Phenolic Antioxidants in the Adriatic Halophyte Limbarda crithmoides: Variation Across Phenological Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Phenolic Compounds
2.3. Spectrophotometric Determination of Phenolics
2.4. Chromatographic Determination of Individual Phenolics
2.5. In Vitro Antioxidant Activity Determination
2.6. Statistical Analysis
3. Results
3.1. Total Phenolic, Flavonoid, and Tannin Contents
3.2. HPLC Analysis of Individual Phenolic Metabolites
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TPC | Total phenolic content | 
| TFC | Total flavonoid content | 
| TTC | Total tannin content | 
| GAE | Gallic acid equivalents | 
| QE | Quercetin equivalents | 
| CE | Catechin equivalents | 
| HPLC | High-performance liquid chromatography | 
| DAD | Diode array detector | 
| RSD | Relative standard deviation | 
| S/N | Signal-to-noise ratio | 
| FRAP | Ferric reducing antioxidant power | 
| DPPH | 2,2-diphenyl-1-picrylhydrazyl radical | 
| ORAC | Oxygen radical absorbance capacity | 
| SD | Standard deviation | 
| ANOVA | Analysis of variance | 
| DW | Dry weight | 
| IC50 | Concentration providing 50% of inhibition | 
References
- O’Leary, J.W.; Glenn, E.P. Global distribution and potential for halophytes. In Halophytes as a Resource for Livestock and for Rehabiliration of Degraded Lands; Squires, V.R., Ayoub, A.T., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 7–17. [Google Scholar]
- Grigore, M.N. (Ed.) Definition and Classification of Halophytes as an Ecological Group of Plants. In Handbook of Halophytes; Springer Nature: Cham, Switzerland, 2021; pp. 3–50. [Google Scholar]
- Squires, V.R.; El Shaer, H.M. (Eds.) Global Distribution and Abundance of Sources of Halophytic and Salt Tolerant Feedstuffs. In Halophytic and Salt-Tolerant Feedstuffs; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016; pp. 3–20. [Google Scholar]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- El Shaer, H.M.; Attia-Ismail, S.A. Halophytic and Salt Tolerant Feedstuffs in the Mediterranean Basin and Arab Region: An Overview. In Halophytic and Salt-Tolerant Feedstuffs; Squires, V.R., El Shaer, H.M., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016; pp. 21–36. [Google Scholar]
- Shamsutdinov, N.Z.; Shamsutdinova, E.Z.; Orlovsky, N.S.; Shamsutdinov, Z.S. Halophytes: Ecological features, global resources, and outlook for multipurpose use. Her. Russ. Acad. Sci. 2017, 87, 1–11. [Google Scholar] [CrossRef]
- Chapman, V.J. Terrestrial halophytes as potential food plants. In Seed-Bearing Halophytes as Food Plants; Somers, G.F., Ed.; University of Delaware: Newark, DE, USA, 1975; pp. 75–87. [Google Scholar]
- Stanković, M.; Jakovljević, D. Phytochemical Diversity of Halophytes. In Handbook of Halophytes; Grigore, M.N., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 2090–2114. [Google Scholar]
- Rolnik, A.; Olas, B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Zurayk, R.A.; Baalbaki, R. Inula crithmoides: A candidate plant for saline agriculture. Arid. Soil. Res. Rehabil. 1996, 10, 213–223. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Mifsud, S. Malta Wild Plants–Limbarda crithmoides (Golden Samphire). 2022. Available online: https://www.maltawildplants.com/ASTR/Limbarda_crithmoides.php (accessed on 28 August 2025).
- Plants for a Future: Inula crithmoides L. 2024. Available online: https://pfaf.org/User/Plant.aspx?LatinName=Inula+crithmoides#:~:text=Inula%20crithmoides%20is%20a%20PERENNIAL,The%20plant%20is%20self%2Dfertile (accessed on 28 August 2025).
- Adorisio, S.; Giamperi, L.; Bucchini, A.E.A.; Delfino, D.V.; Marcotullio, M.C. Bioassay-Guided Isolation of Antiproliferative Compounds from Limbarda crithmoides (L.) Dumort. Molecules 2022, 5, 1893. [Google Scholar] [CrossRef]
- Malash, B.N.; Ibrahim, S.N.; Ibrahim, A.R.S.; Kabbash, A.; El-Aasr, M. In vitro and In vivo Hepatoprotective Study of Inula crithmoides L., Pluchea dioscoridis (L.) Desf. and Phyllanthus reticulates Poir. Pharm. Sci. Res. 2015, 7, 987–993. [Google Scholar]
- Jallali, I.; Waffo-Téguo, P.; Smaoui, A.; Mérillion, J.M.; Abdelly, C.; Ksouri, R. Bio-guided fractionation and characterization of powerful antioxidant compounds from the halophyte Inula crithmoides. Arab. J. Chem. 2020, 13, 2680–2688. [Google Scholar] [CrossRef]
- Jallali, I.; Jemaa, M.B.; Medini, F.; Waffo-Téguo, P.; Mérillion, J.M.; Ahmed, H.B.; Ksouri, R. Isolation of the major phenolic of Limbarda crithmoides L. and evaluation of its contribution in the phytochemical variability and the biological activities among localities and organs. Biochem. Syst. Ecol. 2025, 123, 105109. [Google Scholar] [CrossRef]
- Jdey, A.; Falleh, H.; Ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Ksouri, R.; Magné, C. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S. Afr. J. Bot. 2017, 112, 508–514. [Google Scholar] [CrossRef]
- Bucchini, A.; Giamperi, L.; Ricci, D. Total Polyphenol Content, in vitro Antifungal and Antioxidant Activities of Callus Cultures from Inula crithmoides. Nat. Prod. Commun. 2013, 8, 1587–1590. [Google Scholar] [CrossRef]
- Bucchini, A.; Ricci, D.; Messina, F.; Marcotullio, M.C.; Curini, M.; Giamperi, L. Antioxidant and antifungal activity of different extracts obtained from aerial parts of Inula crithmoides L. Nat. Prod. Res. 2015, 29, 1173–1176. [Google Scholar]
- Oliveira, M.; João Rodrigues, M.; Pereira, C.; Neto, R.L.D.M.; Junior, P.A.S.; Neng, N.D.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. First report of the in vitro antileishmanial properties of extremophile plants from the Algarve Coast. Nat. Prod. Res. 2018, 32, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Omezzine, F.; Ladhari, A.; Rinez, A.; Haouala, R. Potent herbicidal activity of Inula crithmoides L. Sci. Hortic. 2011, 130, 853–861. [Google Scholar] [CrossRef]
- Aboul-Ela, M.A.; El-Lakany, A.M.; Abdel-KAder, M.S.; Alquasoumi, S.I.; Shams-El-Din, S.M.; Hammoda, H.M. New Quinic Acid Derivatives from Hepatoprotective Inula crithmoides Root Extract. Helv. Chim. Acta 2012, 95, 15222675. [Google Scholar]
- Ferreira, I.J.; Duarte, A.R.C.; Diniz, M.; Salgado, R. Unveiling the Antioxidant Potential of Halophyte Plants and Seaweeds for Health Applications. Oxygen 2024, 4, 163–180. [Google Scholar] [CrossRef]
- Belloum, Z.; Bouheroum, M.; Benayache, F.; Benayache, S. Secondary Metabolites from the Aerial Part of Inula crithmoides. Chem. Nat. Compd. 2013, 49, 763–764. [Google Scholar] [CrossRef]
- Oliveira, M.; Pereira, C.G.; Castañeda-Loaiza, V.; Rodrigues, M.J.; Neng, N.R.; Hoste, H.; Ben Hamed, K.; Custódio, L. Seasonal Biochemical Variations in Mediterranean Halophytes and Salt-Tolerant Plants: Targeting Sustainable Innovations in Ruminant Health. Appl. Sci. 2025, 15, 7625. [Google Scholar] [CrossRef]
- Maleš, Ž.; Žuntar, I.; Nigović, B.; Plazibat, M.; Vundać, V.B. Quantitative analysis of the polyphenols of the aerial parts of rock samphire Crithmum maritimum L. Acta Pharm. 2003, 53, 139–144. [Google Scholar]
- Maleš, Ž.; Plazibat, M.; Greiner, M. Kvalitativna i kvantitativna analiza flavonoida primorskog omana—Limbarda crithmoides (L.) Dumort. Farm. Glas. 2004, 60, 453–459. [Google Scholar]
- Katalinić, V.; Smole Možina, S.; Generalić, I.; Skroza, D.; Ljubenkov, I.; Klančnik, A. Phenolic profile, antioxidant capacity and antimicrobial activity of crude leaf extracts of six Vitis vinifera L. varieties. Int. J. Food Prop. 2013, 16, 45–60. [Google Scholar] [CrossRef]
- Veršić Bratinčević, M.; Kovačić, R.; Popović, M.; Radman, S.; Generalić Mekinić, I. Comparison of Conventional and Green Extraction Techniques for the Isolation of Phenolic Antioxidants from Sea Fennel. Processes 2023, 11, 2172. [Google Scholar] [CrossRef]
- Yang, J.; Meyers, K.J.; Van der Heide, J.; Liu, R.H. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 2004, 52, 6787–6793. [Google Scholar] [CrossRef] [PubMed]
- Julkunen-Titto, R. Phenolic constituents in the leaves of northen willow: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as measurement of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Čagalj, M.; Skroza, D.; Razola-Díaz, M.D.C.; Verardo, V.; Bassi, D.; Frleta, R.; Generalić Mekinić, I.; Tabanelli, G.; Šimat, V. Variations in the Composition, Antioxidant and Antimicrobial Activities of Cystoseira compressa during Seasonal Growth. Mar. Drugs 2022, 20, 64. [Google Scholar] [CrossRef]
- El-Sherbeny, G.A.; Dakhil, M.A.; Eid, E.M.; Abdelaal, M. Structural and Chemical Adaptations of Artemisia monosperma Delile and Limbarda crithmoides (L.) Dumort. in Response to Arid Coastal Environments along the Mediterranean Coast of Egypt. Plants 2021, 10, 481. [Google Scholar] [CrossRef]
- Gil, R.; Bautista, I.; Boscaiu, M.; Lidón, A.; Wankhade, S.; Sánchez, H.; Llinares, J.; Vicente, O. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 2014, 6, plu049. [Google Scholar] [CrossRef]
- Generalić Meknić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M.; et al. Sea fennel (Crithmum maritimum L.): Phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J. Food Sci. Technol. 2016, 53, 3104–3112. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Politeo, O.; Ljubenkov, I.; Mastelić, L.; Popović, M.; Veršić Bratinčević, M.; Šimat, V.; Radman, S.; Skroza, D.; Ninčević Runjić, T.; et al. The alphabet of sea fennel: Comprehensive phytochemical characterisation of Croatian populations of Crithmum maritimum L. Food Chem. X 2024, 22, 101386. [Google Scholar] [CrossRef]
- Politeo, O.; Ćurlin, P.; Brzović, P.; Auzende, K.; Magné, C.; Generalić Mekinić, I. Volatiles from French and Croatian Sea Fennel Ecotypes: Chemical Profiles and the Antioxidant, Antimicrobial and Antiageing Activity of Essential Oils and Hydrolates. Foods 2024, 13, 695. [Google Scholar] [CrossRef]
- Politeo, O.; Popović, M.; Veršić Bratinčević, M.; Kovačević, K.; Urlić, B.; Generalić Mekinić, I. Chemical profiling of sea fennel (Crithmum maritimum L., Apiaceae) essential oils and their isolation residual waste-waters. Plants 2023, 12, 214. [Google Scholar] [CrossRef]
- Popović, M.; Radman, S.; Generalić Mekinić, I.; Ninčević Runjić, T.; Urlić, B.; Veršić Bratinčević, M. A Year in the Life of Sea Fennel: Annual Phytochemical Variations of Major Bioactive Secondary Metabolites. Appl. Sci. 2024, 14, 3440. [Google Scholar] [CrossRef]
- Blažević, I.; Đulović, A.; Burčul, F.; Tomaš, J.; Brzović, P.; Radman, S.; Politeo, O.; Generalić Mekinić, I. Adaptation of the Chasmophyte Crithmum maritimum to High-Salinity Conditions. In Growth and Development in Plants and Their Medicinal and Environmental Impact; Soto-Hernández, M., Ed.; IntechOpen: London, UK, 2025; pp. 7–28. [Google Scholar]
- Meot-Duros, L.; Magné, C. Antioxidant Activity and Phenol Content of Crithmum maritimum L. Leaves. Plant Physiol. Biochem. 2009, 47, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.M.; Mancilla-Leytón, J.M.; Martins-Noguerol, R.; Moreira, X.; Moreno-Pérez, A.J.; Muñoz-Vallés, S.; Pedroche, J.J.; Enrique Figueroa, M.; García-González, A.; Salas, J.J.; et al. Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Sci. Hortic. 2022, 301, 111136. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Šimat, V.; Ljubenkov, I.; Burčul, F.; Grga, M.; Mihajlovski, M.; Lončar, R.; Katalinić, V.; Skroza, D. Influence of the vegetation period on sea fennel, Crithmum maritimum L. (Apiaceae), phenolic composition, antioxidant and anticholinesterase activities. Ind. Crops Prod. 2018, 124, 947–953. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulâaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic and antioxidant activities of Tunisian halophytes. C. R. Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef]
- Renard, C.; Dupont, N.; Guillermin, P. Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 2007, 68, 1128–1138. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanità 2007, 43, 348–361. [Google Scholar]
- Hassanpour, S.H.; Doroudi, A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna J. Phytomed. 2023, 13, 354–376. [Google Scholar]
- Jallali, I.; Zaouali, Y.; Missaoui, I.; Smeoui, A.; Abdelly, C.; Ksouri, R. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoïdes L. Food Chem. 2014, 145, 1031–1038. [Google Scholar] [CrossRef]



| t (min) | % B | 
|---|---|
| 0 | 0 | 
| 5 | 0 | 
| 20 | 18 | 
| 25 | 18 | 
| 30 | 20 | 
| 31 | 100 | 
| 35 | 100 | 
| 35.1 | 0 | 
| 40 | 0 | 
| No. | Phenolic Compound | Rt (min) | Concentration (µg/g) | ||
|---|---|---|---|---|---|
| June | July | August | |||
| 1 | Gallic acid | 0.86 | 8.22 ± 0.25 a | 8.43 ± 0.16 ab | 8.85 ± 0.18 b | 
| 2 | Protocatechic acid | 1.86 | 3.04 ± 0.11 a | 3.32 ± 0.10 a | 4.34 ± 0.15 b | 
| 3 | p-Hydroxybenzoic acid | 3.40 | 6.69 ± 0.31 a | 7.02 ± 0.11 a | 8.84 ± 0.47 b | 
| 4 | Neochlorogenic acid | 4.27 | 11.71 ± 1.68 a | 15.16 ± 0.93 a | 26.77 ± 2.04 b | 
| 5 | Vanillic acid | 7.45 | 6.23 ± 0.37 a | 5.37 ± 0.22 b | 5.87 ± 0.20 ab | 
| 6 | Caffeic acid | 7.49 | 6.14 ± 0.65 a | 4.72 ± 0.32 b | 7.48 ± 0.39 c | 
| 7 | Chlorogenic acid | 9.70 | 355.14 ± 30.26 a | 447.13 ± 8.27 b | 455.24 ± 31.08 b | 
| 8 | Cryptochlorogenic acid | 10.18 | 29.73 ± 2.00 a | 34.72 ± 0.39 b | 30.02 ± 1.93 a | 
| 9 | Syringic acid | 10.19 | 14.12 ± 0.58 ab | 13.10 ± 0.16 a | 17.24 ± 2.80 b | 
| 10 | 4-Hydroxycinnamic acid | 10.80 | 10.48 ± 0.13 a | 11.73 ± 0.34 b | 10.98 ± 0.06 a | 
| 11 | Epicatechin | 11.12 | 18.86 ± 1.97 a | 18.12 ± 2.17 a | 18.24 ± 0.66 a | 
| 12 | Epigallocatechin-3-gallate | 11.27 | 2.65 ± 1.03 a | 5.60 ± 2.78 a | 3.57 ± 0.90 a | 
| 13 | Ferulic acid | 13.18 | 9.04 ± 1.88 a | 8.60 ± 0.67 a | 10.32 ± 0.74 a | 
| 14 | Sinapic acid | 14.59 | 10.85 ± 0.42 a | 12.23 ± 4.51 a | 16.73 ± 1.92 a | 
| 15 | 3-Hydroxycinnamic acid | 14.94 | 5.76 ± 2.27 a | 5.22 ± 0.72 a | 4.65 ± 0.94 a | 
| 16 | Rutin | 16.90 | 19.50 ± 8.73 a | 18.18 ± 1.60 a | 19.41 ± 0.61 a | 
| 17 | Myricetin | 17.95 | 28.79 ± 1.88 a | 27.09 ± 1.31 a | 27.34 ± 1.01 a | 
| 18 | Quercetin | 21.60 | 34.00 ± 0.04 a | 32.31 ± 0.14 a | 32.48 ± 0.21 a | 
| Sample | DPPH (IC50 in mg/mL) | FRAP (µM Fe2+/L) | ORAC (µM TE/L) | 
|---|---|---|---|
| June | 24.74 ± 0.26 a | 811.51 ± 11.15 a | 35.34 ± 0.26 a | 
| July | 24.21 ± 0.09 a | 1086.69 ± 6.71 b | 38.65 ± 0.12 b | 
| August | 22.91 ± 0.11 b | 1149.43 ± 2.21 c | 42.30 ± 0.71 c | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzović, P.; Radman, S.; Mekinić, I.G. Phenolic Antioxidants in the Adriatic Halophyte Limbarda crithmoides: Variation Across Phenological Stages. Foods 2025, 14, 3718. https://doi.org/10.3390/foods14213718
Brzović P, Radman S, Mekinić IG. Phenolic Antioxidants in the Adriatic Halophyte Limbarda crithmoides: Variation Across Phenological Stages. Foods. 2025; 14(21):3718. https://doi.org/10.3390/foods14213718
Chicago/Turabian StyleBrzović, Petra, Sanja Radman, and Ivana Generalić Mekinić. 2025. "Phenolic Antioxidants in the Adriatic Halophyte Limbarda crithmoides: Variation Across Phenological Stages" Foods 14, no. 21: 3718. https://doi.org/10.3390/foods14213718
APA StyleBrzović, P., Radman, S., & Mekinić, I. G. (2025). Phenolic Antioxidants in the Adriatic Halophyte Limbarda crithmoides: Variation Across Phenological Stages. Foods, 14(21), 3718. https://doi.org/10.3390/foods14213718
 
        





 
       