A Review of Nutritional Regulation of Intestinal Butyrate Synthesis: Interactions Between Dietary Polysaccharides and Proteins
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Synthesis
3. Synthesis and Metabolic Pathways of Butyrate
3.1. Synthesis of Butyrate from Polysaccharides and Proteins
3.2. Absorption and Signal Transmission of Butyrate
4. The Effect of Dietary Components on Butyrate
4.1. The Effect of Polysaccharides on Butyrate
Effects of Different Polysaccharide Structures on Butyrate
4.2. The Effect of Protein on Butyrate
Regulation of Protein Digestibility on Butyrate Fermentation Metabolism
4.3. Polysaccharide-Mediated Regulation of Colonic Protein Metabolism and Its Impact on Butyrate Production
4.4. Activation of Microbiota Through Cross Feeding Promotes Butyrate Production: Synergistic Effect of Polysaccharides and Protein
| Type of Carbohydrate | Research Contents | Butyrate Concentration | Butyrate-Related Bacteria | Butyrate-Related Role | Reference |
|---|---|---|---|---|---|
| Oat β-glucan | Mice (food allergy model) | restored butyrate to normal level | Lachnospiraceae ↑ | improves inflammation and colon damage | [50] |
| sea buckthorn polysaccharide | ICR mice | increasing by 4.52 times | Agathobactere, Lachnospiraceae_NK4A136_group, Lachnospiraceae, Alistipes | - | [84] |
| Resistant starch | db/db mice (diabetes model) | The concentrations of butyrate significantly increased | - | reduces intestinal permeability and enhances immune health of the kidney in diabetes | [85,86] |
| high amylose maize butyrylated starch (HAMSB) | Sprague–Dawley rats | 10% HAMSB: 200.11 µmol > Control: 17.98 µmol | - | the greater ability of HAMSB to deliver butyrate to the large bowel and lots of butyrate | [87] |
| Safflower Dietary Fiber | Constipation Rats | 18.17–27.25 mM/g | Clostridium, Ruminococcaceae ↑ | intestinal peristalsis and barrier repair | [88] |
| Barley arabinoxylan | Mice (hyperglycemia) | Butyrate concentration ↑ | Bifidobacterium ↑ | affect L-cell differentiation, GLP-1 ↑ | [89] |
| Codonopsis pilosula neutral polysaccharide | Immunocompromised mice | regressed and exceeded the control group | Roseburia, Eubacteriu, Clostridium ↑ | the strongest correlation with immune activation | [8] |
| Astragalus polysaccharide | Immunosuppressed broilers | 4.36 µmol/g, 1.5-fold higher than control group | Ruminococcaceae UCG-014, Oscillibacter, Shuttleworthia | improve the growth performance of immunosuppressive broilers | [90] |
| Pectin | Tumor-bearing mice humanized | reversed the decrease in butyrate | Lactobacillus, Roseburia, Faecalibacterium | the function of CD4+ T cells, the IFN-γ on CD8+ T cells and the efficacy of anti-PD-1 mAb ↑ | [91] |
| Inulin | C57BL/6J mice (alcoholic liver disease model) | 2-fold higher than AF/CON group | - | promoted M1 Mψs and inhibit M2 Mψs, reduced inflammation | [92] |
| pectin and inulin (1:1) | Induction of collagen-induced arthritis (CIA) mice | 2.5–4 times higher than ND group | Bifidobacterium | reducing joint inflammation and the immune-inflammatory response mediated by CD4 T cells | [93] |
| Fructooligosaccharide | Elderly PlyFermS fermentation model | stimulated butyrate formation (+116%–123%) | Lachnospiraceae, Bifidobacterium spp., Roseburia spp. | metabolic activity of elderly colonic microbiota ↑ | [94] |
| Fructooligosaccharide | Fecal | 7.15 ± 2.28 mM | Clostridium cluster IX | - | [95] |
| Hydrolysed guar gum | Colitis mice | stimulated the production of butyrate | Clostridium cluster XIVa | prevents the development of TNBS-induced colitis | [96] |
| Glucomannan Oligosaccharide | C57BL/6 mice (obesity model) | <25 mM/g | Ruminococcaceae ↑ | gene Muc2, acetylated histone proteins H3 and H4 ↑ | [97] |
| Alginate oligosaccharide | intestinal mucositis | About 13.63 mM/g | Lachnoclostridium, Muribaculaceae | modulate TLR4/MyD88/NF-κB pathway, anti-inflammatory, regulate cytokine levels | [98] |
| Mannan oligosaccharide | 5xFAD mice (Alzheimer’s disease mouse model) | Enriched the serum and fecal butyrate levels | Clostridium_pasteurianum, Lachnospira | alleviated the cognitive decline and Aβ accumulation | [99] |
| Type of Protein | Research Objects | Protein Concentration/ Ratio | Butyrate/Butyrate-Producing Bacteria | Effect | Reference |
|---|---|---|---|---|---|
| Soy protein β-conglycinin (β-CG) | Mice (heart failure model) | 20% β-CG | Butyrate, Butyricimonas, Anaerotruncus ↑ | ameliorated TAC-induced LV remodeling | [100] |
| crude protein (CP) | Pigs | Low-CP group:16% protein vs. normal-CP group: 18% protein | butyrate in the jejunum and total SCFA in the ileum, Clostridium cluster IV, XIVa, Bifidobacterium ↑ | pro-inflammatory cytokines levels (IL-8, IFN-γ and TNF-α), ammonia ↓, up-regulated the expression of jejunal ZO-1, and ileal MUC2 and OCLN | [101] |
| Protein | Sprague-Dawley mice | Low protein | Enterobacteriaceae, the concentration of butyrate ↑ | a low-protein diet could modulate the microbial ecology in the large intestine of neonatal rats. | [102] |
| Protein | Birds | Low protein | butyrate ↑ | intestinal integrity and immune functions ↑ | [103] |
| casein or β-CG | Mice | 20% protein | Butyricimonas, butyrate ↑ | - | [12] |
| potato protein (PP) or casein | Sprague-Dawley mice | containing casein, or PP at 250 g/kg diet for 10 d | The content of butyrate in PP group was higher than that in casein group | casein: predominant acid was succinate. PP: predominant acid was butyrate. | [104] |
| CP | Sprague-Dawley mice | 50% CP group vs. 14% CP group | 50% CP: pro-inflammatory flora: Collinsella, acid ↑ vs. 14% protein: the abundance of SCFA producing-bacteria ↑ | 50% CP group: the concentration of serum urea nitrogen, liver injury indicators (ALT and AST) ↑. 14% CP diet improved colonic microbial amino acid metabolism. | [105] |
| dietary CP | newly weaned pigs | 20%, 17.16%, 15.30%. 13.90% CP | as CP level decreased, butyrate, Clostridium cluster XIVa and Lactobacillus ↑ | As CP level decreased, ammonia concentration ↓, large intestinal bacterial community ↑. | [106] |
| Diet | Obese but otherwise healthy male | 29% high protein | butyrate decreased in concentration (by 50%), Roseburia, Eubacterium rectale, Lachnospiraceae ↓ | BCFA, isovalerate and isobutyrate ↑, carcinogenic NOCs ↑. | [107] |
| Casein (CAS), soy protein (SOY) | healthy male and female | CAS: 34% energy SOY: 31% energy | Feces and urine butyrate ↓ | BCFA, 2-methylbutyrate ↑. | [108] |
| Soy protein | 8-week-old male mice (high-fat diet) | 23.78% soy protein VS 22.86% casein Diet | Butyrate, Enterococcus, and Ruminococcus were significantly higher in the Soy than Casein group | reduced serum cholesterol and fatty acid synthesis related genes expression levels. | [109] |
| Milk protein | Colitis mice | 53% protein | Clostridium XIVa, Faecalibacterium, Roseburia genera ↓ | The concentration of H2S and colitis severity ↑. | [110,111] |
| Beef protein | mice (high-fat diet) | - | the abundance of butyrate-producing bacteria such as Anaerotruncus, Butyricicoccus, and Lactobacillus in HFB ↓ | enhanced cumulative energy intake, increased level of LDL-C, TC, and TG concentration in serum | [112] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sankarganesh, P.; Bhunia, A.; Kumar, A.G.; Babu, A.S.; Gopukumar, S.T.; Lokesh, E. Short-chain fatty acids (SCFAs) in gut health: Implications for drug metabolism and therapeutics. Med. Microecol. 2025, 25, 100139. [Google Scholar] [CrossRef]
- Li, X.; He, M.; Yi, X.; Lu, X.; Zhu, M.; Xue, M.; Tang, Y.; Zhu, Y. Short-chain fatty acids in nonalcoholic fatty liver disease: New prospects for short-chain fatty acids as therapeutic targets. Heliyon 2024, 10, e26991. [Google Scholar] [CrossRef]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021, 66, 103293. [Google Scholar] [CrossRef]
- Matheus, V.A.; Oliveira, R.B.; Maschio, D.A.; Tada, S.F.S.; Soares, G.M.; Mousovich-Neto, F.; Costa, R.G.; Mori, M.A.; Barbosa, H.C.L.; Collares-Buzato, C.B. Butyrate restores the fat/lean mass ratio balance and energy metabolism and reinforces the tight junction-mediated intestinal epithelial barrier in prediabetic mice independently of its anti-inflammatory and epigenetic actions. J. Nutr. Biochem. 2023, 120, 109409. [Google Scholar] [CrossRef]
- Yuan, M.; Fan, R.; Peng, K.; Cui, X.; Song, X. Induction of degradation of fucoidan oligosaccharides via low-temperature plasma treatment for enhanced structural characteristics and bioactivities. Chem. Eng. J. 2025, 523, 168080. [Google Scholar] [CrossRef]
- Dai, W.; Song, X.; Wang, R.; He, W.; Yin, J.; Nie, S. Mechanism exploration of intestinal mucus penetration of nano-Se: Regulated by polysaccharides with different functional groups and molecular weights. J. Control. Release 2025, 379, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Zhu, L.; Shu, Q. Synergistic gut microbiome-mediated degradation of Astragalus membranaceus polysaccharides and Codonopsis pilosula polysaccharides into butyric acid: A metatranscriptomic analysis. Microbiol. Spectr. 2025, 13, e0303924. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Shu, Q. Modulating butyric acid-producing bacterial community abundance and structure in the intestine of immunocompromised mice with neutral polysaccharides extracted from Codonopsis pilosula. Int. J. Biol. Macromol. 2024, 278, 134959. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Hu, M.; Peng, X.; Wang, R.; Song, X.; Yin, J. The protective effect of small black soybean (Vigna mungo L.) polysaccharide on acetic acid-induced gastric ulcer in SD rats and its impact on gut microbiota and metabolites. Food Biosci. 2023, 56, 103187. [Google Scholar] [CrossRef]
- Yue, L.; Song, X.; Cui, X.; Zhang, Q.; Tian, X.; Yang, X.; Wu, Q.; Liu, Y.; Ruan, R.; Wang, Y. Synthesis, characterization, and evaluation of microwave-assisted fabricated selenylation Astragalus polysaccharides. Int. J. Biol. Macromol. 2022, 221, 8–15. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Z.; Zhu, C.; Mou, H.; Kong, Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr. 2019, 59 (Suppl. 1), S130–S152. [Google Scholar] [CrossRef]
- Furukawa, N.; Kobayashi, M.; Ito, M.; Matsui, H.; Ohashi, K.; Murohara, T.; Takeda, J.-I.; Ueyama, J.; Hirayama, M.; Ohno, K. Soy protein β-conglycinin ameliorates pressure overload-induced heart failure by increasing short-chain fatty acid (SCFA)-producing gut microbiota and intestinal SCFAs. Clin. Nutr. 2024, 43, 124–137. [Google Scholar] [CrossRef]
- Chu, K.; Cui, X.; Yang, Y.; Wu, Q.; Liu, R.; Xie, Y. Effects of pressure cooker treatment-induced protein oxidation of cereals on human gut microbiota using an in vitro fermentation model. Food Res. Int. 2025, 220, 117123. [Google Scholar] [CrossRef]
- Taciak, M.; Barszcz, M.; Swiech, E.; Tusnio, A.; Bachanek, I. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs. Arch. Anim. Nutr. 2017, 71, 192–209. [Google Scholar] [CrossRef]
- Mirzaei, R.; Dehkhodaie, E.; Bouzari, B.; Rahimi, M.; Gholestani, A.; Hosseini-Fard, S.R.; Keyvani, H.; Teimoori, A.; Karampoor, S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed. Pharmacother. 2022, 145, 112352. [Google Scholar] [CrossRef]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Fagundes, R.R.; Belt, S.C.; Bakker, B.M.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N. Beyond butyrate: Microbial fiber metabolism supporting colonic epithelial homeostasis. Trends Microbiol. 2024, 32, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Pant, K.; Venugopal, S.K.; Pisarello, M.J.L.; Gradilone, S.A. The Role of Gut Microbiome-Derived Short-Chain Fatty Acid Butyrate in Hepatobiliary Diseases. Am. J. Surg. Pathol. 2023, 193, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P.S.; Cowles, R.A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef]
- Tsugami, Y.; Suzuki, N.; Nii, T.; Isobe, N. Effect of sodium butyrate treatment at the basolateral membranes on the tight junction barrier function via a monocarboxylate transporter in goat mammary epithelial cells. Exp. Cell Res. 2024, 436, 113944. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Sakuraba, H.; Hiraga, H.; Yoshida, S.; Satake, M.; Akemoto, Y.; Tanaka, N.; Watanabe, R.; Takato, M.; Murai, Y.; et al. Cyclosporine protects from intestinal epithelial injury by modulating butyrate uptake via upregulation of membrane monocarboxylate transporter 1 levels. Biochem. Biophys. Rep. 2020, 24, 100811. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, P.; Araújo, J.R.; Martel, F. Characterization of Butyrate Uptake by Nontransformed Intestinal Epithelial Cell Lines. J. Membr. Biol. 2011, 240, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, S.; Gopal, E.; Fei, Y.-J.; Ganapathy, V. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids. J. Biol. Chem. 2004, 279, 13293–13296. [Google Scholar] [CrossRef]
- Gonçalves, P.; Martel, F. Regulation of colonic epithelial butyrate transport: Focus on colorectal cancer. Porto Biomed. J. 2016, 1, 83–91. [Google Scholar] [CrossRef]
- Wang, R.; Li, B.; Huang, B.; Li, Y.; Liu, Q.; Lyu, Z.; Chen, R.; Qian, Q.; Liang, X.; Pu, X.; et al. Gut Microbiota-Derived Butyrate Induces Epigenetic and Metabolic Reprogramming in Myeloid-Derived Suppressor Cells to Alleviate Primary Biliary Cholangitis. Gastroenterology 2024, 167, 733–749.e3. [Google Scholar] [CrossRef]
- Couto, M.; Andrade, N.; Magro, F.; Martel, F. Taurocholate uptake by Caco-2 cells is inhibited by pro-inflammatory cytokines and butyrate. Cytokine 2023, 169, 156307. [Google Scholar] [CrossRef]
- Li, F.; Tai, L.; Sun, X.; Lv, Z.; Tang, W.; Wang, T.; Zhao, Z.; Gong, D.; Ma, S.; Tang, S.; et al. Molecular recognition and activation mechanism of short-chain fatty acid receptors FFAR2/3. Cell Res. 2024, 34, 323–326. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018, 9, 21–29. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, M.-T.; Han, J.-H. GPR41 and GPR43: From development to metabolic regulation. Biomed. Pharmacother. 2024, 175, 116735. [Google Scholar] [CrossRef]
- Guo, L.; Yi, J.; Zhang, A.; Zheng, X.; Wang, M.; Yang, F.; Kong, X.; Meng, J. Zhenqi Fuzheng Granule targets the SCFAs-GPR109A axis to enhance PD-1 antibody efficacy via immunometabolic remodeling in colorectal cancer. Phytomedicine 2025, 148, 157312. [Google Scholar] [CrossRef]
- Docampo, M.D.; da Silva, M.B.; Lazrak, A.; Nichols, K.B.; Lieberman, S.R.; Slingerland, A.E.; Armijo, G.K.; Shono, Y.; Nguyen, C.; Monette, S.; et al. Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood 2022, 139, 2392–2405. [Google Scholar] [CrossRef] [PubMed]
- Leko, L.; Šimić, D.; Martins, T.V.; da Silva, G.V.L.; Maillet, I.; Savigny, F.; Vuksan, L.; Rodrigues, D.d.M.; Le Bert, M.; Offermanns, S.; et al. Butyrate receptor HCAR2/GPR109A controls imiquimod-induced psoriasis-like skin inflammation. J. Immunol. 2025, 214, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Q.; Meng, M.; Chang, G.; Ma, N.; Shen, X. Butyrate Protects against γ-d-Glutamyl-meso-diaminopimelic Acid-Induced Inflammatory Response and Tight Junction Disruption through Histone Deacetylase 3 Inhibition in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2023, 71, 14638–14648. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qin, S.; Shi, J.; Zhu, J.; Ju, X.; Wang, W.; Yang, L. Ideal dietary fiber model: Personalized gut microbiota modulation based on structure-function relationships. Carbohydr. Polym. 2025, 368, 124097. [Google Scholar] [CrossRef]
- Portune, K.J.; Beaumont, M.; Davila, A.-M.; Tomé, D.; Blachier, F.; Sanz, Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci. Technol. 2016, 57, 213–232. [Google Scholar] [CrossRef]
- De Angelis, M.; Ferrocino, I.; Calabrese, F.M.; De Filippis, F.; Cavallo, N.; Siragusa, S.; Rampelli, S.; Di Cagno, R.; Rantsiou, K.; Vannini, L.; et al. Diet influences the functions of the human intestinal microbiome. Sci. Rep. 2020, 10, 4247. [Google Scholar] [CrossRef]
- Alvarez, B.; Canil, O.F.; Low, K.E.; Hettle, A.G.; Abbott, D.W.; Boraston, A.B. Analysis of chondroitin degradation by components of a Bacteroides caccae polysaccharide utilization locus. J. Biol. Chem. 2025, 301, 110354. [Google Scholar] [CrossRef]
- Yu, B.; Xu, B.; Tan, K.; Zhong, S.; Cheong, K.-L. Structural characteristics of oligosaccharides obtained from Undaria pinnatifida polysaccharides and their alleviation of colitis by modulating macrophage polarization and gut microbiota. J. Funct. Foods 2025, 128, 106835. [Google Scholar] [CrossRef]
- Yang, Q.; Chang, S.; Zhang, X.; Luo, F.; Li, W.; Ren, J. The fate of dietary polysaccharides in the digestive tract. Trends Food Sci. Technol. 2024, 150, 104606. [Google Scholar] [CrossRef]
- Wang, M.; Wichienchot, S.; He, X.; Fu, X.; Huang, Q.; Zhang, B. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 2019, 88, 1–9. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Dou, Z.-M.; Chen, C.; Jiang, Y.-M.; Yang, B.; Fu, X. Study on the Effect of Molecular Weight on the Gut Microbiota Fermentation Properties of Blackberry Polysaccharides In Vitro. J. Agric. Food Chem. 2022, 70, 11245–11257. [Google Scholar] [CrossRef] [PubMed]
- Pylkas, A.M.; Juneja, L.R.; Slavin, J.L. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J. Med. Food 2005, 8, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Keung, W.-S.; Zhang, W.-H.; Luo, H.-Y.; Chan, K.-C.; Chan, Y.-M.; Xu, J. Correlation between the structures of natural polysaccharides and their properties in regulating gut microbiota: Current understanding and beyond. Carbohydr. Polym. 2025, 352, 123209. [Google Scholar] [CrossRef]
- Wei, X.; Fu, X.; Xiao, M.; Liu, Z.; Zhang, L.; Mou, H. Dietary galactosyl and mannosyl carbohydrates: In-vitro assessment of prebiotic effects. Food Chem. 2020, 329, 127179. [Google Scholar] [CrossRef]
- Harris, H.C.; Edwards, C.A.; Morrison, D.J. Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota. Nutrients 2017, 9, 26. [Google Scholar] [CrossRef]
- Zou, Y.; Xue, W.; Lin, X.; Lv, M.; Luo, G.; Dai, Y.; Sun, H.; Liu, S.-W.; Sun, C.-H.; Hu, T.; et al. Butyribacter intestini gen. nov., sp. nov., a butyric acid-producing bacterium of the family Lachnospiraceae isolated from human faeces, and reclassification of Acetivibrio ethanolgignens as Acetanaerobacter ethanolgignens gen. nov., comb. nov. Syst. Appl. Microbiol. 2021, 44, 126201. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Sun, Y.; Ye, H.; Hu, B.; Zeng, X. Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. J. Funct. Foods 2015, 13, 158–168. [Google Scholar] [CrossRef]
- Louis, P.; Solvang, M.; Duncan, S.H.; Walker, A.W.; Mukhopadhya, I. Dietary fibre complexity and its influence on functional groups of the human gut microbiota. Proc. Nutr. Soc. 2021, 80, 386–397. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, Y.; Liu, P.; Mo, R.; Wang, H.; Li, Y.; Wu, Y. Oat β-(1 → 3, 1 → 4)-d-glucan alleviates food allergy-induced colonic injury in mice by increasing Lachnospiraceae abundance and butyrate production. Carbohydr. Polym. 2024, 344, 122535. [Google Scholar] [CrossRef]
- Nilsson, U.; Nyman, M. Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility. Br. J. Nutr. 2005, 94, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Rasoulimehrabani, H.; Riva, A.; Inan, D.; Hodžić, A.; Hausmann, B.; Nikolov, G.; Khadem, S.; Hieger, N.; Wiesenbauer, J.; Kaiser, C.; et al. Lactulose selectively stimulates members of the gut microbiota, as determined by multi-modal activity-based sorting. Gut Microbes 2025, 17, 2525482. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, N.; Vollmer, M.; Holtrop, G.; Farquharson, F.M.; Wefers, D.; Bunzel, M.; Duncan, S.H.; Drew, J.E.; Williams, L.M.; Milligan, G.; et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 2018, 12, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Jia, X.; Lu, X.; Zhang, D.; Du, L.; Wang, J.; Wang, Y.; Song, H.; He, N.; Xu, C.; et al. Inulin with different degrees of polymerization adopts different strategies to mitigate radiation-induced intestinal injury: Focus on intestinal epithelial or T cell homeostasis. Carbohydr. Polym. 2025, 371, 124490. [Google Scholar] [CrossRef]
- Jackson, R.; Yao, T.; Bulut, N.; Cantu-Jungles, T.M.; Hamaker, B.R. Protein combined with certain dietary fibers increases butyrate production in gut microbiota fermentation. Food Funct. 2024, 15, 3186–3198. [Google Scholar] [CrossRef]
- Rodríguez-Romero, J.d.J.; Durán-Castañeda, A.C.; Cárdenas-Castro, A.P.; Sánchez-Burgos, J.A.; Zamora-Gasga, V.M.; Sáyago-Ayerdi, S.G. What we know about protein gut metabolites: Implications and insights for human health and diseases. Food Chem. X 2022, 13, 100195. [Google Scholar] [CrossRef]
- Dordević, D.; Jančíková, S.; Vítězová, M.; Kushkevych, I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2021, 27, 55–69. [Google Scholar] [CrossRef]
- Xu, J.; Wang, F.; Hu, C.; Lai, J.; Xie, S.; Yu, K.; Jiang, F. Dietary high lipid and high plant-protein affected growth performance, liver health, bile acid metabolism and gut microbiota in groupers. Anim. Nutr. 2024, 19, 370–385. [Google Scholar] [CrossRef]
- Budhathoki, S.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Goto, A.; Kotemori, A.; Ishihara, J.; Takachi, R.; Charvat, H.; Mizoue, T.; et al. Association of Animal and Plant Protein Intake with All-Cause and Cause-Specific Mortality in a Japanese Cohort. Jama Intern. Med. 2019, 179, 1509–1518. [Google Scholar] [CrossRef]
- Huang, J.Q.; Liao, L.M.; Weinstein, S.J.; Sinha, R.; Graubard, B.I.; Albanes, D. Association Between Plant and Animal Protein Intake and Overall and Cause-Specific Mortality. JAMA Intern. Med. 2020, 180, 1173–1184. [Google Scholar] [CrossRef]
- Zheng, J.-S.; Steur, M.; Imamura, F.; Freisling, H.; Johnson, L.; van der Schouw, Y.T.; Tong, T.Y.; Weiderpass, E.; Bajracharya, R.; Crous-Bou, M.; et al. Dietary intake of plant- and animal-derived protein and incident cardiovascular diseases: The pan-European EPIC-CVD case–cohort study. Am. J. Clin. Nutr. 2024, 119, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.A.; Cho, N.A.; Fernandes, T.S.; Tuplin, E.W.N.; Lowry, D.E.; Silva, G.A.V.; Reimer, R.A. Effects of a paternal diet high in animal protein (casein) versus plant protein (pea protein with added methionine) on offspring metabolic and gut microbiota outcomes in rats. Appl. Physiol. Nutr. Metab. 2025, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Peled, S.; Livney, Y.D. The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll. 2021, 120, 106911. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Wang, R.; Sui, X.; Qi, B.; Han, F.; Li, Y.; Jiang, L. Secondary Structure and Subunit Composition of Soy Protein In Vitro Digested by Pepsin and Its Relation with Digestibility. BioMed Res. Int. 2016, 2016, 5498639. [Google Scholar] [CrossRef]
- Pan, M.; Xu, F.; Wu, Y.; Yao, M.; Xiao, X.; Zhang, N.; Ju, X.; Wang, L. Application of ultrasound-assisted physical mixing treatment improves in vitro protein digestibility of rapeseed napin. Ultrason. Sonochem. 2020, 67, 105136. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Greff, B.; Varga, L. The structure–function relationships and techno-functions of β-conglycinin. Food Chem. 2025, 462, 140950. [Google Scholar] [CrossRef]
- Mak, I.E.K.; Yao, Y.; Ng, M.T.T.; Kim, J.E. Influence of dietary protein and fiber intake interactions on the human gut microbiota composition and function: A systematic review and network meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2025, 16, 1–19. [Google Scholar] [CrossRef]
- Wang, L.; Fan, J.-H.; Yang, Y.; Qiu, H.-W.; Li, H.-H.; Kang, W.-Y.; Lv, G.-P. Gut microbiota modulation by structurally diverse foodborne polysaccharides: In vitro fermentation and prebiotic activity evaluation. Food Biosci. 2025, 73, 107660. [Google Scholar] [CrossRef]
- Li, M.; Liu, R.; Wang, T.; Duo, L.; Chen, G.; Mao, M.; Sun, Y.; Li, Y.; Cai, S.; Zhou, W.; et al. Human gut Bifidobacterium longum subsp. suillum is enriched in vitro by a pectic polysaccharide isolated from the flowers of Lilium lancifolium. Carbohydr. Polym. 2025, 364, 123772. [Google Scholar] [CrossRef]
- Yu, J.; An, N.; Cui, Y.; Zhang, L. Structural characterization and immunomodulatory effects of Bifidobacterium bifidum biofilms enriched with extracellular polysaccharides and surface proteins. Int. J. Biol. Macromol. 2025, 328, 147604. [Google Scholar] [CrossRef]
- Hamer, H.M.; De Preter, V.; Cloetens, L.; Vandermeulen, G.; Courtin, C.M.; Broekaert, W.F.; Delcour, J.A.; Rutgeerts, P.J.; Verbeke, K. T2026 A Dietary Intervention With Arabinoxylan Oligosaccharides Reduces Colonic Protein Fermentation in Healthy Subjects: Results From Faecal Metabolite Fingerprint Analysis. Gastroenterology 2010, 138 (Suppl. 1), S-616. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, Y.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review. Int. J. Biol. Macromol. 2021, 167, 1329–1337. [Google Scholar] [CrossRef]
- Ye, S.; Shah, B.R.; Li, J.; Liang, H.; Zhan, F.; Geng, F.; Li, B. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci. Tech. 2022, 124, 237–249. [Google Scholar] [CrossRef]
- La Rosa, S.L.; Ostrowski, M.P.; de León, A.V.-P.; McKee, L.S.; Larsbrink, J.; Eijsink, V.G.; Lowe, E.C.; Martens, E.C.; Pope, P.B. Glycan processing in gut microbiomes. Curr. Opin. Microbiol. 2022, 67, 102143. [Google Scholar] [CrossRef] [PubMed]
- Mary, P.R.; Kapoor, M. Co-culture fermentations suggest cross-feeding among Bacteroides ovatus DSMZ 1896, Lactiplantibacillus plantarum WCFS1 and Bifidobacterium adolescentis DSMZ 20083 for utilizing dietary galactomannans. Food Res. Int. 2022, 162, 111942. [Google Scholar] [CrossRef] [PubMed]
- Gurry, T.; Nguyen, L.T.T.; Yu, X.Q.; Alm, E.J. Functional heterogeneity in the fermentation capabilities of the healthy human gut microbiota. PLoS ONE 2021, 16, e0254004. [Google Scholar] [CrossRef]
- Yu, L.; Xiao, M.; Tian, F.; Chen, W.; Zhai, Q. Glycan utilization properties govern the cross-feeding network in gut microbiota: A focus on Bifidobacteria. Sci. Bull. 2024, 69, 299–302. [Google Scholar] [CrossRef]
- De Vuyst, L.; Leroy, F. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int. J. Food Microbiol. 2011, 149, 73–80. [Google Scholar] [CrossRef]
- Moens, F.; Weckx, S.; De Vuyst, L. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. Int. J. Food Microbiol. 2016, 231, 76–85. [Google Scholar] [CrossRef]
- Culp, E.J.; Goodman, A.L. Cross-feeding in the gut microbiome: Ecology and mechanisms. Cell Host Microbe 2023, 31, 485–499. [Google Scholar] [CrossRef]
- Lin, L.; Du, R.; Wang, Y.; Wu, Q.; Xu, Y. Regulation of auxotrophic lactobacilli growth by amino acid cross-feeding interaction. Int. J. Food Microbiol. 2022, 377, 109769. [Google Scholar] [CrossRef]
- Taciak, M.; Pastuszewska, B.; Tuśnio, A.; Święch, E. Effects of two protein and fibre sources on SCFA concentration in pig large intestine. Livest. Sci. 2010, 133, 138–140. [Google Scholar] [CrossRef]
- Wu, S.; Bhat, Z.F.; Gounder, R.S.; Ahmed, I.A.; Al-Juhaimi, F.Y.; Ding, Y.; Bekhit, A.E.A. Effect of Dietary Protein and Processing on Gut Microbiota—A Systematic Review. Nutrients 2022, 14, 453. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; Han, Y.; Li, S.; Li, H.; Liu, Y.; Lei, W.; Liu, G.; Gao, Z. Release, digestion and fermentation properties of polyphenols bound to sea buckthorn polysaccharides: Mechanistic explorations from integrated in vitro and in vivo studies. Carbohydr. Polym. 2025, 368, 124228. [Google Scholar] [CrossRef] [PubMed]
- DeMartino, P.; Cockburn, D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020, 61, 66–71. [Google Scholar] [CrossRef]
- Snelson, M.; Deliyanti, D.; Tan, S.M.; Drake, A.M.; de Pasquale, C.; Kumar, V.; Woodruff, T.M.; Wilkinson-Berka, J.L.; Coughlan, M.T. Dietary resistant starch enhances immune health of the kidney in diabetes via promoting microbially-derived metabolites and dampening neutrophil recruitment. Nutr. Diabetes 2024, 14, 46. [Google Scholar] [CrossRef]
- Bajka, B.H.; Clarke, J.M.; Cobiac, L.; Topping, D.L. Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats. Carcinog. 2008, 29, 2169–2174. [Google Scholar] [CrossRef]
- Wang, J.; Ren, M.; Fu, L.; Liu, L.; Zhang, X.; Sun, Y.; Liu, L. Safflower Dietary Fiber Alleviates Functional Constipation in Rats via Regulating Gut Microbiota and Metabolism. Food Biosci. 2024, 62, 105218. [Google Scholar] [CrossRef]
- Mio, K.; Ogawa, R.; Tadenuma, N.; Aoe, S. Arabinoxylan as well as β-glucan in barley promotes GLP-1 secretion by increasing short-chain fatty acids production. Biochem. Biophys. Rep. 2022, 32, 101343. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, S.; Wang, X.F.; Xing, T.; Li, J.L.; Zhu, X.D.; Zhang, L.; Gao, F. Microbiota populations and short-chain fatty acids production in cecum of immunosuppressed broilers consuming diets containing γ-irradiated Astragalus polysaccharides. Poult. Sci. 2021, 100, 273–282. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Mao, Y.-Q.; Zhang, Z.-Y.; Li, Z.-M.; Kong, C.-Y.; Chen, H.-L.; Cai, P.-R.; Han, B.; Ye, T.; Wang, L.-S. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics 2021, 11, 4155–4170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Zhu, L.; Yang, X.; He, F.; Wang, T.; Bao, T.; Lu, H.; Wang, H.; Yang, S. Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int. Immunopharmacol. 2020, 78, 106062. [Google Scholar] [CrossRef]
- Lou, Y.; Wen, X.; Song, S.; Zeng, Y.; Huang, L.; Xie, Z.; Shao, T.; Wen, C. Dietary pectin and inulin: A promising adjuvant supplement for collagen-induced arthritis through gut microbiome restoration and CD4+ T cell reconstitution. J. Nutr. Biochem. 2024, 133, 109699. [Google Scholar] [CrossRef] [PubMed]
- Doo, E.-H.; Schwab, C.; Chassard, C.; Lacroix, C. Cumulative effect of yeast extract and fructooligosaccharide supplementation on composition and metabolic activity of elderly colonic microbiota in vitro. J. Funct. Foods 2019, 52, 43–53. [Google Scholar] [CrossRef]
- Hajar-Azhari, S.; Rahim, M.H.A.; Sarbini, S.; Muhialdin, B.J.; Olusegun, L.; Saari, N. Enzymatically synthesised fructooligosaccharides from sugarcane syrup modulate the composition and short-chain fatty acid production of the human intestinal microbiota. Food Res. Int. 2021, 149, 110677. [Google Scholar] [CrossRef]
- Takagi, T.; Naito, Y.; Higashimura, Y.; Ushiroda, C.; Mizushima, K.; Ohashi, Y.; Yasukawa, Z.; Ozeki, M.; Tokunaga, M.; Okubo, T.; et al. Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA. Br. J. Nutr. 2016, 116, 1199–1205. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, X.; Wang, Z.; Fang, J.; Yuan, T. A Purified Glucomannan Oligosaccharide from Amorphophallus konjac Improves Colonic Mucosal Barrier Function via Enhancing Butyrate Production and Histone Protein H3 and H4 Acetylation. J. Nat. Prod. 2021, 84, 427–435. [Google Scholar] [CrossRef]
- Teng, Y.; Li, J.; Guo, J.; Yan, C.; Wang, A.; Xia, X. Alginate oligosaccharide improves 5-fluorouracil-induced intestinal mucositis by enhancing intestinal barrier and modulating intestinal levels of butyrate and isovalerate. Int. J. Biol. Macromol. 2024, 276, 133699. [Google Scholar] [CrossRef]
- Liu, Q.; Xi, Y.; Wang, Q.; Liu, J.; Li, P.; Meng, X.; Liu, K.; Chen, W.; Liu, X.; Liu, Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain, Behav. Immun. 2021, 95, 330–343. [Google Scholar] [CrossRef]
- Yang, J.; Rose, D.J. Long-term dietary pattern of fecal donor correlates with butyrate production and markers of protein fermentation during in vitro fecal fermentation. Nutr. Res. 2014, 34, 749–759. [Google Scholar] [CrossRef]
- Zhang, C.J.; Yu, M.; Yang, Y.X.; Mu, C.L.; Su, Y.; Zhu, W.Y. Effect of early antibiotic intervention on specific bacterial communities and immune parameters in the small intestine of growing pigs fed different protein level diets. Animal 2020, 14, 2042–2053. [Google Scholar] [CrossRef]
- Fan, W.; Ren, H.; Cao, Y.; Wang, Y.; Huo, G. Low dietary protein and high carbohydrate infant formula affects the microbial ecology of the large intestine in neonatal rats. Can. J. Microbiol. 2017, 63, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ajao, A.M.; Shanmugasundaram, R.; Taylor, J.; Ball, E.; Applegate, T.J.; Selvaraj, R.; Kyriazakis, I.; Olukosi, O.A.; Kim, W.K. The effects of arginine and branched-chain amino acid supplementation to reduced-protein diet on intestinal health, cecal short-chain fatty acid profiles, and immune response in broiler chickens challenged with Eimeria spp. Poult. Sci. 2023, 102, 102773. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Kasaoka, S.; Oh-Hashi, A.; Ikai, M.; Numasaki, Y.; Kiriyama, S. Resistant Proteins Alter Cecal Short-Chain Fatty Acid Profiles in Rats Fed High Amylose Cornstarch. J. Nutr. 1998, 128, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; An, R.; Lan, T.; Tang, Z.; Xu, Y.; Peng, X.; Pang, J.; Sun, W.; Shi, B.; Tang, Q.; et al. Isocaloric diets with varying protein levels affected energy metabolism in young adult Sprague-Dawley rats via modifying the gut microbes: A lipid imbalance was brought on by a diet with a particularly high protein content. J. Nutr. Biochem. 2024, 124, 109534. [Google Scholar] [CrossRef]
- Hermes, R.G.; Molist, F.; Ywazaki, M.; Nofrarías, M.; Gomez de Segura, A.; Gasa, J.; Pérez, J.F. Effect of dietary level of protein and fiber on the productive performance and health status of piglets. J. Anim. Sci. 2009, 87, 3569–3577. [Google Scholar] [CrossRef]
- Russell, W.R.; Gratz, S.W.; Duncan, S.H.; Holtrop, G.; Ince, J.; Scobbie, L.; Duncan, G.; Johnstone, A.M.; Lobley, G.E.; Wallace, R.J.; et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011, 93, 1062–1072. [Google Scholar] [CrossRef]
- Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Cerrudo, V.; Audebert, M.; Dumont, F.; Mancano, G.; Khodorova, N.; Andriamihaja, M.; et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: A randomized, parallel, double-blind trial in overweight humans. Am. J. Clin. Nutr. 2017, 106, 1005–1019. [Google Scholar] [CrossRef]
- Tamura, K.; Sasaki, H.; Shiga, K.; Miyakawa, H.; Shibata, S. The Timing Effects of Soy Protein Intake on Mice Gut Microbiota. Nutrients 2019, 12, 87. [Google Scholar] [CrossRef]
- Vidal-Lletjós, S.; Andriamihaja, M.; Blais, A.; Grauso, M.; Lepage, P.; Davila, A.-M.; Viel, R.; Gaudichon, C.; Leclerc, M.; Blachier, F.; et al. Dietary Protein Intake Level Modulates Mucosal Healing and Mucosa-Adherent Microbiota in Mouse Model of Colitis. Nutrients 2019, 11, 514. [Google Scholar] [CrossRef]
- Lan, A.; Blais, A.; Coelho, D.; Capron, J.; Maarouf, M.; Benamouzig, R.; Lancha, A.H., Jr.; Walker, F.; Tomé, D.; Blachier, F. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am. J. Physiol. Liver Physiol. 2016, 311, G624–G633. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Ahmed, M.I.; Zou, X.; Hussain, M.; Zhang, M.; Zhao, F.; Xu, X.; Zhou, G.; Li, C. Beef, Casein, and Soy Proteins Differentially Affect Lipid Metabolism, Triglycerides Accumulation and Gut Microbiota of High-Fat Diet-Fed C57BL/6J Mice. Front. Microbiol. 2018, 9, 2200. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Gao, K.; Peng, K.; Bi, S.; Cui, X.; Liu, Y. A Review of Nutritional Regulation of Intestinal Butyrate Synthesis: Interactions Between Dietary Polysaccharides and Proteins. Foods 2025, 14, 3649. https://doi.org/10.3390/foods14213649
Yuan M, Gao K, Peng K, Bi S, Cui X, Liu Y. A Review of Nutritional Regulation of Intestinal Butyrate Synthesis: Interactions Between Dietary Polysaccharides and Proteins. Foods. 2025; 14(21):3649. https://doi.org/10.3390/foods14213649
Chicago/Turabian StyleYuan, Meiyu, Kaili Gao, Kaitao Peng, Shuang Bi, Xian Cui, and Yuhuan Liu. 2025. "A Review of Nutritional Regulation of Intestinal Butyrate Synthesis: Interactions Between Dietary Polysaccharides and Proteins" Foods 14, no. 21: 3649. https://doi.org/10.3390/foods14213649
APA StyleYuan, M., Gao, K., Peng, K., Bi, S., Cui, X., & Liu, Y. (2025). A Review of Nutritional Regulation of Intestinal Butyrate Synthesis: Interactions Between Dietary Polysaccharides and Proteins. Foods, 14(21), 3649. https://doi.org/10.3390/foods14213649

