Combined Effect of Plant Protein Isolate Content and the Homogenization Processes on the Physical Stability of Oily Extract Emulsions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chili Extracts Rich in Bioactive Compounds
2.3. Emulsion Preparation by Microfluidization
2.4. Emulsion Preparation by Rotor–Stator
2.5. Emulsion Stability by Turbiscan Stability Index
2.6. Determination of Mean Droplet Size and Polydispersity Index
2.7. ζ Potential
2.8. Determination of Apparent Viscosity
2.9. Modeling Turbiscan Stability Index Data
2.10. Rheological Properties of Optimized Emulsions
2.11. Multivariate Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Mean Droplet Size and Polydispersity Index
3.2. Emulsion Stability by Turbiscan Stability Index
3.3. Electrostatic Stability by ζ Potential
3.4. Apparent Viscosity
3.5. Model Fitting, Optimization, and Validation
3.6. Turbiscan Stability Index Modeling of Emulsion Stability Kinetics
3.7. Viscosity Behavior of Optimized Emulsions
3.8. Results of Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SPI | soy protein isolate | 
| PPI | pea protein isolate | 
| MD | maltodextrin | 
| TSI | Turbiscan index | 
| MDS | mean droplet size | 
| PDI | polydispersity index | 
| RE | rotor/stator | 
| MF | microfluidization | 
References
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-0-429-15403-4. [Google Scholar]
- Pereyra-Castro, S.C.; Pérez-Pérez, V.; Hernández-Sánchez, H.; Jiménez-Aparicio, A.; Gutiérrez-López, G.F.; Alamilla-Beltrán, L. Effect of composition and homogenization pressure of chia oil emulsions elaborated by microfluidization. Rev. Mex. Ing. Quim. 2019, 18, 69–81. [Google Scholar] [CrossRef]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and Emulsion Stability: The Role of the Interfacial Properties. Adv. Colloid Interface Sci. 2021, 288, 102344. [Google Scholar] [CrossRef] [PubMed]
- Alcântara, M.A.; Lima, A.E.A.D.; Braga, A.L.M.; Tonon, R.V.; Galdeano, M.C.; Mattos, M.D.C.; Brígida, A.I.S.; Rosenhaim, R.; Santos, N.A.D.; Cordeiro, A.M.T.D.M. Influence of the Emulsion Homogenization Method on the Stability of Chia Oil Microencapsulated by Spray Drying. Powder Technol. 2019, 354, 877–885. [Google Scholar] [CrossRef]
- Kornet, R.; Yang, J.; Venema, P.; Van Der Linden, E.; Sagis, L.M.C. Optimizing Pea Protein Fractionation to Yield Protein Fractions with a High Foaming and Emulsifying Capacity. Food Hydrocoll. 2022, 126, 107456. [Google Scholar] [CrossRef]
- Burger, T.G.; Zhang, Y. Recent Progress in the Utilization of Pea Protein as an Emulsifier for Food Applications. Trends Food Sci. Technol. 2019, 86, 25–33. [Google Scholar] [CrossRef]
- Campardelli, R.; De Negri Atanasio, G.; Carotenuto, C.; Griffo, R.; Ahmed, E.N.; Corrales-González, M.; Wei, J.; Tuju, P.E.; Mazzino, A.; Pralits, J.O. Rotor-Stator Emulsification in the Turbulent Inertial Regime: Experiments toward a Robust Correlation for the Droplet Size. Langmuir 2023, 39, 18518–18525. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and Plant Proteins as Natural Food Emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Liu, C.; Pei, R.; Heinonen, M. Faba Bean Protein: A Promising Plant-Based Emulsifier for Improving Physical and Oxidative Stabilities of Oil-in-Water Emulsions. Food Chem. 2022, 369, 130879. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, S.; Singh, G.; Koppel, K.; Li, Y. Improving Functional Properties of Pea Protein through “Green” Modifications Using Enzymes and Polysaccharides. Food Chem. 2022, 385, 132687. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Liu, Z.; Zhi, L.; Jiao, B.; Hu, H.; Ma, X.; Agyei, D.; Shi, A. Plant Protein-Based Emulsifiers: Mechanisms, Techniques for Emulsification Enhancement and Applications. Food Hydrocoll. 2023, 144, 109008. [Google Scholar] [CrossRef]
- Fang, Q.; Li, R.; Li, P.; Yuan, Y.; Zhuang, H.; Zhang, C. Interaction between Soy Protein Isolate and Surfactant at the Interface of Antibacterial Nanoemulsions Loaded with Riboflavin Tetra Butyrate. Int. J. Food Sci. Technol. 2022, 57, 931–941. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Sun, M.; Li, X.; McClements, D.J.; Xiao, M.; Chen, H.; Zhou, Q.; Xu, S.; Chen, Y.; Deng, Q. Reducing Off-Flavors in Plant-Based Omega-3 Oil Emulsions Using Interfacial Engineering: Coating Algae Oil Droplets with Pea Protein/Flaxseed Gum. Food Hydrocoll. 2022, 122, 107069. [Google Scholar] [CrossRef]
- Yi, J.; Gan, C.; Wen, Z.; Fan, Y.; Wu, X. Development of Pea Protein and High Methoxyl Pectin Colloidal Particles Stabilized High Internal Phase Pickering Emulsions for β-Carotene Protection and Delivery. Food Hydrocoll. 2021, 113, 106497. [Google Scholar] [CrossRef]
- Kumar, A.; Dhiman, A.; Suhag, R.; Sehrawat, R.; Upadhyay, A.; McClements, D.J. Comprehensive Review on Potential Applications of Microfluidization in Food Processing. Food Sci. Biotechnol. 2022, 31, 17–36. [Google Scholar] [CrossRef]
- Gazolu-Rusanova, D.; Lesov, I.; Tcholakova, S.; Denkov, N.; Ahtchi, B. Food Grade Nanoemulsions Preparation by Rotor-Stator Homogenization. Food Hydrocoll. 2020, 102, 105579. [Google Scholar] [CrossRef]
- Guo, X.; Chen, M.; Li, Y.; Dai, T.; Shuai, X.; Chen, J.; Liu, C. Modification of Food Macromolecules Using Dynamic High Pressure Microfluidization: A Review. Trends Food Sci. Technol. 2020, 100, 223–234. [Google Scholar] [CrossRef]
- Li, Y.; Deng, L.; Dai, T.; Li, Y.; Chen, J.; Liu, W.; Liu, C. Microfluidization: A Promising Food Processing Technology and Its Challenges in Industrial Application. Food Control 2022, 137, 108794. [Google Scholar] [CrossRef]
- Villalobos-Castillejos, F.; Alamilla-Beltrán, L.; Leyva-Daniel, D.E.; Monroy-Villagrana, A.; Jimenez-Guzman, J.; Dorantes-Álvarez, L.; Gutiérrez-López, G.F. Long Term Stability of Microfluidized Emulsions Used in Microencapsulation by Spray Drying. Rev. Mex. Ing. Química 2016, 16, 221–228. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, F.; Lan, X.; Gong, S.; Wang, Z. Characteristics of Pectin from Black Cherry Tomato Waste Modified by Dynamic High-Pressure Microfluidization. J. Food Eng. 2018, 216, 90–97. [Google Scholar] [CrossRef]
- Pan, J.; Chen, J.; Wang, X.; Wang, Y.; Fan, J. Pickering Emulsion: From Controllable Fabrication to Biomedical Application. Interdiscip. Med. 2023, 1, e20230014. [Google Scholar] [CrossRef]
- Plazola-Jacinto, C.P.; Pérez-Pérez, V.; Pereyra-Castro, S.C.; Alamilla-Beltrán, L.; Ortiz-Moreno, A. Microencapsulation of biocompounds from avocado leaves oily extracts. Rev. Mex. Ing. Química 2018, 18, 1261–1276. [Google Scholar] [CrossRef]
- Salum, P.; Ulubaş, Ç.; Güven, O.; Cam, M.; Aydemir, L.Y.; Erbay, Z. The Impact of Homogenization Techniques and Conditions on Water-In-Oil Emulsions for Casein Hydrolysate–Loaded Double Emulsions: A Comparative Study. Food Sci. Nutr. 2024, 12, 9585–9599. [Google Scholar] [CrossRef]
- Guadarrama-Lezama, A.Y.; Dorantes-Alvarez, L.; Jaramillo-Flores, M.E.; Pérez-Alonso, C.; Niranjan, K.; Gutiérrez-López, G.F.; Alamilla-Beltrán, L. Preparation and Characterization of Non-Aqueous Extracts from Chilli (Capsicum Annuum L.) and Their Microencapsulates Obtained by Spray-Drying. J. Food Eng. 2012, 112, 29–37. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Lu, L.; Li, M.; Xu, J.; Deng, H. Turbiscan Lab® Expert Analysis of the Biological Demulsification of a Water-in-Oil Emulsion by Two Biodemulsifiers. J. Hazard. Mater. 2011, 190, 214–221. [Google Scholar] [CrossRef]
- López-Hernández, R.E.; García-Solís, S.E.; Monroy-Rodríguez, I.; Cornejo-Mazón, M.; Calderón-Domínguez, G.; Alamilla-Beltrán, L.; Hernández-Sánchez, H.; Gutiérrez-López, G.F. Preparation and Characterization of Canola Oil-in-Water Pickering Emulsions Stabilized by Barley Starch Nanocrystals. J. Food Eng. 2022, 326, 111037. [Google Scholar] [CrossRef]
- Cano-Sarmiento, C.; Téllez-Medina, D.I.; Viveros-Contreras, R.; Cornejo-Mazón, M.; Figueroa-Hernández, C.Y.; García-Armenta, E.; Alamilla-Beltrán, L.; García, H.S.; Gutiérrez-López, G.F. Zeta Potential of Food Matrices. Food Eng. Rev. 2018, 10, 113–138. [Google Scholar] [CrossRef]
- Kamalledin Moghadam, S.; Tabibiazar, M.; Masoumi, B.; Ahmadi, P.; Azar, S.T. Characterization of Whey Protein Isolate-Ascorbic Acid Stabilized Oil in Water Pickering Emulsions. J. Agric. Food Res. 2025, 19, 101650. [Google Scholar] [CrossRef]
- Azuara, E.; Cortés, R.; Garcia, H.S.; Beristain, C.I. Kinetic Model for Osmotic Dehydration and Its Relationship with Fick’s Second Law. Int. J. Food Sci. Tech. 1992, 27, 409–418. [Google Scholar] [CrossRef]
- Loffredi, E.; Alamprese, C. Design and Optimization of Advanced Emulsion Systems for Food Applications. LWT 2025, 218, 117423. [Google Scholar] [CrossRef]
- Alamprese, C.; Datei, L.; Semeraro, Q. Optimization of Processing Parameters of a Ball Mill Refiner for Chocolate. J. Food Eng. 2007, 83, 629–636. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Saurel, R.; Chambin, O.; Voilley, A. Pea (Pisum Sativum, L.) Protein Isolate Stabilized Emulsions: A Novel System for Microencapsulation of Lipophilic Ingredients by Spray Drying. Food Bioprocess Technol. 2012, 5, 2211–2221. [Google Scholar] [CrossRef]
- Wu, M.; He, X.; Feng, D.; Li, H.; Han, D.; Li, Q.; Zhao, B.; Li, N.; Liu, T.; Wang, J. The Effect of High Pressure Homogenization on the Structure of Dual-Protein and Its Emulsion Functional Properties. Foods 2023, 12, 3358. [Google Scholar] [CrossRef]
- Jafari, S.M.; He, Y.; Bhandari, B. Role of Powder Particle Size on the Encapsulation Efficiency of Oils during Spray Drying. Dry. Technol. 2007, 25, 1081–1089. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, R.; Li, L. The Interaction between Anionic Polysaccharides and Legume Protein and Their Influence Mechanism on Emulsion Stability. Food Hydrocoll. 2022, 131, 107814. [Google Scholar] [CrossRef]
- Kowalska, M. Physical Stability and the Droplet Distribution of Rice Oil–in–Water Emulsion. J. Dispers. Sci. Technol. 2016, 37, 222–230. [Google Scholar] [CrossRef]
- Xie, H.; Sha, X.-M.; Hu, Z.-Z.; Tu, Z.-C. Enhanced Stability of Curcumin Encapsulated in Fish Gelatin Emulsions Combined with γ-Polyglutamic Acid. Int. J. Biol. Macromol. 2025, 284, 137772. [Google Scholar] [CrossRef]
- Keerati-u-rai, M.; Corredig, M. Effect of Dynamic High Pressure Homogenization on the Aggregation State of Soy Protein. J. Agric. Food Chem. 2009, 57, 3556–3562. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of Processing Parameters on Physicochemical Characteristics of Microfluidized Lemongrass Essential Oil-Alginate Nanoemulsions. Food Hydrocoll. 2013, 30, 401–407. [Google Scholar] [CrossRef]
- Vélez-Erazo, E.M.; Bosqui, K.; Rabelo, R.S.; Kurozawa, L.E.; Hubinger, M.D. High Internal Phase Emulsions (HIPE) Using Pea Protein and Different Polysaccharides as Stabilizers. Food Hydrocoll. 2020, 105, 105775. [Google Scholar] [CrossRef]
- Padial-Domínguez, M.; Espejo-Carpio, F.J.; Pérez-Gálvez, R.; Guadix, A.; Guadix, E.M. Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Julio, L.M.; Ixtaina, V.Y.; Fernández, M.A.; Sánchez, R.M.T.; Wagner, J.R.; Nolasco, S.M.; Tomás, M.C. Chia Seed Oil-in-Water Emulsions as Potential Delivery Systems of ω-3 Fatty Acids. J. Food Eng. 2015, 162, 48–55. [Google Scholar] [CrossRef]
- Oliete, B.; Potin, F.; Cases, E.; Saurel, R. Microfluidization as Homogenization Technique in Pea Globulin-Based Emulsions. Food Bioprocess Technol. 2019, 12, 877–882. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-assisted Extraction and Modification of Plant-based Proteins: Impact on Physicochemical, Functional, and Nutritional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Kang, W.; Xu, B.; Wang, Y.; Li, Y.; Shan, X.; An, F.; Liu, J. Stability Mechanism of W/O Crude Oil Emulsion Stabilized by Polymer and Surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 555–560. [Google Scholar] [CrossRef]
- Xie, H.; Wei, X.; Liu, X.; Bai, W.; Zeng, X. Effect of Polyphenolic Structure and Mass Ratio on the Emulsifying Performance and Stability of Emulsions Stabilized by Polyphenol-Corn Amylose Complexes. Ultrason. Sonochemistry 2023, 95, 106367. [Google Scholar] [CrossRef]
- Guo, Q.; Bayram, I.; Shu, X.; Su, J.; Liao, W.; Wang, Y.; Gao, Y. Improvement of Stability and Bioaccessibility of β-Carotene by Curcumin in Pea Protein Isolate-Based Complexes-Stabilized Emulsions: Effect of Protein Complexation by Pectin and Small Molecular Surfactants. Food Chem. 2022, 367, 130726. [Google Scholar] [CrossRef]
- Villalobos-Espinosa, J.C.; García-Armenta, E.; Alamilla-Beltrán, L.; Quintanilla-Carvajal, M.X.; Azuara-Nieto, E.; Hernández-Sánchez, H.; Perea-Flores, M.D.J.; Gutiérrez-López, G.F. Effect of Pumping and Atomisation on the Stability of Oil/Water Emulsions. J. Food Eng. 2022, 327, 111056. [Google Scholar] [CrossRef]
- Tao, Y.; Cai, J.; Wang, P.; Chen, J.; Zhou, L.; Wang, Q.; Li, Z.; Wang, J.; Xu, X. Effect of Heat Treatment on the Stability of Ultrasound-Assisted Cross-Linked Myofibrillar Protein-Stabilized Emulsion Filler Phases via Rheology and Tribology. Food Hydrocoll. 2025, 158, 110570. [Google Scholar] [CrossRef]
- Jin, Q.; Li, X.; Cai, Z.; Zhang, F.; Yadav, M.P.; Zhang, H. A Comparison of Corn Fiber Gum, Hydrophobically Modified Starch, Gum Arabic and Soybean Soluble Polysaccharide: Interfacial Dynamics, Viscoelastic Response at Oil/Water Interfaces and Emulsion Stabilization Mechanisms. Food Hydrocoll. 2017, 70, 329–344. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, H.; Zhang, S.; Yang, C.; Musazade, E.; Fan, H.; Liu, T.; Zhang, Y. Structural Modification of Whey Protein Isolate via Electrostatic Complexation with Tremella Polysaccharides and Its Effect on Emulsion Stability at pH 4.5. Int. J. Biol. Macromol. 2025, 297, 139870. [Google Scholar] [CrossRef] [PubMed]
- Castel, V.; Rubiolo, A.C.; Carrara, C.R. Droplet Size Distribution, Rheological Behavior and Stability of Corn Oil Emulsions Stabilized by a Novel Hydrocolloid (Brea Gum) Compared with Gum Arabic. Food Hydrocoll. 2017, 63, 170–177. [Google Scholar] [CrossRef]
- Nikolaou, F.; Yang, J.; Ji, L.; Scholten, E.; Nikiforidis, C.V. The Role of Membrane Components on the Oleosome Lubrication Properties. J. Colloid Interface Sci. 2024, 657, 695–704. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Galani, E.; Ly, I.; Laurichesse, E.; Schmitt, V.; Xenakis, A.; Chatzidaki, M.D. Pea and Soy Protein Stabilized Emulsions: Formulation, Structure, and Stability Studies. Colloids Interfaces 2023, 7, 30. [Google Scholar] [CrossRef]
- Wang, N.; Wang, R.; Xing, K.; Huang, Z.; Elfalleh, W.; Zhang, H.; Yu, D. Microfluidization of Soybean Protein Isolate-Tannic Acid Complex Stabilized Emulsions: Characterization of Emulsion Properties, Stability and in Vitro Digestion Properties. Food Chem. 2024, 430, 137065. [Google Scholar] [CrossRef]









| Experiment | Plant Protein Isolate 1 (%) | Maltodextrin (10DE) (%) | Homogenization Pressure (MPa) | 
|---|---|---|---|
| 1 | 4.3 | 15.8 | 68.9 | 
| 2 | 2.8 | 17.3 | 68.9 | 
| 3 | 5.0 | 15.0 | 68.9 | 
| 4 | 5.0 | 15.0 | 68.9 | 
| 5 | 2.0 | 18.0 | 68.9 | 
| 6 | 3.5 | 16.5 | 68.9 | 
| 7 | 2.0 | 18.0 | 68.9 | 
| 8 | 5.0 | 15.0 | 75.8 | 
| 9 | 3.5 | 16.5 | 75.8 | 
| 10 | 2.8 | 17.3 | 75.8 | 
| 11 | 2.0 | 18.0 | 75.8 | 
| 12 | 5.0 | 15.0 | 82.7 | 
| 13 | 5.0 | 15.0 | 82.7 | 
| 14 | 2.0 | 18.0 | 82.7 | 
| 15 | 3.5 | 16.5 | 82.7 | 
| 16 | 2.0 | 18.0 | 82.7 | 
| 17 | 2.8 | 17.3 | 89.6 | 
| 18 | 4.3 | 15.8 | 89.6 | 
| 19 | 2.0 | 18.0 | 96.5 | 
| 20 | 5.0 | 15.0 | 96.5 | 
| 21 | 3.5 | 16.5 | 96.5 | 
| 22 | 2.8 | 17.3 | 96.5 | 
| 23 | 2.0 | 18.0 | 96.5 | 
| 24 | 4.3 | 15.8 | 96.5 | 
| 25 | 5.0 | 15.0 | 96.5 | 
| Experiment | Plant Protein Isolate 1 (%) | Maltodextrin (10DE) (%) | Homogenization Speed 2 (N) (rpm) | 
|---|---|---|---|
| 1 | 5.00 | 15.00 | N2 | 
| 2 | 5.00 | 15.00 | N2 | 
| 3 | 4.25 | 15.75 | N2 | 
| 4 | 3.50 | 16.50 | N2 | 
| 5 | 2.75 | 17.25 | N2 | 
| 6 | 2.00 | 18.00 | N2 | 
| 7 | 5.00 | 15.00 | N3 | 
| 8 | 5.00 | 15.00 | N3 | 
| 9 | 4.25 | 15.75 | N3 | 
| 10 | 3.50 | 16.50 | N3 | 
| 11 | 2.75 | 17.25 | N3 | 
| 12 | 2.00 | 18.00 | N3 | 
| 13 | 2.00 | 18.00 | N3 | 
| 14 | 5.00 | 15.00 | N4 | 
| 15 | 5.00 | 15.00 | N4 | 
| 16 | 4.25 | 15.75 | N4 | 
| 17 | 3.50 | 16.50 | N4 | 
| 18 | 2.75 | 17.25 | N4 | 
| 19 | 2.00 | 18.00 | N4 | 
| 20 | 2.00 | 18.00 | N4 | 
| System | Mathematical Models | Adjusted R2 | |
|---|---|---|---|
| SPI-MD-RS | ζ potential | N2: 0.29A + 33.99B − 2.65AB N3: 0.05A + 33.55B − 2.65AB N4: 0.28A + 32.04B − 2.65AB | 0.83 | 
| MDS | ND | ||
| PDI | ND | ||
| Apparent viscosity | N2: 0.42 + 0.81A + 16.40B − 0.98AB N3: 0.27 + 0.81A + 16.4B − 0.98AB N4: −0.69 + 0.81A + 16.40B − 0.98AB | 0.85 | |
| TSI | N2: −3.32A + 542.02B − 47.19AB + 1.19AB(A − B) N3: 6.53A − 500.44B + 43.83AB − 1.17AB(A − B) N4: 2.50A − 6.47B + 0.59AB − 0.06AB(A − B) | 0.92 | |
| PPI-MD-RS | ζ potential | N2: −1.12A + −10.63B + 0.52AB N3: −3.25A − 71.89B + 4.83AB N4: −0.91A − 2.31B − 0.13AB | 0.89 | 
| MDS | ND | ||
| PDI | ND | ||
| Apparent viscosity | N2: 0.37A + 8.89B − 0.73AB + 0.02AB(A − B) N3: −0.09A + 81.48B − 7.07AB + 0.18AB(A − B) N4: −0.29A + 108.89B − 9.51AB + 0.24AB(A − B) | 0.85 | |
| TSI | N2: 1.62A − 132.67B + 11.9AB − 0.31AB(A − B) N3: 7.56A − 785.48B + 69.38AB − 1.82AB(A − B) N4: −2.99A + 426.846B − 37.31AB + 0.97AB(A − B) | 0.87 | |
| System | Mathematical Models | Adjusted R2 | |
|---|---|---|---|
| SPI-MD-MF | ζ potential | ND | |
| MDS | 35,705.2A + 1527.5B − 2669.3AB + 0.68ABC + 0.001AC2 + 1.61 × 10−9ABC3 | 0.92 | |
| PDI | 81.73A + 2.88B − 5.92AB + 0.002ABC + 6.64 × 10−8BC2 − 1.34 × 10−7ABC2 + 3.83 × 10−12ABC3 | 0.87 | |
| Apparent viscosity | 4.09A + 0.33B − 0.19AB | 0.95 | |
| TSI | ND | ||
| PPI-MD-MF | ζ potential | −46,373.1A + 582.02B − 0.16BC − 0.001AC2 + 1.4 × 10−5BC2 + 106.1AB(A − B) − 4.08427 × 10−10BC3 − 0.03ABC(A − B) + 2.7 × 10−6ABC2(A − B) − 8.1 × 10−11ABC3(A − B) | 0.93 | 
| MDS | −2.73 × 106A + 34,831.4B + 2.4 × 105AB − 9.06BC − 62.95ABC + 0.001BC2 + 0.005ABC2 − 2.21 × 10−8BC3 − 1.72ABC(A − B) − 1.54 × 10−7ABC3 − 4.21 × 10−9ABC3(A − B) | 0.97 | |
| PDI | −7373.49A + 97.51B + 650.06AB − 0.03BC − 0.17ABC + 2.18 × 10−6BC2 + 17.81AB(A − B) + 1.48 × 10−5ABC2 − 6.2 × 10−11BC3 − 0.005ABC(A − B) − 4.22 × 10−10ABC3 + 4.04 × 10−7ABC2(A − B) − 1.15 × 10−11ABC3(A − B) | 0.94 | |
| Apparent viscosity | −38,840.4A + 635.018B + 3428.35AB − 0.17BC − 0.95ABC + 97.04AB(A − B) − 4.22 × 10−10BC3 − 2.54 × 10−9ABC3 + 2.39 × 10−6ABC2(A − B) | 0.81 | |
| TSI | −92,394.9A + 2121.1B + 8260.52AB − 0.56BC − 2.31ABC + 4.93 × 10−5BC2 + 252.29AB(A − B) + 0.001ABC2 − 1.42 × 10−9BC3 − 0.07ABC(A − B) − 6.3 × 10−9ABC3 + 6.3 × 10−6ABC2(A − B) | 0.97 | |
| System | Conditions (%) 1 | D | ζ Potential (mV) | MDS (nm) | PDI | Apparent Viscosity (mPa·s) | TSI | |
|---|---|---|---|---|---|---|---|---|
| SPI-MD-RS | 4.0–16.0–N4 | 0.93 | PV | −36.92 | ND | ND | 15.3 | 6.4 | 
| AV | −40.2 ± 0.4 | ND | ND | 14.3 ± 0.2 | 5.7 ± 0.35 | |||
| PPI-MD-RS | 4.25–15.75–N4 | 0.61 | PV | −36.91 | ND | ND | 15.0 | 6.7 | 
| AV | −36.7 ± 1.6 | ND | ND | 7.7 ± 0.07 | 7.9 ± 1.06 | |||
| SPI-MD-MF | 3.4–16.4–89.6 MPa | 0.87 | PV | ND | 161.9 | 0.129 | 9.0 | ND | 
| AV | ND | 160.1 ± 4.2 | 0.152 ± 0.003 | 8.1 ± 0.35 | ND | |||
| PPI-MD-MF | 5.0–15.0–96.5 MPa | 0.97 | PV | −30.0 | 187.7 | 0.183 | 8.9 | 1.4 | 
| AV | −25.8 ± 0.2 | 188.1 ± 4.0 | 0.184 ± 0.005 | 9.9 ± 0.07 | 1.6 ± 0.21 | 
| System | Model Parameters | ||
|---|---|---|---|
| m1 (Dimensionless) | m2 (h) | R2 | |
| APCMD-MF | 10.41 | 23.20 | 0.999 | 
| APSMD-MF | 10.70 | 63.29 | 0.995 | 
| APCMD-RS | 13.14 | 2.69 | 0.999 | 
| APSMD-RS | 12.50 | 6.64 | 0.999 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damas-Espinoza, J.A.; Alamilla-Beltrán, L.; Leyva-Daniel, D.E.; Villalobos-Castillejos, F.; Hernández-Sánchez, H.; Jiménez-Aparicio, A.R. Combined Effect of Plant Protein Isolate Content and the Homogenization Processes on the Physical Stability of Oily Extract Emulsions. Foods 2025, 14, 3717. https://doi.org/10.3390/foods14213717
Damas-Espinoza JA, Alamilla-Beltrán L, Leyva-Daniel DE, Villalobos-Castillejos F, Hernández-Sánchez H, Jiménez-Aparicio AR. Combined Effect of Plant Protein Isolate Content and the Homogenization Processes on the Physical Stability of Oily Extract Emulsions. Foods. 2025; 14(21):3717. https://doi.org/10.3390/foods14213717
Chicago/Turabian StyleDamas-Espinoza, Juan A., Liliana Alamilla-Beltrán, Diana E. Leyva-Daniel, Fidel Villalobos-Castillejos, Humberto Hernández-Sánchez, and Antonio R. Jiménez-Aparicio. 2025. "Combined Effect of Plant Protein Isolate Content and the Homogenization Processes on the Physical Stability of Oily Extract Emulsions" Foods 14, no. 21: 3717. https://doi.org/10.3390/foods14213717
APA StyleDamas-Espinoza, J. A., Alamilla-Beltrán, L., Leyva-Daniel, D. E., Villalobos-Castillejos, F., Hernández-Sánchez, H., & Jiménez-Aparicio, A. R. (2025). Combined Effect of Plant Protein Isolate Content and the Homogenization Processes on the Physical Stability of Oily Extract Emulsions. Foods, 14(21), 3717. https://doi.org/10.3390/foods14213717
 
        

 
       