | F-Value | p-Value |
|---|---|---|---|---|
| Model | 3.69 | 1.84 | 6.06 | 0.02 * |
| X1 | 1.80 | 1.80 | 5.92 | 0.04 * |
| X2 | 1.88 | 1.88 | 6.19 | 0.03 * |
| Lack of fit | 2.02 | 0.34 | 1.32 | 0.42 |
| R2 | 0.55 | |||
| Adjusted R2 | 0.46 | |||
| Adequate precision | 7.27 |
| Source | Sum of Squares | Mean of Squares | F-Value | p-Value |
|---|---|---|---|---|
| Model | 0.08 | 0.04 | 8.73 | 0.01 * |
| X1 | 0.01 | 0.01 | 2.78 | 0.13 |
| X2 | 0.06 | 0.06 | 14.68 | 0.00 * |
| Lack of fit | 0.03 | 0.00 | 1.02 | 0.52 |
| R2 | 0.64 | |||
| Adjusted R2 | 0.56 | |||
| Adequate precision | 8.13 |
| Source | Sum of Squares | Mean of Squares | F-Value | p-Value |
|---|---|---|---|---|
| Model | 1.47 | 0.49 | 3.04 | 0.06 |
| X1 | 0.77 | 0.77 | 4.80 | 0.04 * |
| X2 | 0.68 | 0.68 | 4.26 | 0.06 |
| X3 | 0.00 | 0.00 | 0.01 | 0.94 |
| Lack of fit | 2.10 | 0.19 | 2.04 | 0.22 |
| R2 | 0.36 | |||
| Adjusted R2 | 0.24 | |||
| Adequate precision | 5.21 |
References
- Ceylan, H.G.; Polat, Z.; Atasoy, A.F. Bio-composite films based on soy protein and seaweed (Chondrus crispus) mucilage enriched with Pistacia terebinthus essential oil: Effects of the coating on the properties of fresh cheese. Algal Res. 2025, 85, 103864. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and control of spoilage fungi in dairy products: An update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Valence, F.; Pawtowski, A.; Auhustsinava-Galerne, L.; Frotté, N.; Baroncelli, R.; Deniel, F.; Coton, E.; Mounier, J. Diversity of spoilage fungi associated with various French dairy products. Int. J. Food Microbiol. 2017, 241, 191–197. [Google Scholar] [CrossRef]
- Marín, P.; Palmero, D.; Jurado, M. Occurrence of moulds associated with ovine raw milk and cheeses of the Spanish region of Castilla La Mancha. Int. J. Dairy Technol. 2015, 68, 565–572. [Google Scholar] [CrossRef]
- Sharma, S.; Perera, K.Y.; Mulrey, L.; Duffy, B.; Jaiswal, A.K.; Jaiswal, S. Eucalyptus oil-loaded nanocarriers composite films to enhance the shelf life of cheese. LWT 2025, 219, 117548. [Google Scholar] [CrossRef]
- Kure, C.F.; Skaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Gaucel, S.; Guillemin, H.; Corrieu, G. A generalised model for cheese mass loss determination during ripening. J. Food Eng. 2012, 110, 109–116. [Google Scholar] [CrossRef]
- Mei, L.X.; Nafchi, A.M.; Ghasemipour, F.; Easa, A.M.; Jafarzadeh, S.; Al-Hassan, A.A. Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. Int. J. Biol. Macromol. 2020, 164, 4603–4612. [Google Scholar]
- Ayad, E.H.E.; Awad, S.; El Attar, A.; de Jong, C.; El-Soda, M. Characterisation of Egyptian Ras cheese. 2. Flavour formation. Food Chem. 2004, 86, 553–561. [Google Scholar] [CrossRef]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef]
- Amer, D.A.; Albadri, A.A.M.; El-Hamshary, H.A.; Nehela, Y.; Makhlouf, A.H.; El-Hawary, M.Y.; Awad, S.A. Changes in sensory properties, physico-chemical characteristics, and aromas of Ras cheese under different coating techniques. Foods 2023, 12, 2023. [Google Scholar] [CrossRef]
- Erdem, B.G.; Kaya, S. Edible film fabrication modified by freeze drying from whey protein isolate and sunflower oil: Functional property evaluation. Food Packag. Shelf Life 2022, 33, 100887. [Google Scholar] [CrossRef]
- Zhang, W.; Rhim, J.W. Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocoll. 2022, 128, 107572. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, C.; Liu, D.; Zhou, X.; Wang, D.; Zhang, W. Preparation and characterization of the protein edible film extracted from the migratory locust (Locusta migratoria). Food Packag. Shelf Life 2022, 33, 100899. [Google Scholar] [CrossRef]
- Bifani, V.; Ramírez, C.; Ihl, M.; Rubilar, M.; García, A.; Zaritzky, N. Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT Food Sci. Technol. 2007, 40, 1473–1481. [Google Scholar] [CrossRef]
- Brody, A.L. Action in active and intelligent packaging. Food Technol. 2002, 56, 70–71. [Google Scholar]
- Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.J.; González-Martínez, C. Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr. 2008, 48, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.A.; Sousa-Gallagher, M.J.; Macedo, I.; Rodriguez-Aguilera, R.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of “Regional” cheese. J. Food Eng. 2010, 97, 87–94. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Zaeim, D. Agar-based edible films for food packaging applications-A review. Int. J. Biol. Macromol. 2020, 159, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind. Crops Prod. 2015, 67, 403–413. [Google Scholar] [CrossRef]
- Kester, J.J.; Fennema, O.R. Edible films and coatings. A review. Food Technol. 1986, 40, 47–59. [Google Scholar]
- Soliva-Fortuny, R.; Rojas-Graii, M.A.; Martín-Belloso, O. Polysaccharide coatings. In Edible Coatings and Films to Improve Food Quality; Baldwin, E.A., Hagenmaier, R., Bai, J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 103–136. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food Industry processes. Food Bioproc. Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Chua, M.; Baldwin, T.C.; Hocking, T.J.; Chan, K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. J. Ethnopharmacol. 2010, 128, 268–278. [Google Scholar] [CrossRef]
- Leuangsukrerk, M.; Phupoksakul, T.; Tananuwong, K.; Borompichaichartkul, C.; Janjarasskul, T. Properties of konjac glucomannan–whey protein isolate blend films. Food Sci. Technol. 2014, 59, 94–100. [Google Scholar] [CrossRef]
- Rhim, J.W.; Wang, L.F. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr. Polym. 2013, 96, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Functional properties and applications of edible films made of milk proteins. J. Dairy Sci. 1995, 78, 2563–2583. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Krochta, J.M. Water vapor permeability of whey protein emulsion films as affected by pH. J. Food Sci. 1999, 64, 1034–1037. [Google Scholar] [CrossRef]
- Sarıoğlu, T.; Öner, Z. The possibilities of using edible films in cheese coating and their effects on cheese quality. Gıda 2006, 31, 3–10. [Google Scholar]
- Schmid, M.; Proels, S.; Kainz, D.M.; Hammann, F.; Grupa, U. Effect of thermally induced denaturation on molecular interaction-response relationships of whey protein isolate based films and coatings. Prog. Org. Coat. 2017, 104, 161–172. [Google Scholar] [CrossRef]
- Sothornvit, R.; Hong, S.; An, D.J.; Rhim, J.W. Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. Food Sci. Technol. 2010, 43, 279–284. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Water vapor permeability and solubility of films from hydrolyzed whey protein. J. Food Sci. 2000, 65, 700–703. [Google Scholar] [CrossRef]
- Üstunol, Z. Edible films and coatings for meat and poultry. In Edible Films and Coatings for Food Applications; Huber, K.C., Embuscado, M.E., Eds.; Springer: New York, NY, USA, 2009; pp. 245–268. [Google Scholar] [CrossRef]
- Li, H.-L.; Wang, X.-M.; Tu, Z.-C.; Liu, J.; Shao, Y.-H. Konjac glucomannan retards the deterioration of whey protein isolate gel quality after freeze-thaw cycles and their application in frozen skimmed yogurt. Food Hydrocoll. 2025, 172, 112058. [Google Scholar] [CrossRef]
- Mobika, J.; Rajkumar, M.; Sibi, S.P.L.; Priya, V.N. Investigation on hydrogen bonds and conformational changes in protein/polysaccharide/ceramic based tri-component system. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118836. [Google Scholar] [CrossRef]
- Demirkol, G.; Ertürk, Ö. Antimicrobial and antioxidant effects of spice extracts. Turk. J. Agric. Nat. Sci. 2019, 6, 305–313. [Google Scholar] [CrossRef]
- Dorantes, L.; Fernández, E.; Hernández-Sánchez, H. Antimicrobial activity of Capsicum extracts against some pathogenic bacteria. In Proceedings of the 16th International Pepper Conference, Tampico, Tamaulipas, Mexico, 10–12 November 2002. [Google Scholar]
- Ferdes, M.; Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K. Inhibitory effect of some plant essential oils on growth of Aspergillus niger, Aspergillus oryzae, Mucor pusillus and Fusarium oxysporum. S. Afr. J. Bot. 2017, 113, 457–460. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Mohammad, H.; Yousefi, S.; Hashempour, A.; Hashempour, N.; Seyedgholizadeh, S. Evaluation of in vitro antifungal activity of garlic, thyme, aloe vera, and cinnamon essential oils against Candida albicans, Aspergillus flavus, Aspergillus niger and Mucor himalis. Rep. Health Care 2016, 2, 22–28. [Google Scholar]
- Sriwattanachai, S.; Sadiq, M.B.; Anal, A.K. Synergistic antifungal effects of thyme essential oil and Lactobacillus plantarum cell-free supernatant against Penicillium spp. and in situ effects. J. Food Process. Preserv. 2018, 42, e13400. [Google Scholar] [CrossRef]
- Awolu, O.O.; Osemeke, R.O.; Ifesan, B.O.T. Antioxidant, functional and rheological properties of optimized composite flour, consisting wheat and amaranth seed, brewers’ spent grain and apple pomace. J. Food Sci. Technol. 2016, 53, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology, Process And Product Optimization Using Designed Experiments, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Bhtaia, S.; Said, M.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Mohan, S.; Sharma, A.; Behl, T. Development and characterization of chitosan and porphyran based composite edible films containing ginger essential oil. Polymers 2022, 14, 1782. [Google Scholar] [PubMed]
- Rahmiatiningrum, N.; Sukardi, S.; Warkoyo, W. Study of physical characteristic, water vapor transmission rate and inhibition zones of edible films from aloe vera (Aloe barbadensis) incorporated with yellow sweet potato starch and glycerol. Food Technol. Halal Sci. J. 2019, 2, 113–121. [Google Scholar] [CrossRef]
- ASTM E96-80; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 1983.
- De Moura, M.R.; Avena-Bustillos, R.J.; McHugh, T.H.; Wood, D.F.; Otoni, C.G.; Mattoso, L.H.C. Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose films. J. Food Eng. 2011, 104, 154–160. [Google Scholar] [CrossRef]
- Ramos, O.L.; Silva, S.I.; Soares, J.C.; Fernandes, J.C.; Poças, M.F.; Pintado, M.E.; Malcata, F.X. Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Res. Int. 2012, 45, 351–361. [Google Scholar] [CrossRef]
- Kalkan, S. Possibility of Using Edible Films and Coatings Containing Different Antimicrobial Agents on Hungarian Salami and Inactivation Effects on Listeria innocua. Ph.D. Thesis, Cukurova University Institute, Adana, Türkiye, 2014. [Google Scholar]
- ASTM D638M; Standard Test Methods for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 1993.
- Wu, C.; Peng, S.; Wen, C.; Wang, X.; Fan, L.; Deng, R.; Pang, J. Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydr. Polym. 2012, 89, 497–503. [Google Scholar] [CrossRef]
- Boyraz, N.; Özcan, M. Antifungal effects of some Turkish spice extracts and essential oils on plant pathogen fungi. Food 1997, 22, 457–462. [Google Scholar]
- Kocak, R.; Boyraz, N. Fungicidal and fungistatic effects of essential oils of some plants. Selcuk. J. Agric. Food Sci. 2006, 20, 76–81. [Google Scholar]
- Kavas, C. Investigation of Antifungal Effects of Lactic Acid Bacteria Used in Food Industry as Starter. Master’s Thesis, Cukurova University Institute, Adana, Türkiye, 2002. [Google Scholar]
- Turkish Ministry of Food, Agriculture and Livestock. Turkish Food Codex, Turkish Food Codex Cheese Regulation; Official Gazette: Ankara, Türkiye, 2015; Official Gazette Number: 29261.
- Eren Karahan, L. The Effects of Addition of Microbial Transglutaminase in Different Ratios on Properties of White Brined Cheese at Production Stages. Ph.D. Thesis, Harran University, Şanlıurfa, Türkiye, 2016. [Google Scholar]
- Kahyaoglu, T.; Kaya, S. Effects of heat treatment and fat reduction on the rheological and functional properties of Gaziantep cheese. Int. Dairy J. 2003, 13, 867–875. [Google Scholar] [CrossRef]
- ISO 707:2009; Milk and Milk Products-Guidance on Sampling. ISO: Geneva, Switzerland, 2009.
- Harrigan, W.F.; McCance, M.E. Laboratory Methods in Food and Dairy Microbiology; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Harrigan, W.F. Laboratory Methods in Food Microbiology; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Field, A.; Miles, J. Discovering Statistics Using SAS; Sage Publications: Los Angeles, CA, USA, 2010. [Google Scholar]
- Caner, C. Food Packaging; Nobel Publishing: Ankara, Türkiye, 2021. [Google Scholar]
- Herrera-Vázquez, S.E.; Dublán-García, O.; Arizmendi-Cotero, D.; Gómez-Oliván, L.M.; Islas-Flores, H.; Hernández-Navarro, M.D.; Ramírez-Durán, N. Optimization of the physical, optical and mechanical properties of composite edible films of gelatin, whey protein and chitosan. Molecules 2022, 27, 869. [Google Scholar] [CrossRef]
- Passerine, B.F.G.; Breitkreitz, M.C. Important Aspects of the Design of Experiments and Data Treatment in the Analytical Quality by Design Framework for Chromatographic Method Development. Molecules 2024, 29, 6057. [Google Scholar] [CrossRef]
- Fadavi, A.; Beglaryan, R. Optimization of UF-Feta cheese preparation, enriched by peppermint extract. J. Food Sci. Technol. 2015, 52, 952–959. [Google Scholar] [CrossRef]
- Oyen, M.L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 2014, 59, 44–59. [Google Scholar] [CrossRef]
- Yoo, S.; Krochta, J.M. Whey protein–polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J. Sci. Food Agric. 2011, 91, 2628–2636. [Google Scholar] [CrossRef]
- Kim, Y.T.; Kimmel, R.T.; Wang, X. A new method to determine antioxidant activities of biofilms using a pH indicator (Resazurin) model system. Molecules 2023, 28, 2092. [Google Scholar] [CrossRef]
- Fernandes, L.M.; Guimarães, J.T.; Silva, R.; Rocha, R.S.; Coutinho, N.M.; Balthazar, C.F.; Calvalcanti, R.N.; Piler, C.W.; Pimentel, T.C.; Neto, R.P.; et al. Whey protein films added with galactooligosaccharide and xylooligosaccharide. Food Hydrocoll. 2020, 104, 105755. [Google Scholar] [CrossRef]
- Skurtys, O.; Acevedo, C.; Pedreschi, F.; Enrione, J.; Osorio, E.; Aguilera, J.M. Foodhydrocolloids: Characteristics, Properties and Structures; Hollingworth, C.S., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 1–41. [Google Scholar]
- Üçüncü, M. Cheese Technology from A to Z; Meta Printing House: İstanbul, Türkiye, 2008. [Google Scholar]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Cuq, B.; Gontard, N.; Cuq, J.L.; Guilbert, S. Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers. J. Agric. Food. Chem. 1997, 45, 622–626. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Tananuwong, K.; Krochta, J.M. Whey protein film with oxygen scavenging function by incorporation of ascorbic acid. J. Food Sci. 2011, 76, E561–E568. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, Y.; Ma, Z.; Rao, Z.; Zheng, X.; Tang, K.; Liu, J. Effect of polyol plasticizers on properties and microstructure of soluble soybean polysaccharide edible films. Food Packag. Shelf Life 2023, 35, 101023. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; García, M.A.; Martino, M.N.; Zaritzky, N.E. Mechanical and thermal properties of yam starch films. Food Hydrocoll. 2005, 19, 157–164. [Google Scholar] [CrossRef]
- Wianowska, D.; Garbaczewska, S.; Cieniecka-Roslonkiewicz, A.; Dawidowicz, A.L.; Typek, R.; Kielczewska, A. Influence of the extraction conditions on the antifungal properties of Walnut Green Husk Isolates. Anal. Lett. 2020, 53, 1970–1981. [Google Scholar] [CrossRef]
- Sepúlveda, M.; Costa, J.; Cayún, Y.; Gallardo, V.; Barría, E.; Caruso, G.R.; Kress, M.R.v.Z.; Cornejo, P.; Santos, C. Chemical composition and antifungal activity of Capsicum pepper aqueous extracts against plant pathogens and food spoilage fungi. Front. Cell. Infect. Microbiol. 2024, 14, 1451287. [Google Scholar] [CrossRef]
- Türe, H.; Eroğlu, E.; Soyer, F.; Özen, B. Antifungal activity of biopolymers containing natamycin and rosemary extract against Aspergillus niger and Penicillium roquefortii. Int. J. Food Sci. Technol. 2008, 43, 2026–2032. [Google Scholar] [CrossRef]
- Císarová, M.; Tančinová, D.; Medo, M. Antifungal activity of lemon, eucalyptus, thyme, oregano, sage and lavender essential oils against Aspergillus niger and Aspergillus tubingensis isolated from grapes. Slovak J. Food Sci. Potravin. 2016, 10, 83–88. [Google Scholar] [CrossRef] [PubMed]
- De Lira Mota, K.S.; De Oliveira Pereira, F.; De Oliveira, W.A.; Lima, I.O.; De Oliveira Lima, E. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules 2012, 17, 14418–14433. [Google Scholar] [CrossRef]
- Klarić, M.S.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef]
- Fieira, C.; Oliveira, F.; Calegari, R.P.; Machado, A.; Coelho, A.R. In vitro and in vivo antifungal activity of natural inhibitors against Penicillium expansum. Food Sci. Technol. 2013, 33, 40–46. [Google Scholar] [CrossRef]
- Felsociova, S.; Kacaniova, M.; Horská, E.; Vukovic, N.; Hleba, L.; Petrová, J.; Rovná, K.; Stricik, M.; Hajduová, Z. Antifungal activity of essential oils against selected terverticillate penicillia. Ann. Agric. Environ. Med. 2015, 22, 38–42. [Google Scholar] [CrossRef]
- Marei, G.I.; Abdel, R.M.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic. Biochem. Physiol. 2012, 103, 56–61. [Google Scholar] [CrossRef]
- Ikegbunam, M.; Ukamaka, M.; Emmanuel, O. Evaluation of the antifungal activity of aqueous and alcoholic extracts of six spices. Am. J. Plant. Sci. 2016, 7, 118–125. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Yılmaz, F.; Dağdemir, E. The effects of beeswax coating on quality of Kashar cheese during ripening. Int. J. Food Sci. Technol. 2012, 47, 2582–2589. [Google Scholar] [CrossRef]
- Tang, R.; Du, Y.; Zheng, H.; Fan, L. Preparation and characterization of soy protein isolate–carboxymethylated konjac glucomannan blend films. J. Appl. Polym. Sci. 2003, 88, 1095–1099. [Google Scholar] [CrossRef]
- Chwastowska-Siwiecka, I.; Sikorski, S.; Paszczyk, B.; Miciński, J. The effect of packaging method and storage time on the physicochemical properties and sensory attributes of Goat Cheese. Appl. Sci. 2025, 15, 4458. [Google Scholar] [CrossRef]
- Ruiz, D.; Tessaro, L.; Sobral PJdo, A.; Uscátegui, Y.; Diaz, L.E.; Valero, M.F. Testing the shelf life of mozzarella-type Cheese packaged with polyurethane-based films with curcumin. Polymers 2025, 17, 1342. [Google Scholar] [CrossRef]
- Joshi, N.S.; Jhala, R.P.; Muthukumarappan, K.; Acharya, M.R.; Mistry, V.V. Textural and rheological properties of processed cheese. Int. J. Food Prop. 2004, 7, 519–530. [Google Scholar] [CrossRef]
- Guinee, T.P. Protein in cheese and cheese products: Structure-function relationships. In Advanced Dairy Chemistry; McSweeney, P.L.H., O’Mahony, J.A., Eds.; Volume 1B: Proteins: Applied Aspects; Springer: New York, NY, USA, 2016; pp. 347–415. [Google Scholar] [CrossRef]
- Lamichhane, P.; Kelly, A.L.; Sheehan, J.J. Symposium review: Structure-function relationships in cheese. J. Dairy Sci. 2018, 101, 2692–2709. [Google Scholar] [CrossRef] [PubMed]
- Tunick, M.H.; Van Hekken, D.L. Torsion gelometry of cheese. J. Dairy Sci. 2002, 85, 2743–2749. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.H.; Larkin, J.W.; Clark, C.J.; Irwin, W.E. Textural analysis of cheese. J. Dairy Sci. 1979, 62, 901–907. [Google Scholar] [CrossRef]
- Chevanan, N.; Muthukumarappan, K.; Upreti, P.; Metzger, L.E. Effect of calcium and phosphorus, residual lactose and salt-to-moisture ratio on textural properties of cheddar cheese during ripening. J. Texture Stud. 2006, 37, 711–730. [Google Scholar] [CrossRef]
- Moatsou, G.; Zoidou, E.; Choundala, E.; Koutsaris, K.; Kopsia, O.; Thergiaki, K.; Sakkas, L. Development of reduced-fat, reduced-sodium semi-hard sheep milk cheese. Foods 2019, 8, 204. [Google Scholar] [CrossRef]
- Zisu, B.; Shah, N.P. Textural and functional changes in low-fat Mozzarella cheeses in relation to proteolysis and microstructure as influenced by the use of fat replacers, pre-acidification and EPS starter. Int. Dairy J. 2005, 15, 957–972. [Google Scholar] [CrossRef]
- Akkaya, E. Characterization of Physicochemical, Colour and Textural Properties of Turkish Type Cheeses. J. Dicle Univ. Fac. Vet. Med. 2024, 17, 137–142. [Google Scholar] [CrossRef]
- Moris, B. The Science and Technology of Flexible Packaging; Elsevier Science: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Ayhan, Z. Food Packaging. In Food: Science, Technology and Engineering, 1st ed.; Anlı, E., ŞAnlıbaba, P., Eds.; Nobel Academic Publishing: Ankara, Türkiye, 2022; pp. 323–354. [Google Scholar]
- Toplu, B.; Sıçramaz, H.; Ayhan, Z. The effect of different packaging materials and vacuum/modified atmosphere packaging on the quality and shelf life of sliced Hatay cheese. Gıda 2023, 48, 587–601. [Google Scholar]
- Tomar, O.; Akarca, G. Effects of coating with different plant extracts on the microbiological and sensory qualities of cheddar cheese. Avrupa Bilim Teknol. Derg. 2019, 15, 86–95. [Google Scholar]
- Ekici, K.; Okut, H.; Isleyici, O.; Sancak, Y.C.; Tuncay, R.M. The determination of some microbiological and chemical features in herby cheese. Foods 2019, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Microbiological Specifications for Foods. Microorganisms in Foods 7–Microbiological Testing in Food Safety Management, 2nd ed.; Springer: Cham, Switzerland, 2002. [Google Scholar]
- Mayo, B.; Rodríguez, J.; Vázquez, L.; Flórez, A.B. Microbial interactions within the cheese ecosystem and their application to improve quality and safety. Foods 2021, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.C.; Malcata, F.X.; Silva, C.C.G. Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions. Foods 2022, 11, 2276. [Google Scholar] [CrossRef]
- Var, I.; Erginkaya, Z.; Güven, M.; Kabak, B. Effects of antifungal agent and packaging material on microflora of Kashar cheese during storage period. Food Control 2006, 17, 132–136. [Google Scholar] [CrossRef]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Organic whey as a source of Lactobacillus strains with selected technological and antimicrobial properties. Int. J. Food Sci. Technol. 2017, 52, 1983–1994. [Google Scholar] [CrossRef]
- Öner, Z.; Demir, E.; Aloğlu, H.Ş. Chemical and microbiological properties of kashar cheese with tomato puree. Acad. Food J. Akad. GIDA 2012, 10, 19. [Google Scholar]
- Ramos, Ó.L.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Lopes-da-Silva, J.A.; Pintado, M.E.; Malcata, F.X. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. J. Dairy Sci. 2012, 95, 6282–6292. [Google Scholar] [CrossRef]
- Geremew, T.; Kebede, A.; Andualem, B. The role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib (traditional Ethiopian spiced fermented cottage cheese). J. Food Sci. Technol. 2015, 52, 5661–5670. [Google Scholar] [CrossRef]
- Nemati, V.; Hashempour-Baltork, F.; Sadat Gharavi-Nakhjavani, M.; Feizollahi, E.; Marangoni Júnior, L.; Mirza Alizadeh, A. Application of a whey protein edible film incorporated with cumin essential oil in cheese Preservation. Coatings 2023, 13, 1470. [Google Scholar] [CrossRef]
- Jakobsena, M.; Narvhus, J. Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int. Dairy J. 1996, 6, 755–768. [Google Scholar] [CrossRef]
- Fung, F.; Clark, R.F. Health effects of mycotoxins: A toxicological overview. J. Toxicol. Clin. Toxicol. 2004, 42, 217–234. [Google Scholar] [CrossRef]
- Martin, N.H.; Torres-Frenzel, P.; Wiedmann, M. Invited review: Controlling dairy product spoilage to reduce food loss and waste. J. Dairy Sci. 2021, 104, 1251–1261. [Google Scholar] [CrossRef]
- Yangilar, F.; Oğuzhan Yıldız, P. Casein/natamycin edible films efficiency for controlling mould growth and on microbiological, chemical and sensory properties during the ripening of Kashar cheese. J. Sci. Food Agric. 2016, 96, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Seydim, A.C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39, 639–644. [Google Scholar] [CrossRef]
- Kouser, F.; Kumar, S.; Bhat, H.F.; Noor, S.; Manzoor, M.; Dar, B.; Hassoun, A.; Aït-Kaddour, A.; Shabbir, M.A.; Aadil, R.M.; et al. Effectiveness of Terminalia bellerica based bioactive edible film in controlling the microbial growth and lipid oxidation of cheese during storage. Food Chem. Adv. 2023, 2, 100213. [Google Scholar] [CrossRef]
- Coimbra, P.; Marona, B.; Henriques, M.H.; Campos, L.; Gomes, D.M.; Vitorino, C.; Sousa, J.J.; Braga, M.E.; Gaspar, M.C. Edible films based on potato and quince peels with potential for the preservation of cured cheese. Food Packag. Shelf Life 2023, 40, 101176. [Google Scholar] [CrossRef]







| Independent Variable | Code | −α | −1 | 0 | +1 | +α |
|---|---|---|---|---|---|---|
| WPI (%) | X1 | 5.59 | 6.00 | 7.00 | 8.00 | 8.41 |
| KG (%) | X2 | 0.34 | 0.40 | 0.55 | 0.70 | 0.76 |
| No | X1 | X2 | ||||
| 1 | 7.00 | 0.76 | ||||
| 2 | 7.00 | 0.55 | ||||
| 3 | 5.59 | 0.55 | ||||
| 4 | 7.00 | 0.55 | ||||
| 5 | 7.00 | 0.55 | ||||
| 6 | 6.00 | 0.70 | ||||
| 7 | 7.00 | 0.34 | ||||
| 8 | 6.00 | 0.40 | ||||
| 9 | 8.00 | 0.40 | ||||
| 10 | 8.00 | 0.70 | ||||
| 11 | 7.00 | 0.55 | ||||
| 12 | 7.00 | 0.55 | ||||
| 13 | 8.41 | 0.55 | ||||
| No | WVP (G mm/m2·d·kPa) | E (%) | TS (MPa) |
|---|---|---|---|
| 1 | 169.14 ± 4.033 a | 70.52 ± 5.421 e | 0.35 ± 0.018 b |
| 2 | 136.62 ± 0.696 b,c,d | 87.51 ± 1.598 c | 0.27 ± 0.008 c |
| 3 | 153.54 ± 4.741 a,b | 73.74 ± 1.058 d,e | 0.18 ± 0.007 d,e |
| 4 | 143.65 ± 6.594 b,c | 96.08 ± 1.062 b | 0.33 ± 0.026 b |
| 5 | 152.62 ± 3.324 a,b | 103.49 ± 3.099 a | 0.45 ± 0.009 a |
| 6 | 149.92 ± 1.984 a,b | 108.78 ± 1.056 a | 0.35 ± 0.014 b |
| 7 | 118.93 ± 5.568 d,e | 42.03 ± 1.897 g | 0.12 ± 0.012 f |
| 8 | 121.86 ± 2.184 c,d,e | 79.86 ± 0.910 d | 0.15 ± 0.025 e,f |
| 9 | 125.32 ± 6.698 c,d,e | 78.21 ± 1.990 d | 0.22 ± 0.013 d |
| 10 | 119.67 ± 2.476 d,e | 63.37 ± 1.208 f | 0.41 ± 0.018 a |
| 11 | 141.02 ± 2.429 b,c,d | 90.93 ± 1.029 b,c | 0.33 ± 0.018 b |
| 12 | 119.70 ± 4.551 d,e | 105.18 ± 2.942 a | 0.33 ± 0.020 b |
| 13 | 108.06 ± 4.091 e | 109.86 ± 1.089 a | 0.32 ± 0.017 b, c |
| Independent Variable | Code | −α | −1 | 0 | 1 | +α |
|---|---|---|---|---|---|---|
| Thyme (%) | X1 | 0.33 | 0.50 | 0.75 | 1.00 | 1.17 |
| Rosemary (%) | X2 | 0.66 | 1.00 | 1.50 | 2.00 | 2.34 |
| Red pepper (%) | X3 | 0.66 | 1.00 | 1.50 | 2.00 | 2.34 |
| No | X1 | X2 | X3 | |||
| 1 | 1.00 | 2.00 | 2.00 | |||
| 2 | 0.75 | 1.15 | 2.34 | |||
| 3 | 1.00 | 1.00 | 1.00 | |||
| 4 | 0.75 | 1.50 | 1.50 | |||
| 5 | 0.75 | 1.50 | 1.50 | |||
| 6 | 1.00 | 1.00 | 2.00 | |||
| 7 | 0.33 | 1.50 | 1.50 | |||
| 8 | 0.75 | 1.50 | 1.50 | |||
| 9 | 1.17 | 1.50 | 1.50 | |||
| 10 | 0.50 | 2.00 | 1.00 | |||
| 11 | 0.75 | 1.50 | 0.66 | |||
| 12 | 0.75 | 1.50 | 1.50 | |||
| 13 | 0.75 | 0.66 | 1.50 | |||
| 14 | 0.75 | 1.50 | 1.50 | |||
| 15 | 0.50 | 1.00 | 1.00 | |||
| 16 | 0.50 | 2.00 | 2.00 | |||
| 17 | 1.00 | 2.00 | 1.00 | |||
| 18 | 0.75 | 1.50 | 1.50 | |||
| 19 | 0.50 | 1.00 | 2.00 | |||
| 20 | 0.75 | 2.34 | 1.50 | |||
| No | AS (mm) | M (mm) | P (mm) |
|---|---|---|---|
| 1 | 4.05 ± 0.150 c,d,e | 4.40 ± 0.100 c,d,e,f | 4.80 ± 0.200 b,c |
| 2 | 4.20 ± 0.200 b,c,d | 4.40 ± 0.100 c,d,e,f | 5.00 ± 0.500 b |
| 3 | 5.40 ± 0.050 a | 5.70 ± 0.300 a | 5.85 ± 0.050 a |
| 4 | 3.70 ± 0.300 d,e | 4.70 ± 0.200 b,c | 4.65 ± 0.050 b,c,d |
| 5 | 3.55 ± 0.350 e,f | 4.00 ± 0.000 f,g,h | 3.95 ± 0.050 e,f |
| 6 | 4.65 ± 0.150 b | 4.90 ± 0.100 b | 4.65 ± 0.150 b,c,d |
| 7 | 4.00 ± 0.300 c,d,e | 3.55 ± 0.050 h | 3.50 ± 0.200 f |
| 8 | 3.75 ± 0.500 d,e | 4.65 ± 0.150 b,c,d | 4.90 ± 0.000 b |
| 9 | 4.30 ± 0.100 b,c | 4.35 ± 0.150 c,d,e,f | 4.75 ± 0.250 b,c |
| 10 | 3.10 ± 0.100 f | 4.15 ± 0.050 e,f,g | 3.50 ± 0.100 f |
| 11 | 4.65 ± 0.150 b | 4.30 ± 0.200 c,d,e,f | 4.75 ± 0.050 b,c |
| 12 | 4.20 ± 0.100 b,c,d | 4.10 ± 0.10 e,f,g | 4.35 ± 0.050 c,d,e |
| 13 | 4.30 ± 0.000 b,c | 4.20 ± 0.000 d,e,f,g | 4.55 ± 0.150 b,c,d |
| 14 | 4.00 ± 0.100 c,d.e | 4.65 ± 0.150 b,c,d | 4.90 ± 0.100 b |
| 15 | 4.30 ± 0.100 b,c | 4.10 ± 0.100 e,f g | 4.50 ± 0.000 b,c,d |
| 16 | 3.95 ± 0.050 c,d,e | 3.95 ± 0.150 f,g,h | 4.65 ± 0.150 b,c,d |
| 17 | 4.35 ± 0.050 b,c | 3.75 ± 0.050 g,h | 4.95 ± 0.150 b |
| 18 | 3.15 ± 0.050 f | 4.50 ± 0.200 b,c,d,e | 4.20 ± 0.000 d,e |
| 19 | 3.85 ± 0.250 c,d,e | 4.65 ± 0.350 b,c,d | 4.65 ± 0.250 b,c,d |
| 20 | 4.10 ± 0.000 c,d | 4.20 ± 0.000 d,e,f,g | 3.90 ± 0.100 e,f |
| Sample | Weight loss (%) | Hardness (g) | Springiness | Cohesiveness | Chewiness | Adhesiveness | Gumminess |
|---|---|---|---|---|---|---|---|
| A | 9.07 ± 0.126 a | 4361.87 ± 125.470 a | 0.99 ± 0.006 a | 0.90 ± 0.006 a | 4591.15 ± 69.525 a | −2.62 ± 0.186 a | 4762.25 ± 110.826 a |
| B | 7.26 ± 0.271 b | 3386.68 ± 151.420 c | 0.93 ± 0.025 b | 0.88 ± 0.010 c | 4457.50 ± 67.185 b | −3.57 ± 0.031 b | 4618.09 ± 41.536 b |
| C | 7.45 ± 0.489 b | 3435.32 ± 166.782 b | 0.93 ± 0.035 b | 0.89 ± 0.006 b | 3887.12 ± 31.041 c | −3.58 ± 0.050 b | 4630.86 ± 50.643 b |
| Storage (Day) | |||||
|---|---|---|---|---|---|
| Sample | 1 | 15 | 45 | 90 | |
| Total aerobic mesophilic bacteria | A | 5.07 ± 0.329 A | 5.66 ± 0.189 B | 6.19 ± 0.103 C | 6.58 ± 0.012 D |
| B | 5.13 ± 0.587 A | 5.84 ± 0.465 B | 6.28 ± 0.099 C | 6.64 ± 0.076 D | |
| B-CR | 4.95 ± 0.062 A | 5.58 ± 0.410 B | 6.19 ± 0.178 C | 6.49 ± 0.065 D | |
| C | 5.38 ± 0.098 A | 5.75 ± 0.037 B | 6.24 ± 0.042 C | 6.70 ± 0.114 D | |
| C-CR | 5.07 ± 0.106 A | 5.59 ± 0.180 B | 5.93 ± 0.148 C | 6.50 ± 0.062 D | |
| Lactic acid bacteria | A | 3.05 ± 0.041 D | 4.02 ± 0.062 C | 4.60 ± 0.026 B | 5.20 ± 0.021 A |
| B | 3.07 ± 0.024 D | 4.06 ± 0.040 C | 4.70 ± 0.039 B | 5.23 ± 0.033 A | |
| B-CR | 3.07 ± 0.021 D | 4.05 ± 0.052 C | 4.68 ± 0.022 B | 5.21 ± 0.025 A | |
| C | 3.05 ± 0.029 D | 4.04 ± 0.057 C | 4.50 ± 0.095 B | 5.20 ± 0.051 A | |
| C-CR | 3.06 ± 0.041 D | 4.05 ± 0.045 C | 4.65 ± 0.037 B | 5.21 ± 0.025 A | |
| Yeast and mold | A | 0.00 ± 0.000 a,D | 1.58 ± 0.298 a,C | 3.46 ± 0328 a,B | 5.12 ± 0.461 a,A |
| B | 0.00 ± 0.000 a,C | 0.00 ± 0.000 b,C | 2.29 ± 0.198 b,B | 3.10 ± 0.078 b,c,A | |
| B-CR | 0.00 ± 0.000 a,C | 0.00 ± 0.000 b,C | 2.34 ± 0.260 b,B | 3.30 ± 0.294 b,A | |
| C | 0.00 ± 0.000 a,C | 0.00 ± 0.000 b,C | 1.27 ± 0.193 b,B | 2.06 ± 0.150 c,A | |
| C-CR | 0.00 ± 0.000 a,C | 0.00 ± 0.000 b,C | 1.38 ± 0.268 b,B | 2.09 ± 0.172 c,A | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelikel Güngör, A.; Akın, M.B.; Özer, E.A. Effects of Spice Mixtures and Konjac Glucomannan–Whey Protein Isolate Based Edible Films on the Microbiological Stability and Textural Properties of Cheese. Foods 2025, 14, 3819. https://doi.org/10.3390/foods14223819
Çelikel Güngör A, Akın MB, Özer EA. Effects of Spice Mixtures and Konjac Glucomannan–Whey Protein Isolate Based Edible Films on the Microbiological Stability and Textural Properties of Cheese. Foods. 2025; 14(22):3819. https://doi.org/10.3390/foods14223819
Chicago/Turabian StyleÇelikel Güngör, Aslı, Mutlu Buket Akın, and Emir Ayşe Özer. 2025. "Effects of Spice Mixtures and Konjac Glucomannan–Whey Protein Isolate Based Edible Films on the Microbiological Stability and Textural Properties of Cheese" Foods 14, no. 22: 3819. https://doi.org/10.3390/foods14223819
APA StyleÇelikel Güngör, A., Akın, M. B., & Özer, E. A. (2025). Effects of Spice Mixtures and Konjac Glucomannan–Whey Protein Isolate Based Edible Films on the Microbiological Stability and Textural Properties of Cheese. Foods, 14(22), 3819. https://doi.org/10.3390/foods14223819

