Valorising Whey: From Environmental Burden to Bio-Based Production of Value-Added Compounds and Food Ingredients
Abstract
1. Introduction
2. Generation of Whey by the Dairy Industry and Its Composition
3. Challenges Associated with Whey Production
4. Fractionation of Whey for the Recovery of Bioactive Compounds
| Total Solids (% w/w) | Protein (% w/w) | Fat (% w/w) | Lactose (% w/w) | Ash (% w/w) | Reference | |
|---|---|---|---|---|---|---|
| Whey | 6.3–30.9 | 0.7–14.2 | 0.1–12 | 3.7–4.9 | 0.6–0.7 | [8,130] |
| Second whey | 6.0–7.0 | 0.7–0.9 | 0.1–0.8 | 4.2–5.0 | n.d. | [10] |
| Sweet whey | 6.1–6.6 | 0.78–1.7 | 0.05–0.1 | 4.2–5.3 | 0.5–0.7 | [8,131,132] |
| Acid whey | 6.2–8.7 | 0.5–1.8 | 0.07–0.4 | 3.9–5.1 | 0.7–1.8 | [8,132,133,134] |
| Whey powder | n.d. | 11.0–14.5 | 1.0–1.5 | 63.0–75.0 | 8.2–8.8 | [8] |
| Demineralised whey | n.d. | 11.0–15.0 | 0.5–1.8 | 70.0–80.0 | 1.0–7.0 | [8] |
| Whey permeate | 5.2–6.0 | 0.1–0.4 | <0.01 | 4.7 | 0.52 | [135,136,137] |
| WPC34 | n.d. | 34.0–36.0 | 3.0–4.5 | 47.7–52.0 | 6.1–8.0 | [8,138] |
| WPC60 | n.d. | 56.3–62.0 | 1.0–9.0 | 25.0–30.0 | 4.0–6.0 | [8,138] |
| WPC80 | n.d. | 76.0–82.0 | 4.0–8.3 | 4.0–8.0 | 0.9–4.0 | [8,138] |
| WPI | n.d. | 90.0–92.0 | <1.5 | 0.5–1.0 | 2.0–8.0 | [8,131,139] |
5. The Use of Whey in the Production of Functional Food
5.1. The Production of Prebiotics
5.2. The Production of Food Functional Ingredients
6. Challenges in Introducing Whey in the Food Industry
7. The Use of Whey in the Production of Compounds
7.1. Organic Acids
7.2. Polymers
7.3. Ethanol
7.4. Methane
7.5. Peptides
7.6. Other Metabolites (e.g., Vitamins, Glycerol, Volatile Fatty Acids)
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ntuli, V.; Sibanda, T.; Elegbeleye, J.A.; Mugadza, D.T.; Seifu, E.; Buys, E.M. Chapter 30—Dairy production: Microbial safety of raw milk and processed milk products. In Present Knowledge in Food Safety, 1st ed.; Knowles, M.E., Anelich, L.E., Boobis, A.R., Popping, M.E.B., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 439–454. [Google Scholar]
- Food and Agriculture Organization Corporate Statistical Database (FAOSATAT). Available online: https://www.fao.org/faostat/ (accessed on 19 June 2025).
- Mukherjee, P.; Raj, N.; Sivaprakasam, S. Harnessing valorization potential of whey permeate for D-lactic acid production using lactic acid bacteria. Biomass Convers. Biorefinery 2023, 13, 15639–15658. [Google Scholar] [CrossRef]
- Tommaso, G.; Ribeiro, R.; de Oliveira, C.A.F.; Stamatelatou, K.; Antonopoulou, G.; Lyberatos, G.; Hodúr, C.; Csanádi, J. Chapter-Clean strategies for the management of residues in dairy industries. In Novel Technologies in Food Science: Their Impact on Products, Consumer Trends and the Environment; McElhatton, A., do Amaral Sobral, P., Eds.; Springer: New York, NY, USA, 2012; Volume 7, pp. 381–411. [Google Scholar]
- Sar, T.; Harirchi, S.; Ramezani, M.; Bulkan, G.; Akbas, M.Y.; Pandey, A.; Taherzadeh, M.J. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. Sci. Total Environ. 2022, 810, 152253. [Google Scholar] [CrossRef]
- Oliveira, D.L.; Fox, P.; O’Mahony, J.A. Chapter Byproducts from agriculture and fisheries: Adding value for food, feed, pharma and fuels. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels, 1st ed.; Benjamin, K.S., Alberta, N.A.A., Toldrá, F., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; p. 57. [Google Scholar]
- Fancello, F.; Zara, G.; Hatami, F.; Scano, E.A.; Mannazzu, I. Unlocking the potential of second cheese whey: A comprehensive review on valorisation strategies. Rev. Environ. Sci. Bio/Technol. 2024, 23, 411–441. [Google Scholar] [CrossRef]
- Guo, M.; Wang, G. Chapter1 History of Whey Production and Whey Protein Manufacturing. In Whey Protein Production Chemistry, Functionality, and Applications; Guo, M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 1–12. [Google Scholar]
- Tribst, A.A.L.; Falcade, L.T.P.; Carvalho, N.S.; Júnior, B.R.D.C.L.; de Oliveira, M.M. Manufacture of a fermented dairy product using whey from sheep’s milk cheese: An alternative to using the main by-product of sheep’s milk cheese production in small farms. Int. Dairy J. 2020, 111, 104833. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef]
- Bansal, N.; Bhandari, B. Chapter Functional milk proteins: Production and utilization—Whey-based ingredients. In Advanced Dairy Chemistry, 4th ed.; McSweeney, P., O’Mahony, J., Eds.; Springer: New York, NY, USA, 2016; Volume 1B, pp. 67–98. [Google Scholar]
- Council Directive of 21 May 1991 Concerning Urban Waste Water Treatment (91/271/EEC) the Council of the European Communities. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31991L0271 (accessed on 15 October 2025).
- Elia, S.; Stylianou, M.; Agapiou, A. Aroma characterization of raw and electrochemically treated goat whey wastewater. Sustain. Chem. Pharm. 2022, 27, 100640. [Google Scholar] [CrossRef]
- Elia, S.; Stylianou, M.; Agapiou, A. Advanced micro-extraction techniques (SPME, HiSorb) for the determination of goat cheese whey wastewater VOCs. J. Environ. Manag. 2024, 351, 119934. [Google Scholar] [CrossRef]
- Farizoglu, B.; Keskinler, B.; Yildiz, E.; Nuhoglu, A. Simultaneous removal of C, N, P from cheese whey by jet loop membrane bioreactor (JLMBR). J. Hazard. Mater. 2007, 146, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Elia, S.; Stylianou, M.; Agapiou, A. Combined EC/EO processes for treating goat cheese whey wastewater. Sustain. Chem. Pharm. 2023, 32, 100963. [Google Scholar] [CrossRef]
- García-Casas, V.E.; Seiquer, I.; Pardo, Z.; Haro, A.; Recio, I.; Olías, R. Antioxidant Potential of the Sweet Whey-Based Beverage Colada after the Digestive Process and Relationships with the Lipid and Protein Fractions. Antioxidants 2022, 11, 1827. [Google Scholar] [CrossRef]
- Moatsou, G.; Moschopoulou, E. CHEESE and WHEY: The Outcome of Milk Curdling. Foods 2021, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Marciniak-Lukasiak, K.; Karbowiak, M.; Lukasiak, P. Effects of Fructose and Oligofructose Addition on Milk Fermentation Using Novel Lactobacillus Cultures to Obtain High-Quality Yogurt-like Products. Molecules 2021, 26, 5730. [Google Scholar] [CrossRef] [PubMed]
- Szudera-Kończal, K.; Myszka, K.; Kubiak, P.; Majcher, M.A. The use of sour and sweet whey in producing compositions with pleasant aromas using the mold Galactomyces geotrichum: Identification of key odorants. J. Agric. Food Chem. 2020, 68, 10799–10807. [Google Scholar] [CrossRef]
- Asunis, F.; De Gioannis, G.; Isipato, M.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Spiga, D. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresour. Technol. 2019, 289, 121722. [Google Scholar] [CrossRef]
- Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Gonou-Zagou, Z.; Kopsahelis, N. Trametes versicolor as a natural source of bioactive compounds for the production of whey protein films with functional properties: A holistic approach to valorize cheese whey. Waste Biomass Valorization 2022, 13, 3989–3998. [Google Scholar] [CrossRef]
- Khattab, A.M.; Esmael, M.E.; Farrag, A.A.; Ibrahim, M.I. Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization. Int. J. Biol. Macromol. 2021, 190, 319–332. [Google Scholar] [CrossRef]
- Policastro, G.; Cesaro, A.; Fabbricino, M. Photo-fermentative hydrogen production from cheese whey: Engineering of a mixed culture process in a semi-continuous, tubular photo-bioreactor. Int. J. Hydrogen Energy 2023, 48, 21038–21054. [Google Scholar] [CrossRef]
- Kurnick, J.V.; Michellim, M.G.G.; Yada, R.Y.; Junior, B.R.D.C.L.; Tribst, A.A.L. Development of value-added beverages using sheep and goat cheese whey and secondary whey. Int. Dairy J. 2024, 152, 105886. [Google Scholar] [CrossRef]
- Trejo-Flores, P.G.; Santiago-Rodríguez, L.A.; Domínguez-Espinosa, M.E.; Cruz-Salomón, A.; Velázquez-Jiménez, P.E.; Hernández-Méndez, J.M.E.; Morales-Ovando, M.A.; Cruz-Salomón, K.D.C.; Hernández-Cruz, M.D.C.; Vázquez-Villegas, P.T.; et al. Sustainable Ice Cream Base: Harnessing Mango Seed Kernel (Mangifera indica L. var. Tommy Atkins) Waste and Cheese Whey. Sustainability 2023, 15, 14583. [Google Scholar] [CrossRef]
- Sadighbathi, S.; Saris, P.E.; Amiri, S.; Yousefvand, A. Development and properties of functional yoghurt enriched with postbiotic produced by yoghurt cultures using cheese whey and skim milk. Front. Microbiol. 2023, 14, 1276268. [Google Scholar] [CrossRef]
- Oliveira, D.R.; Lopes, A.C.A.; Pereira, R.A.; Cardoso, P.G.; Duarte, W.F. Selection of potentially probiotic Kluyveromyces lactis for the fermentation of cheese whey–based beverage. Ann. Microbiol. 2019, 69, 1361–1372. [Google Scholar] [CrossRef]
- Fischer, C.; Kleinschmidt, T. Valorisation of sweet whey by fermentation with mixed yoghurt starter cultures with focus on galactooligosaccharide synthesis. Int. Dairy J. 2021, 119, 105068. [Google Scholar] [CrossRef]
- Kotsaki, P.; Aspri, M.; Papademas, P. Novel Whey Fermented Beverage Enriched with a Mixture of Juice Concentrates: Evaluation of Antimicrobial, Antioxidant, and Angiotensin I Converting Enzyme Inhibitory (ACE) Activities Before and After Simulated Gastrointestinal Digestion. Microorganisms 2025, 13, 1490. [Google Scholar] [CrossRef] [PubMed]
- Elkot, W.F.; Elmahdy, A.; Talaat, H.; Alghamdia, O.A.; Alhag, S.K.; Al-Shahari, E.A.; Ammar, A.F.; Ismail, H.A. Development and characterization of a novel flavored functional fermented whey-based sports beverage fortified with Spirulina platensis. Int. J. Biol. Macromol. 2024, 258, 128999. [Google Scholar] [CrossRef]
- Amiri, S.; Rezazadeh-Bari, M.; Alizadeh-Khaledabad, M.; Rezaei-Mokarram, R.; Sowti-Khiabani, M. Fermentation Optimization for Co-production of Postbiotics by Bifidobacterium lactis BB12 in Cheese Whey. Waste Biomass Valorization 2021, 12, 5869–5884. [Google Scholar] [CrossRef]
- Solieri, L.; Valentini, M.; Cattivelli, A.; Sola, L.; Helal, A.; Martini, S.; Tagliazucchi, D. Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem. 2022, 121, 590–600. [Google Scholar] [CrossRef]
- El-Aidie, S.A.M.; Khalifa, G.S.A. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives—A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, 13319. [Google Scholar] [CrossRef]
- Hameed, A.; Anwar, M.J.; Perveen, S.; Amir, M.; Naeem, I.; Imran, M.; Hussain, M.; Ahmad, I.; Afzal, M.I.; Inayat, S.; et al. Functional, industrial and therapeutic applications of dairy waste materials. Int. J. Food Prop. 2023, 26, 1470–1496. [Google Scholar] [CrossRef]
- Lindsay, M.J.; Walker, T.W.; Dumesic, J.A.; Rankin, S.A.; Huber, G.W. Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chem. 2018, 20, 1824–1834. [Google Scholar] [CrossRef]
- Bintsis, T.; Papademas, P. Sustainable Approaches in Whey Cheese Production: A Review. Dairy 2023, 4, 249–270. [Google Scholar] [CrossRef]
- Wherry, B.; Barbano, D.M.; Drake, M.A. Use of acid whey protein concentrate as an ingredient in nonfat cup set-style yogurt. J. Dairy Sci. 2019, 102, 8768–8784. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Kosmerl, E.; Krentz, A.; Zhang, L.; Badiger, S.; Miyagusuku-Cruzado, G.; Mayta-Apaza, A.; Giusti, M.; Jiménez-Flores, R.; García-Cano, I. Invited review: Acid whey trends and health benefits. J. Dairy Sci. 2021, 104, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Menchik, P.; Zuber, T.; Zuber, A.; Moraru, C.I. Short communication: Composition of coproduct streams from dairy processing: Acid whey and milk permeate. J. Dairy Sci. 2019, 102, 3978–3984. [Google Scholar] [CrossRef] [PubMed]
- Hejtmánková, A.; Pivec, V.; Trnková, E.; Dragounová, H. Differences in the composition of total and whey proteins in goat and ewe milk and their changes throughout the lactation period. Czech J. Anim. Sci. 2012, 57, 323–331. [Google Scholar] [CrossRef]
- Villa, C.; Costa, J.; Oliveira, M.B.P.; Mafra, I. Bovine Milk Allergens: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 137–164. [Google Scholar] [CrossRef] [PubMed]
- Broersen, K. Milk Processing Affects Structure, Bioavailability and Immunogenicity of β-lactoglobulin. Foods 2020, 9, 874. [Google Scholar] [CrossRef]
- Bhutto, R.A.; Fan, Y.; Kang, L.; Wang, M.; Iqbal, S.; Yi, J. Bovine α-lactalbumin: Source, extraction, techno-functional properties, and applications as a (nano-) delivery system for nutraceuticals. Trends Food Sci. Technol. 2024, 146, 104381. [Google Scholar] [CrossRef]
- Rocha, J.M.; Guerra, A. On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. Eur. Food Res. Technol. 2020, 246, 2161–2174. [Google Scholar] [CrossRef]
- Roselli, M.; Onesti, R.; Boi, C.; Bandini, S. Recovery of lactose from acid whey by nanofiltration: An experimental study. Sep. Purif. Technol. 2025, 353, 128303. [Google Scholar] [CrossRef]
- Salah, A.; Sany, H.; El-Sayed, A.E.K.B.; El-Bahbohy, R.M.; Mohamed, H.I.; Amin, A. Growth Performance and Biochemical Composition of Desmodesmus sp. Green Alga Grown on Agricultural Industries Waste (Cheese Whey). Water Air Soil Pollut. 2023, 234, 770. [Google Scholar] [CrossRef]
- Borba, K.K.S.; Gadelha, T.S.; Sant’Ana, A.M.S.; Pacheco, M.T.B.; Pinto, L.S.; Madruga, M.S.; Medeiros, A.N.; Bessa, R.J.B.; Alves, S.P.A.; Magnani, M.; et al. Fatty acids, essential amino acids, minerals and proteins profile in whey from goat cheese: Impacts of raising system. Small Rumin. Res. 2022, 217, 106842. [Google Scholar] [CrossRef]
- Lambrini, K.; Aikaterini, F.; Konstantinos, K.; Christos, I.; Ioanna, P.V.; Areti, T. Milk nutritional composition and its role in human health. J. Pharm. Pharmacol. 2021, 9, 8–13. [Google Scholar]
- Zain, S.M.; Behkami, S.; Bakirdere, S.; Koki, I.B. Milk authentication and discrimination via metal content clustering—A case of comparing milk from Malaysia and selected countries of the world. Food Control 2016, 66, 306–314. [Google Scholar] [CrossRef]
- Rako, A.; Kalit, M.T.; Kalit, S.; Soldo, B.; Ljubenkov, I. Nutritional characteristics of Croatian whey cheese (Bračka skuta) produced in different stages of lactation. LWT 2018, 96, 657–662. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Sánchez-Macías, D.; Assunção, P.; Capote, J.; Argüello, A. Farm and factory production of goat cheese whey results in distinct chemical composition. J. Dairy Sci. 2009, 92, 4792–4796. [Google Scholar] [CrossRef]
- Johansen, A.G.; Vegarud, G.E.; Skeie, S. Seasonal and regional variation in the composition of whey from Norwegian Cheddar-type and Dutch-type cheeses. Int. Dairy J. 2002, 12, 621–629. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Entrenas, J.A.; Pérez-Marín, D.; Pashalidis, I.; Theocharis, C.R. A Preliminary Study on Determining Seasonal Variations in Halloumi Cheese Using Near-Infrared Spectroscopy and Chemometrics. Processes 2024, 12, 1517. [Google Scholar] [CrossRef]
- Wölk, M.; Milkovska-Stamenova, S.; Fedorova, M.; Hoffmann, R. Variations in the milk lipidomes of two dairy cow herds fed hay-or silage-based diets over a full year. Food Chem. 2022, 390, 133091. [Google Scholar] [CrossRef]
- McGuinness, L.; Timlin, M.; Murphy, J.P.; Hennessy, D.; Fitzpatrick, E.; McCarthy, K.; Donovan, M.; Callaghan, T.F.; Kilcawley, K.N.; Riordan, D.; et al. Impact of feeding regimes and lactation stage on sensory attributes of Cheddar cheese. Food Res. Int. 2024, 180, 114046. [Google Scholar] [CrossRef] [PubMed]
- Lievore, P.; Simões, D.R.; Silva, K.M.; Drunkler, N.L.; Barana, A.C.; Nogueira, A.; Demiate, I.M. Chemical characterisation and application of acid whey in fermented milk. J. Food Sci. Technol. 2015, 52, 2083–2092. [Google Scholar] [CrossRef]
- Bandara, T.A.; Munasinghe-Arachchige, S.P.; Gamlath, C.J. Fermented whey beverages: A review of process fundamentals, recent developments and nutritional potential. Int. J. Dairy Technol. 2023, 76, 737–757. [Google Scholar] [CrossRef]
- Cheruiyot, E.K.; Bett, R.C.; Amimo, J.O.; Mujibi, F.D. Milk Composition for Admixed Dairy Cattle in Tanzania. Front. Genet. 2018, 9, 142. [Google Scholar] [CrossRef]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, Structure, and Digestive Dynamics of Milk from Different Species—A Review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef] [PubMed]
- New Zealand Food Composition Database 2024, New Zealand Food Composition Database Dataset Manual, Editor.: The New Zealand Institute for Plant & Food Research Limited and Ministry of Health. Available online: https://www.foodcomposition.co.nz/ (accessed on 12 June 2025).
- El-Hatmi, H.; Jrad, Z.; Salhi, I.; Aguibi, A.; Nadri, A.; Khorchani, T. Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk. Dairy/Mljekarstvo 2015, 65, 159–167. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Penasa, M.; Visentin, G.; Zidi, A.; Cassandro, M.; De Marchi, M. Mineral composition of cow milk from multibreed herds. Anim. Sci. J. 2018, 89, 1622–1627. [Google Scholar] [CrossRef]
- Anand, S.; Som Nath, K.; Chenchaiah, M. Chapter 22 Whey and Whey Products. In Milk and Dairy Products in Human Nutrition; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013; pp. 477–497. [Google Scholar]
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013, 445–446, 385–396. [Google Scholar] [CrossRef]
- Hebishy, E.; Yerlikaya, O.; Mahony, J.; Akpinar, A.; Saygili, D. Microbiological aspects and challenges of whey powders—I thermoduric, thermophilic and spore-forming bacteria. Int. J. Dairy Technol. 2023, 76, 779–800. [Google Scholar] [CrossRef]
- Ballom, K.F.; Tsai, H.C.; Taylor, M.; Tang, J.; Zhu, M.J. Stability of Listeria monocytogenes in non-fat dry milk powder during isothermal treatment and storage. Food Microbiol. 2020, 87, 103376. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; Yousef, A.E. Natural Antimicrobials Suitable for Combating Desiccation-Resistant Salmonella enterica in Milk Powder. Microorganisms 2021, 9, 421. [Google Scholar] [CrossRef]
- Jandová, M.; Měřička, P.; Fišerová, M.; Landfeld, A.; Paterová, P.; Hobzová, L.; Jarkovská, E.; Kacerovský, M.; Houška, M. Bacillus cereus as a major cause of discarded pasteurized human banked milk: A single human milk bank experience. Foods 2021, 10, 2955. [Google Scholar] [CrossRef] [PubMed]
- Sonnier, J.L.; Karns, J.S.; Lombard, J.E.; Kopral, C.A.; Haley, B.J.; Kim, S.W.; Van Kessel, J.A.S. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study. J. Dairy Sci. 2018, 101, 1943–1956. [Google Scholar] [CrossRef]
- Adzitey, F.; Awini Tibile, B.; Addy, F.; Adu-Bonsu, G.; Atsu Amagloh, A.S.; Noyoro, E.J.; Tsigbey, V.E. Occurrence, antimicrobial susceptibility and genomic characterization of Salmonella enterica isolated from milk and related sources. Cogent Food Agric. 2025, 11, 2486330. [Google Scholar] [CrossRef]
- Shimojima, Y.; Kodo, Y.; Soeda, K.; Koike, H.; Kanda, M.; Hayashi, H.; Nishino, Y.; Fukui, R.; Kuroda, S.; Hirai, A.; et al. Prevalence of Cereulide-Producing Bacillus cereus in Pasteurized Milk. Shokuhin Eiseigaku zasshi. J. Food Hyg. Soc. Jpn. 2020, 61, 178–182. [Google Scholar] [CrossRef]
- Proroga, Y.T.; Capuano, F.; Castellano, S.; Giordano, A.; Mancusi, A.; Delibato, E.; Dumontet, S.; Pasquale, V. Occurrence and toxin gene profile of Bacillus cereus in dairy products. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 58–62. [Google Scholar] [CrossRef]
- Montone, A.M.I.; Capuano, F.; Mancusi, A.; Di Maro, O.; Peruzy, M.F.; Proroga, Y.T.R.; Cristiano, D. Exposure to Bacillus cereus in water buffalo mozzarella cheese. Foods 2020, 9, 1899. [Google Scholar] [CrossRef] [PubMed]
- Di Pinto, A.; Bonerba, E.; Bozzo, G.; Ceci, E.; Terio, V.; Tantillo, G. Occurence of potentially enterotoxigenic Bacillus cereus in infant milk powder. Eur. Food Res. Technol. 2013, 237, 275–279. [Google Scholar] [CrossRef]
- Tirloni, E.; Stella, S.; Bernardi, C.; Mazzantini, D.; Celandroni, F.; Ghelardi, E. Identification and Pathogenic Potential of Bacillus cereus Strains Isolated from a Dairy Processing Plant Producing PDO Taleggio Cheese. Microorganisms 2020, 8, 949. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, G.; Islam, M.S.; Liu, K.; Xue, S.; Song, Z.; Ye, Y.; Zhou, Y.; Shi, Y.; Wei, S.; et al. Combine thermal processing with polyvalent phage LPEK22 to prevent the Escherichia coli and Salmonella enterica contamination in food. Food Res. Int. 2023, 165, 112454. [Google Scholar] [CrossRef]
- D’Incecco, P.; Limbo, S.; Hogenboom, J.A.; Pellegrino, L. Novel technologies for extending the shelf life of drinking milk: Concepts, research trends and current applications. LWT 2021, 148, 111746. [Google Scholar] [CrossRef]
- Pires, A.; Bożek, A.; Pietruszka, H.; Szkolnicka, K.; Gomes, D.; Díaz, O.; Cobos, A.; Pereira, C. Whey Cheeses Containing Probiotic and Bioprotective Cultures Produced with Ultrafiltrated Cow’s Whey. Foods 2024, 13, 1214. [Google Scholar] [CrossRef]
- Sameli, N.; Sioziou, E.; Bosnea, L.; Kakouri, A.; Samelis, J. Assessment of the spoilage microbiota during refrigerated (4 °C) vacuum-packed storage of fresh Greek Anthotyros whey cheese without or with a crude enterocin ABP-containing extract. Foods 2021, 10, 2946. [Google Scholar] [CrossRef]
- Tsermoula, P.; Khakimov, B.; Nielsen, J.H.; Engelsen, S.B. WHEY—The waste-stream that became more valuable than the food product. Trends Food Sci. Technol. 2021, 118, 230–241. [Google Scholar] [CrossRef]
- Krivohlavek, A.; Palac Bešlić, I.; Jurak, G.; Gavran, M.; Mandić Andačić, I.; Ivešić, M.; Šikić, S.; Vitale, K.; Štefančić, M.; Žuntar, I.; et al. Heavy Metals and Pesticide Residues in Small Farm Cheese Production in Croatia—Challenge between Quality and Quantity. Sustainability 2024, 16, 1356. [Google Scholar] [CrossRef]
- Almášiová, S.; Toman, R.; Pšenková, M.; Tančin, V.; Jančo, I. Toxic Elements in Sheep Milk, Whey, and Cheese from the Environmentally Burdened Area in Eastern Slovakia and Health Risk Assessment with Different Scenarios of Their Consumption. Toxics 2024, 12, 467. [Google Scholar] [CrossRef]
- Duan, J.; Cheng, Z.; Bi, J.; Xu, Y. Residue behavior of organochlorine pesticides during the production process of yogurt and cheese. Food Chem. 2018, 245, 119–124. [Google Scholar] [CrossRef]
- Power, C.; Danaher, M.; Sayers, R.; O’Brien, B.; Whelan, M.; Furey, A.; Jordan, K. Investigation of the persistence of rafoxanide residues in bovine milk and fate during processing. Food Addit. Contam. Part A 2013, 30, 1087–1095. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shadnoush, M.; Sohrabvandi, S.; Yousefi, M.; Khorshidian, N.; Mortazavian, A.M. Probiotics as potential detoxification tools for mitigation of pesticides: A mini review. Int. J. Food Sci. Technol. 2020, 56, 2078–2087. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, F.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Ultrasonic stimulation of milk fermentation: Effects on degradation of pesticides and physiochemical, antioxidant, and flavor properties of yogurt. J. Sci. Food Agric. 2022, 102, 6612–6622. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Research on the Mechanism of Ultrasound to Enhance the Biodegradation of Profenofos by Lactiplantibacillus plantarum. ACS Agric. Sci. Technol. 2023, 3, 535–542. [Google Scholar] [CrossRef]
- Sert, D.; Mercan, E. Effects of ozone treatment to milk and whey concentrates on degradation of antibiotics and aflatoxin and physicochemical and microbiological characteristics. LWT 2021, 144, 111226. [Google Scholar] [CrossRef]
- Kiani, H.; Azimi, Y.; Li, Y.; Mousavi, M.; Cara, F.; Mulcahy, S.; McDonnell, H.; Blanco, A.; Halim, R. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae. J. Biotechnol. 2023, 361, 1–11. [Google Scholar] [CrossRef]
- El Bakraoui, H.; Malaki, A.; Slaoui, M.; Laroche, C. Chromochloris zofingiensis-Based Treatment of Whey Wastewater for Biorefinery Application: Biomass, Nutrient Removal, Astaxanthin and Lipid Production. Appl. Sci. 2025, 15, 5832. [Google Scholar] [CrossRef]
- Chiesa, L.M.; DeCastelli, L.; Nobile, M.; Martucci, F.; Mosconi, G.; Fontana, M.; Castrica, M.; Arioli, F.; Panseri, S. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT 2020, 131, 109783. [Google Scholar] [CrossRef]
- Giraldo, J.; Althaus, R.L.; Beltrán, M.C.; Molina, M.P. Antimicrobial activity in cheese whey as an indicator of antibiotic drug transfer from goat milk. Int. Dairy J. 2017, 69, 40–44. [Google Scholar] [CrossRef]
- Escobar Gianni, D.; Pelaggio, R.; Cardozo, G.; Moreno, S.; De Torres, E.; Rey, F.; Martínez, I.; Suarez Veirano, G.; Olazabal, L. Transfer of β-lactam and tetracycline antibiotics from spiked bovine milk to Dambo-type cheese, whey, and whey powder. Food Addit. Contam. Part A 2023, 40, 824–837. [Google Scholar] [CrossRef] [PubMed]
- Di Rocco, M.; Scollard, J.; Sayers, R.; Furey, A.; Danaher, M.; Jordan, K.; Lourenco, A. Migration of Cefquinome Antibiotic Residues from Milk to Dairy Products. Dairy 2021, 2, 658–670. [Google Scholar] [CrossRef]
- László, N.; Lányi, K.; Laczay, P. LC-MS study of the heat degradation of veterinary antibiotics in raw milk after boiling. Food Chem. 2018, 267, 178–186. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Cannizzo, F.T.; Mantegna, S.; Cravotto, G. Removal of antibiotics from milk via ozonation in a vortex reactor. J. Hazard. Mater. 2022, 440, 129642. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xie, J.; Gowen, A.; Xu, J.L. Machine learning driven methodology for enhanced nylon microplastic detection and characterization. Sci. Rep. 2024, 14, 3464. [Google Scholar] [CrossRef]
- Da Costa Filho, P.A.; Andrey, D.; Eriksen, B.; Peixoto, R.P.; Carreres, B.M.; Ambühl, M.E.; Descarrega, J.B.; Dubascoux, S.; Zbinden, P.; Panchaud, A.; et al. Detection and characterization of small-sized microplastics (≥5 µm) in milk products. Sci. Rep. 2021, 11, 24046. [Google Scholar] [CrossRef]
- Abedi, D.; Niari, M.H.; Ramavandi, B.; De-la-Torre, G.E.; Renner, G.; Schmidt, T.C.; Dobaradaran, S. Microplastics and phthalate esters in yogurt and buttermilk samples: Characterization and health risk assessment. J. Environ. Health Sci. Eng. 2025, 23, 14. [Google Scholar] [CrossRef]
- Visentin, E.; Manuelian, C.L.; Niero, G.; Benetti, F.; Perini, A.; Zanella, M.; Pozza, M.; De Marchi, M. Characterization of microplastics in skim-milk powders. J. Dairy Sci. 2024, 107, 5393–5401. [Google Scholar] [CrossRef]
- Ling, X.; Cheng, J.; Yao, W.; Qian, H.; Ding, D.; Yu, Z.; Xie, Y.; Yang, F. Identification and Visualization of Polystyrene Microplastics/Nanoplastics in Flavored Yogurt by Raman Imaging. Toxics 2024, 12, 330. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Braz. Arch. Biol. Technol. 2013, 56, 259–268. [Google Scholar] [CrossRef]
- La Storia, A.; Di Giuseppe, F.A.; Volpe, S.; Oliviero, V.; Villani, F.; Torrieri, E. Physical properties and antimicrobial activity of bioactive film based on whey protein and Lactobacillus curvatus 54M16 producer of bacteriocins. Food Hydrocoll. 2020, 108, 105959. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, H.; Tian, B.; Jiang, B.; Xu, J.; Li, D.; Feng, Z.; Liu, C. Novel edible coating with antioxidant and antimicrobial activities based on whey protein isolate nanofibrils and carvacrol and its application on fresh-cut cheese. Coatings 2019, 9, 583. [Google Scholar] [CrossRef]
- Mantovani, R.A.; de Figueiredo Furtado, G.; Netto, F.M.; Cunha, R.L. Assessing the potential of whey protein fibril as emulsifier. J. Food Eng. 2018, 223, 99–108. [Google Scholar] [CrossRef]
- İspirli, H.; Dertli, E. Production of lactose derivative hetero-oligosaccharides from whey by glucansucrase E81 and determination of prebiotic functions. LWT 2021, 137, 110471. [Google Scholar] [CrossRef]
- Limnaios, A.; Tsevdou, M.; Zafeiri, E.; Topakas, E.; Taoukis, P. Cheese and Yogurt By-Products as Valuable Ingredients for the Production of Prebiotic Oligosaccharides. Dairy 2024, 5, 78–92. [Google Scholar] [CrossRef]
- Chen, G.Q.; Qu, Y.; Gras, S.L.; Kentish, S.E. Separation Technologies for Whey Protein Fractionation. Food Eng. Rev. 2023, 15, 438–465. [Google Scholar] [CrossRef]
- Wang, Z.L.; Tang, X.; Wang, M.; She, Y.X.; Yang, B.R.; Sheng, Q.H.; Abd El-Aty, A.M. β-Lactoglobulin separation from whey protein: A comprehensive review of isolation and purification techniques and future perspectives. J. Dairy Sci. 2024, 107, 11785–11795. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Ng, A.Q.Q.; Chew, J.W. Understanding single-protein fouling in micro-and ultrafiltration systems via machine-learning-based models. Ind. Eng. Chem. Res. 2023, 62, 7610–7621. [Google Scholar] [CrossRef]
- Ratnaningsih, E.; Reynard, R.; Khoiruddin, K.; Wenten, I.G.; Boopathy, R. Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. Appl. Sci. 2021, 11, 1078. [Google Scholar] [CrossRef]
- Argenta, A.B.; Scheer, A.D.P. Membrane separation processes applied to whey: A review. Food Rev. Int. 2020, 36, 499–528. [Google Scholar] [CrossRef]
- Mazzei, R.; Szymczak, A.M.; Drioli, E.; Al-Fageeh, M.; Aljohi, M.A.; Giorno, L. High purity of α-lactalbumin from binary protein mixture by charged UF membrane far from the isoelectric point to limit fouling. Appl. Sci. 2021, 11, 9167. [Google Scholar] [CrossRef]
- Arahman, N.; Rosnelly, C.M.; Yusni, Y.; Fahrina, A.; Silmina, S.; Ambarita, A.C.; Bilad, M.R.; Gunawan, P.; Rajabzadeh, S.; Takagi, R.; et al. Ultrafiltration of α-Lactalbumin Protein: Acquaintance of the Filtration Performance by Membrane Structure and Surface Alteration. Polymers 2021, 13, 3632. [Google Scholar] [CrossRef]
- Dlask, O.; Václavíková, N. Electrodialysis with ultrafiltration membranes for peptide separation. Chem. Pap. 2018, 72, 261–271. [Google Scholar] [CrossRef]
- Kentish, S.E.; Chen, G.Q. Membrane Applications in Dairy Science. In Handbook of Membrane Separations, 3rd ed.; Kentish, S.E., Chen, G.Q., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 263–294. [Google Scholar]
- Talebi, S.; Kee, E.; Chen, G.Q.; Bathurst, K.; Kentish, S.E. Utilisation of salty whey ultrafiltration permeate with electrodialysis. Int. Dairy J. 2019, 99, 104549. [Google Scholar] [CrossRef]
- Radosavljević, J.; Stanić-Vučinić, D.; Stojadinović, M.; Radomirović, M.; Simović, A.; Radibratović, M.; Veličković, T.Ć. Application of Ion Exchange and Adsorption Techniques for Separation of Whey Proteins from Bovine Milk. Curr. Anal. Chem. 2022, 18, 341–359. [Google Scholar] [CrossRef]
- Besselink, T.; Janssen, A.E.M.; Boom, R.M. Isolation of bovine serum albumin from whey using affinity chromatography. Int. Dairy J. 2015, 41, 32–37. [Google Scholar] [CrossRef]
- Gurgel, P.V.; Carbonell, R.G.; Swaisgood, H.E. Fractionation of whey proteins with a hexapeptide ligand affinity resin. Bioseparation 2000, 9, 385–392. [Google Scholar] [CrossRef]
- El-Sayed, M.M.H.; Chase, H.A. Purification of the two major proteins from whey concentrate using a cation-exchange selective adsorption process. Biotechnol. Prog. 2010, 26, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, A.; Suwal, S.; Touhami, S.; Chamberland, J.; Pouliot, Y.; Doyen, A. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure. J. Dairy Sci. 2020, 103, 7939–7950. [Google Scholar] [CrossRef]
- Irazoqui, J.M.; Santiago, G.M.; Mainez, M.E.; Amadio, A.F.; Eberhardt, M.F. Enzymes for production of whey protein hydrolysates and other value-added products. Appl. Microbiol. Biotechnol. 2024, 108, 354. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, A.; López, E.C.; Marino, F.; Mammarella, E.J.; Manzo, R.M.; Sihufe, G.A. Whey protein hydrolysis with microbial proteases: Determination of kinetic parameters and bioactive properties for different reaction conditions. Int. J. Dairy Technol. 2021, 74, 489–504. [Google Scholar] [CrossRef]
- Jakopović, K.L.; Cheison, S.C.; Kulozik, U.; Božanić, R. Comparison of selective hydrolysis of α-lactalbumin by acid Protease A and Protease M as alternative to pepsin: Potential for β-lactoglobulin purification in whey proteins. J. Dairy Res. 2019, 86, 114–119. [Google Scholar] [CrossRef]
- Hinnenkamp, C.; Ismail, B.P. A proteomics approach to characterizing limited hydrolysis of whey protein concentrate. Food Chem. 2021, 350, 129235. [Google Scholar] [CrossRef]
- Kruchinin, A.; Barkovskaya, I.; Illarionova, E.; Bolshakova, E.; Turovskaya, S.; Galstyan, A. Effect of enzymatic degradation of proteins on technological properties of whey powdered products. Int. J. Dairy Technol. 2025, 78, 70005. [Google Scholar] [CrossRef]
- Jrad, Z.; Oussaief, O.; Khorchani, T.; El-Hatmi, H. Microbial and enzymatic hydrolysis of dromedary whey proteins and caseins: Techno-functional, radical scavenging, antimicrobial properties and incorporation in beverage formulation. J. Food Meas. Charact. 2020, 14, e70005. [Google Scholar] [CrossRef]
- Kaminarides, S.; Zagari, H.; Zoidou, E. Effect of whey fat content on the properties and yields of whey cheese and serum. J. Hell. Vet. Med. Soc. 2020, 71, 2149–2156. [Google Scholar] [CrossRef]
- Tunick, M.H. Chapter 1. Whey Protein Production and Utilization: A Brief History. In Whey Processing, Functionality and Health Benefits, 1st ed.; Onwulata, C.I., Huth, P.J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–13. [Google Scholar]
- Giroux, H.J.; Veillette, N.; Britten, M. Use of denatured whey protein in the production of artisanal cheeses from cow, goat and sheep milk. Small Rumin. Res. 2018, 161, 34–42. [Google Scholar] [CrossRef]
- Lavelli, V.; Beccalli, M.P. Cheese whey recycling in the perspective of the circular economy: Modeling processes and the supply chain to design the involvement of the small and medium enterprises. Trends Food Sci. Technol. 2022, 126, 86–98. [Google Scholar] [CrossRef]
- Macedo, A.; Azedo, D.; Duarte, E.; Pereira, C. Valorization of Goat Cheese Whey through an Integrated Process of Ultrafiltration and Nanofiltration. Membranes 2021, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, L.T.; Murphy, E.G. Nondairy food applications of whey and milk permeates: Direct and indirect uses. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2652–2677. [Google Scholar] [CrossRef] [PubMed]
- Jooyandeh, H.; Minhas, K.S. Utilization of fermented whey protein concentrate and whey permeate in beard loaf making. J. Food Bioprocess Eng. 2021, 4, 186–192. [Google Scholar]
- Reale, E.; Govindasamy-Lucey, S.; Johnson, M.E.; Jaeggi, J.J.; Molitor, M.; Lu, Y.; Lucey, J.A. Effects of the depletion of whey proteins from unconcentrated milk using microfiltration on the yield, functionality, and nutritional profile of Cheddar cheese. J. Dairy Sci. 2020, 103, 9906–9922. [Google Scholar] [CrossRef]
- Melnikova, E.; Bogdanova, E.; Paveleva, D. Chemical composition, functional and technological (processing) properties of whey ingredients. IOP Conf. Ser. Earth Environ. Sci. 2021, 845, 012017. [Google Scholar] [CrossRef]
- Kelly, P. Chapter 3—Manufacture of Whey Protein Products: Concentrates, Isolate, Whey Protein Fractions and Microparticulated. In Whey Proteins; Deeth, H.C., Bansal, N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 97–122. [Google Scholar]
- Abadía-García, L.; Castaño-Tostado, E.; Ozimek, L.; Romero-Gómez, S.; Ozuna, C.; Amaya-Llano, S.L. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases. Innov. Food Sci. Emerg. Technol. 2016, 37, 84–90. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Jia, J.; Kuang, C.; Yang, H. Effect of ultrasonic pretreatment on whey protein hydrolysis by alcalase: Thermodynamic parameters, physicochemical properties and bioactivities. Process Biochem. 2018, 67, 46–54. [Google Scholar] [CrossRef]
- Ambrosi, V.; Polenta, G.; Gonzalez, C.; Ferrari, G.; Maresca, P. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins. Innov. Food Sci. Emerg. Technol. 2016, 38, 294–301. [Google Scholar] [CrossRef]
- Rivas-Vela, C.I.; Amaya-Llano, S.L.; Castaño-Tostado, E.; Castillo-Herrera, G.A. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides. Molecules 2021, 26, 6655. [Google Scholar] [CrossRef]
- Bella, K.; Pilli, S.; Rao, P.V. A comparison of ultrasonic, ozone, and enzyme pre-treatments on cheese whey degradation for enhancement of anaerobic digestion. J. Environ. Manag. 2023, 340, 117960. [Google Scholar] [CrossRef]
- Bella, K.; Pilli, S.; Rao, P.V.; Tyagi, R.D. Bio-conversion of whey lactose using enzymatic hydrolysis with β-galactosidase: An experimental and kinetic study. Environ. Technol. 2024, 45, 1234–1247. [Google Scholar] [CrossRef]
- Mehra, R.; Kumar, H.; Kumar, N.; Ranvir, S.; Jana, A.; Buttar, H.S.; Telessy, I.G.; Awuchi, C.G.; Okpala, C.O.R.; Korzeniowska, M.; et al. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J. Funct. Foods 2021, 87, 104760. [Google Scholar] [CrossRef]
- Barba, F.J. An Integrated Approach for the Valorization of Cheese Whey. Foods 2021, 10, 564. [Google Scholar] [CrossRef]
- Schoemaker, M.H.; Hageman, J.H.; Ten Haaf, D.; Hartog, A.; Scholtens, P.A.; Boekhorst, J.; Nauta, A.; Bos, R. Prebiotic galacto-oligosaccharides impact stool frequency and fecal microbiota in self-reported constipated adults: A randomized clinical trial. Nutrients 2022, 14, 309. [Google Scholar] [CrossRef]
- Jang, J.H.; Kim, S.M.; Suh, H.J.; Gim, M.; Shin, H.; Jang, H.; Choi, H.S.; Han, S.H.; Chang, Y.B. Lactitol alleviates loperamide-induced constipation in Sprague Dawley rats by regulating serotonin, short-chain fatty acids, and gut microbiota. Foods 2024, 13, 2128. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Z.; Yang, J.; Zhang, Y.; Yang, D.; Liu, J.; Wei, X.; Hu, X.; Zhang, H. Preparation of lactosucrose catalyzed by levansucrase and evaluation of its prebiotic activity. Process Biochem. 2023, 134, 76–87. [Google Scholar] [CrossRef]
- Ortiz, A.D.C.; Fideles, S.O.M.; Reis, C.H.B.; Pagani, B.T.; Bueno, L.M.M.; Moscatel, M.B.M.; Buchaim, R.L.; Buchaim, D.V. D-Tagatose: A rare sugar with functional properties and antimicrobial potential against oral species. Nutrients 2024, 16, 1943. [Google Scholar] [CrossRef] [PubMed]
- Hiraishi, K.; Zhao, F.; Kurahara, L.H.; Li, X.; Yamashita, T.; Hashimoto, T.; Matsuda, Y.; Sun, Z.; Zhang, H.; Hirano, K. Lactulose modulates the structure of gut microbiota and alleviates colitis-associated tumorigenesis. Nutrients 2022, 14, 649. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.H.; Sung, M.; Han, J.-I. Lactulose production from cheese whey using recyclable catalyst ammonium carbonate. Food Chem. 2016, 197, 664–669. [Google Scholar] [CrossRef]
- de Albuquerque, T.L.; Gomes, S.D.L.; D’Almeida, A.P.; Fernandez-Lafuente, R.; Gonçalves, L.R.B.; Rocha, M.V.P. Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock. Process Biochem. 2018, 73, 65–73. [Google Scholar] [CrossRef]
- de Freitas, M.D.F.M.; Hortêncio, L.C.; de Albuquerque, T.L.; Rocha, M.V.P.; Gonçalves, L.R.B. Simultaneous hydrolysis of cheese whey and lactulose production catalyzed by β-galactosidase from Kluyveromyces lactis NRRL Y1564. Bioprocess Biosyst. Eng. 2020, 43, 711–722. [Google Scholar] [CrossRef]
- Wu, L.; Xu, C.; Li, S.; Liang, J.; Xu, H.; Xu, Z. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor. Bioresour. Technol. 2017, 233, 305–312. [Google Scholar] [CrossRef]
- Karim, A.; Aider, M. Sustainable Valorization of Whey by Electroactivation Technology for In Situ Isomerization of Lactose into Lactulose: Comparison between Electroactivation and Chemical Processes at Equivalent Solution Alkalinity. ACS Omega 2020, 5, 8380–8392. [Google Scholar] [CrossRef]
- Duan, F.; Zhao, R.; Yang, J.; Xiao, M.; Lu, L. Integrated Utilization of Dairy Whey in Probiotic β-Galactosidase Production and Enzymatic Synthesis of Galacto-Oligosaccharides. Catalysts 2021, 11, 658. [Google Scholar] [CrossRef]
- Limnaios, A.; Tsevdou, M.; Tsika, E.; Korialou, N.; Zerva, A.; Topakas, E.; Taoukis, P. Production of Prebiotic Galacto-Oligosaccharides from Acid Whey Catalyzed by a Novel β-Galactosidase from Thermothielavioides terrestris and Commercial Lactases: A Comparative Study. Catalysts 2023, 13, 1360. [Google Scholar] [CrossRef]
- Orrego, D.; Klotz-Ceberio, B. Enzymatic Synthesis of Galacto-Oligosaccharides from Concentrated Sweet Whey Permeate and Its Application in a Dairy Product. Appl. Sci. 2022, 12, 10229. [Google Scholar] [CrossRef]
- Hackenhaar, C.R.; Spolidoro, L.S.; Flores, E.E.E.; Klein, M.P.; Hertz, P.F. Batch synthesis of galactooligosaccharides from co-products of milk processing using immobilized β-galactosidase from Bacillus circulans. Biocatal. Agric. Biotechnol. 2021, 36, 102136. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Sun, C.; Song, J.R.; Jin, W.Y.; Tang, Y.; Zhou, D.Y.; Song, L. Glycation of whey protein isolate and stachyose modulates their in vitro digestibility: Promising prebiotics as functional ingredients. Food Biosci. 2023, 52, 102379. [Google Scholar] [CrossRef]
- Mao, J.H.; Wang, Y.; Chen, W.M.; Wang, X.M.; Liu, J.; Shao, Y.H.; Tu, Z.C. Galacto-oligosaccharides modified whey protein isolate ameliorates cyclophosphamide-induced immunosuppression. Int. J. Biol. Macromol. 2024, 278, 134642. [Google Scholar] [CrossRef]
- Boscaini, S.; Cabrera-Rubio, R.; Nychyk, O.; Speakman, J.R.; Cryan, J.F.; Cotter, P.D.; Nilaweera, K.N. Age-and duration-dependent effects of whey protein on high-fat diet-induced changes in body weight, lipid metabolism, and gut microbiota in mice. Physiol. Rep. 2020, 8, 14523. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.H.; Hui, Y.; Nguyen, D.N.; Ahnfeldt, A.M.; Burrin, D.G.; Hartmann, B.; Heckmann, A.B.; Sangild, P.T.; Thymann, T.; Bering, S.B. Alpha-lactalbumin enriched whey protein concentrate to improve gut, immunity and brain development in preterm pigs. Nutrients 2020, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Ciechanowska, A.; Brzezowska, J.; Lech, K.; Masztalerz, K.; Korzeniowska, M.; Zambrowicz, A.; Szoltysik, M. Exploiting the potential of powdered blends of recovered sunflower seed cake phenolics and whey—Development of sustainable food additives. Foods 2024, 13, 1433. [Google Scholar] [CrossRef]
- Fluerasu, D.; Neagu, C.; Dossa, S.; Negrea, M.; Jianu, C.; Berbecea, A.; Stoin, D.; Lalescu, D.; Brezovan, D.; Cseh, L.; et al. The Use of Whey Powder to Improve Bread Quality: A Sustainable Solution for Utilizing Dairy By-Products. Foods 2025, 14, 2911. [Google Scholar] [CrossRef]
- Aguilar-Raymundo, V.G.; Ramírez-Murillo, J.I.; Barajas-Ramírez, J.A. Assessing the yield, physicochemical, sensory characteristics, and acceptance of queso fresco added with whey cheese. Int. J. Food Sci. Technol. 2022, 57, 6038–6045. [Google Scholar] [CrossRef]
- Motamedzadegan, A.; Rahmani, S.; Reza Kasaai, M.; Amiri, Z.R. Physicochemical and sensory characteristics of foam mat dried ricotta cheese as a function of raw material composition and drying temperature. J. Food Process. Preserv. 2022, 46, 16510. [Google Scholar] [CrossRef]
- Marnotes, N.G.; Pires, A.F.; Díaz, O.; Cobos, A.; Pereira, C.D. Sheep’s and Goat’s Frozen Yoghurts Produced with Ultrafiltrated Whey Concentrates. Appl. Sci. 2021, 11, 6568. [Google Scholar] [CrossRef]
- Moschopoulou, E.; Dernikos, D.; Zoidou, E. Ovine ice cream made with addition of whey protein concentrates of ovine-caprine origin. Int. Dairy J. 2021, 122, 105146. [Google Scholar] [CrossRef]
- Mykhalevych, A.; Buniowska-Olejnik, M.; Polishchuk, G.; Puchalski, C.; Kamińska-Dwórznicka, A.; Berthold-Pluta, A. The influence of whey protein isolate on the quality indicators of acidophilic ice cream based on liquid concentrates of demineralized whey. Foods 2024, 13, 170. [Google Scholar] [CrossRef]
- Lai, G.; Addis, M.; Caredda, M.; Fiori, M.; Dedola, A.S.; Furesi, S.; Pes, M. Development and Characterization of a Functional Ice Cream from Sheep Milk Enriched with Microparticulated Whey Proteins, Inulin, Omega-3 Fatty Acids, and Bifidobacterium BB-12®. Dairy 2024, 5, 134–152. [Google Scholar] [CrossRef]
- Goyal, C.; Dhyani, P.; Rai, D.C.; Tyagi, S.; Dhull, S.B.; Sadh, P.K.; Duhan, J.S.; Saharan, B.S. Emerging trends and advancements in the processing of dairy whey for sustainable biorefining. J. Food Process. Preserv. 2023, 2023, 6626513. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Shuang, Q.; Xia, Y. Novel insights into flavor formation in whey fermented wine: A study of microbial metabolic networks. LWT 2024, 197, 115911. [Google Scholar] [CrossRef]
- Rojas, O.E.; Cuervo, L.V.; Serrato, J.C. Sustainable production of lactic acid from cheese whey using Co-cultures and enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 2025, 100, 1940–1947. [Google Scholar] [CrossRef]
- Dishan, A.; Gönülalan, Z. Lacticaseibacillus paracasei AD22 Stress Response in Brined White Cheese Matrix: In Vitro Probiotic Profiles and Molecular Characterization. Probiotics Antimicrob. Proteins 2025, 17, 1725–1738. [Google Scholar] [CrossRef]
- Del Toro-Barbosa, M.; Uribe-Velázquez, T.; Hurtado-Romero, A.; Rosales-De la Cruz, M.F.; Carrillo-Nieves, D.; Garcia-Amezquita, L.E.; García-Cayuela, T. Evaluation of GABA-Producing Fermented Whey Formulations: From Strain Selection to Raspberry-Enriched Beverages with Psychobiotic Potential. Foods 2025, 14, 2762. [Google Scholar] [CrossRef]
- Skryplonek, K.; Dmytrów, I.; Mituniewicz-Małek, A. Probiotic fermented beverages based on acid whey. J. Dairy Sci. 2019, 102, 7773–7780. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Tabassum, S.; Harun-ur-Rashid, M.; Vegarud, G.E.; Alam, M.S.; Islam, M.A. Development of probiotic beverage using whey and pineapple (Ananas comosus) juice: Sensory and physico-chemical properties and probiotic survivability during in-vitro gastrointestinal digestion. J. Agric. Food Res. 2021, 4, 100144. [Google Scholar] [CrossRef]
- Dinkçi, N.; Akdeniz, V.; Akalın, A.S. Probiotic Whey-Based Beverages from Cow, Sheep and Goat Milk: Antioxidant Activity, Culture Viability, Amino Acid Contents. Foods 2023, 12, 610. [Google Scholar] [CrossRef]
- Jitpakdee, J.; Kantachote, D.; Kanzaki, H.; Nitoda, T. Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. LWT 2022, 160, 113269. [Google Scholar] [CrossRef]
- Shukla, V.; Villarreal, M.; Padilla-Zakour, O.I. Consumer Acceptance and Physicochemical Properties of a Yogurt Beverage Formulated with Upcycled Yogurt Acid Whey. Beverages 2024, 10, 18. [Google Scholar] [CrossRef]
- Cunha, D.S.; Coelho, M.C.; Ribeiro, S.C.; Silva, C.C. Application of Enterococcus malodoratus SJC25 for the Manufacture of Whey-Based Beverage Naturally Enriched with GABA. Foods 2022, 11, 447. [Google Scholar] [CrossRef]
- Dopazo, V.; Illueca, F.; Luz, C.; Musto, L.; Moreno, A.; Calpe, J.; Meca, G. Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. LWT 2023, 174, 114427. [Google Scholar] [CrossRef]
- Luz, C.; Rodriguez, L.; Romano, R.; Mañes, J.; Meca, G. A natural strategy to improve the shelf life of the loaf bread against toxigenic fungi: The employment of fermented whey powder. Int. J. Dairy Technol. 2020, 73, 88–97. [Google Scholar] [CrossRef]
- Ferreyra, L.S.; Verdini, R.A.; Soazo, M.; Piccirilli, G.N. Impact of whey protein addition on wheat bread fermented with a spontaneous sourdough. Int. J. Food Sci. Technol. 2021, 56, 4738–4745. [Google Scholar] [CrossRef]
- Pořízka, J.; Slavíková, Z.; Bidmonová, K.; Vymětalová, M.; Diviš, P. Physiochemical and Sensory Properties of Bread Fortified with Wheat Bran and Whey Protein Isolates. Foods 2023, 12, 2635. [Google Scholar] [CrossRef]
- Andreou, V.; Chanioti, S.; Xanthou, M.Z.; Katsaros, G. Incorporation of Acid Whey Yogurt By-Product in Novel Sauces Formulation: Quality and Shelf-Life Evaluation. Sustainability 2022, 14, 15722. [Google Scholar] [CrossRef]
- Poonia, A.; Rao, V.; Mann, B. Chapter Whey production status, types, characterization and functional properties. In Whey valorization: Innovations, Technological Advancements and Sustainable Exploitation, 1st ed.; Poonia, A., Trajkovska Petkoska, A., Eds.; Springer Nature: Singapore, 2023; pp. 1–27. [Google Scholar]
- Ozel, B.; McClements, D.J.; Arikan, C.; Kaner, O.; Oztop, M.H. Challenges in dried whey powder production: Quality problems. Food Res. Int. 2022, 160, 111682. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.J.; O’Connor, J.; Cudmore, M.; Dos Santos, D. Caking behaviour of food powder binary mixes containing sticky and non-sticky powders. J. Food Eng. 2017, 204, 73–79. [Google Scholar] [CrossRef]
- Sukmana, H.; Rizwana, I.; Dobozi, R.; Al-Tayawi, A.N.; Szabó, B.P.; Özer, B.; Kertész, S. A review of various protein separation techniques and valorization of cheese whey and buttermilk. Eur. Food Res. Technol. 2025, 251, 1–17. [Google Scholar] [CrossRef]
- Saraç, M.G.; Türker, D.A.; Dogan, M. Determination of morphological structure and powder flow characteristics of commercially important powdered milk products. GIDA-J. Food 2021, 46, 119–133. [Google Scholar]
- Yan, J.; Tong, H. An overview of bitter compounds in foodstuffs: Classifications, evaluation methods for sensory contribution, separation and identification techniques, and mechanism of bitter taste transduction. Compr. Rev. Food Sci. Food Saf. 2023, 22, 187–232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Sun-Waterhouse, D.; Chen, J.; Cui, C.; Wang, W. Bitter-tasting hydrophobic peptides prepared from soy sauce using aqueous ethanol solutions influence taste sensation. Int. J. Food Sci. Technol. 2020, 55, 146–156. [Google Scholar] [CrossRef]
- Liu, B.; Li, N.; Chen, F.; Zhang, J.; Sun, X.; Xu, L.; Fang, F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5153–5170. [Google Scholar] [CrossRef]
- Hu, H.; Shi, A.; Liu, H.; Liu, L.; Fauconnier, M.L.; Wang, Q. Study on key aroma compounds and its precursors of peanut oil prepared with normal-and high-oleic peanuts. Foods 2021, 10, 3036. [Google Scholar] [CrossRef] [PubMed]
- Adamkiewicz, L.; Szeleszczuk, Ł. Review of applications of cyclodextrins as taste-masking excipients for pharmaceutical purposes. Molecules 2023, 28, 6964. [Google Scholar] [CrossRef]
- Leksrisompong, P.; Gerard, P.; Lopetcharat, K.; Drake, M. Bitter taste inhibiting agents for whey protein hydrolysate and whey protein hydrolysate beverages. J. Food Sci. 2012, 77, S282–S287. [Google Scholar] [CrossRef]
- El Hosry, L.; Elias, V.; Chamoun, V.; Halawi, M.; Cayot, P.; Nehme, A.; Bou-Maroun, E. Maillard Reaction: Mechanism, Influencing Parameters, Advantages, Disadvantages, and Food Industrial Applications: A Review. Foods 2025, 14, 1881. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, X.; Wang, Z.; Zhao, Q.; Zhang, S.; Li, Y. Maillard reaction products of soybean protein hydrolysates and reducing sugar: Structure and flavor insights. Food Res. Int. 2025, 202, 115790. [Google Scholar] [CrossRef]
- Bu, T.; Zhou, M.; Zheng, J.; Yang, P.; Song, H.; Li, S.; Wu, J. Preparation and characterization of a low-phenylalanine whey hydrolysate using two-step enzymatic hydrolysis and macroporous resin adsorption. LWT 2020, 132, 109753. [Google Scholar] [CrossRef]
- Mirzapour-Kouhdasht, A.; McClements, D.J.; Taghizadeh, M.S.; Niazi, A.; Garcia-Vaquero, M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Sci. Food 2023, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, T.K.; Jayaraman, G. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of d-lactic acid from whey permeate. Appl. Microbiol. Biotechnol. 2019, 103, 5653–5662. [Google Scholar] [CrossRef]
- Mejia-Gomez, C.E.; Balcázar, N. Isolation, characterisation and continuous culture of Lactobacillus spp. and its potential use for lactic acid production from whey. Food Sci. Technol. 2020, 40, 1021–1028. [Google Scholar] [CrossRef]
- Sharma, A.; Mukherjee, S.; Tadi, S.R.R.; Ramesh, A.; Sivaprakasam, S. Kinetics of growth, plantaricin and lactic acid production in whey permeate based medium by probiotic Lactobacillus plantarum CRA52. LWT 2021, 139, 110744. [Google Scholar] [CrossRef]
- Lech, M. Optimisation of protein-free waste whey supplementation used for the industrial microbiological production of lactic acid. Biochem. Eng. J. 2020, 157, 107531. [Google Scholar] [CrossRef]
- Luongo, V.; Policastro, G.; Ghimire, A.; Pirozzi, F.; Fabbricino, M. Repeated-Batch Fermentation of Cheese Whey for Semi-Continuous Lactic Acid Production Using Mixed Cultures at Uncontrolled pH. Sustainability 2019, 11, 3330. [Google Scholar]
- Liu, P.; Zheng, Z.; Xu, Q.; Qian, Z.; Liu, J.; Ouyang, J. Valorization of dairy waste for enhanced D-lactic acid production at low cost. Process Biochem. 2018, 71, 18–22. [Google Scholar] [CrossRef]
- Louasté, B.; Eloutassi, N. Succinic acid production from whey and lactose by Actinobacillus succinogenes 130Z in batch fermentation. Biotechnol. Rep. 2020, 27, 00481. [Google Scholar] [CrossRef] [PubMed]
- Uysal, U.; Hamamcı, H. Succinic acid production from cheese whey via fermentation by using alginate immobilized Actinobacillus succinogenes. Bioresour. Technol. Rep. 2021, 16, 100829. [Google Scholar] [CrossRef]
- Banger, G.; Kaya, K.; Omwene, P.; Shakoory, S.; Karagündüz, A.; Keskinler, B.; Nikerel, E. Delactosed Whey Permeate as Substrate for Succinic Acid Fermentation by Actinobacillus succinogenes. Waste Biomass Valorization 2021, 12, 5481–5489. [Google Scholar] [CrossRef]
- Mozejko-Ciesielska, J.; Marciniak, P.; Moraczewski, K.; Rytlewski, P.; Czaplicki, S.; Zadernowska, A. Cheese whey mother liquor as dairy waste with potential value for polyhydroxyalkanoate production by extremophilic Paracoccus homiensis. Sustain. Mater. Technol. 2022, 33, 00449. [Google Scholar] [CrossRef]
- Bosco, F.; Cirrincione, S.; Carletto, R.; Marmo, L.; Chiesa, F.; Mazzoli, R.; Pessione, E. PHA Production from Cheese Whey and “Scotta”: Comparison between a Consortium and a Pure Culture of Leuconostoc mesenteroides. Microorganisms 2021, 9, 2426. [Google Scholar] [CrossRef]
- Das, S.; Majumder, A.; Shukla, V.; Suhazsini, P.; Radha, P. Biosynthesis of Poly(3-hydroxybutyrate) from Cheese Whey by Bacillus megaterium NCIM 5472. J. Polym. Environ. 2018, 26, 4176–4187. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Verardo, V.; Martín-García, B.; Oliviero, M.; Baselice, M.; Di Pierro, P.; Sorrentino, A.; Viscardi, S.; Marileo, L.; et al. Bioconversion of Cheese Whey and Food By-Products by Phaeodactylum tricornutum into Fucoxanthin and n-3 Lc-PUFA through a Biorefinery Approach. Mar. Drugs 2023, 21, 190. [Google Scholar] [CrossRef] [PubMed]
- Donzella, S.; Fumagalli, A.; Arioli, S.; Pellegrino, L.; D’Incecco, P.; Molinari, F.; Speranza, G.; Ubiali, D.; Robescu, M.S.; Compagno, C. Recycling Food Waste and Saving Water: Optimization of the Fermentation Processes from Cheese Whey Permeate to Yeast Oil. Fermentation 2022, 8, 341. [Google Scholar] [CrossRef]
- Jang, E.J.; Padhan, B.; Patel, M.; Pandey, J.K.; Xu, B.; Patel, R. Antibacterial and biodegradable food packaging film from bacterial cellulose. Food Control 2023, 153, 109902. [Google Scholar] [CrossRef]
- Güzel, M.; Akpınar, Ö. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. Int. J. Biol. Macromol. 2020, 162, 1597–1604. [Google Scholar] [CrossRef]
- Lappa, I.K.; Kachrimanidou, V.; Papadaki, A.; Stamatiou, A.; Ladakis, D.; Eriotou, E.; Kopsahelis, N. A comprehensive bioprocessing approach to foster cheese whey valorization: On-site β-galactosidase secretion for lactose hydrolysis and sequential bacterial cellulose production. Fermentation 2021, 7, 184. [Google Scholar] [CrossRef]
- Lotfy, V.F.; Basta, A.H.; Abdel-Monem, M.O.; Abdel-Hamed, G.Z. Utilization of bacteria in rotten Guava for production of bacterial cellulose from isolated and protein waste. Carbohydr. Polym. Technol. Appl. 2021, 2, 100076. [Google Scholar] [CrossRef]
- Rollini, M.; Musatti, A.; Cavicchioli, D.; Bussini, D.; Farris, S.; Rovera, C.; Romano, D.; De Benedetti, S.; Barbiroli, A. From cheese whey permeate to Sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: A circular economy case study. Sci. Rep. 2020, 10, 21358. [Google Scholar] [CrossRef]
- Chalermthai, B.; Chan, W.Y.; Bastidas-Oyanedel, J.R.; Taher, H.; Olsen, B.D.; Schmidt, J.E. Preparation and Characterization of Whey Protein-Based Polymers Produced from Residual Dairy Streams. Polymers 2019, 11, 722. [Google Scholar] [CrossRef]
- Li, C.; Ding, J.; Chen, D.; Shi, Z.; Wang, L. Bioconversion of cheese whey into a hetero-exopolysaccharide via a one-step bioprocess and its applications. Biochem. Eng. J. 2020, 161, 107701. [Google Scholar] [CrossRef]
- Carrero-Puentes, S.; Fuenmayor, C.; Jiménez-Pérez, C.; Guzmán-Rodríguez, F.; Gómez-Ruiz, L.; Rodríguez-Serrano, G.; Alatorre-Santamaría, S.; García-Garibay, M.; Cruz-Guerrero, A. Development and characterization of an exopolysaccharide-functionalized acid whey cheese (requesón) using Lactobacillus delbrueckii ssp. bulgaricus. J. Food Process. Preserv. 2022, 46, 16095. [Google Scholar] [CrossRef]
- Antunes, S.; Freitas, F.; Alves, V.D.; Grandfils, C.; Reis, M.A. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47. J. Biotechnol. 2015, 210, 1–7. [Google Scholar] [CrossRef]
- Jurášková, D.; Ribeiro, S.C.; Bastos, R.; Coelho, E.; Coimbra, M.A.; Silva, C.C. Exopolysaccharide (EPS) Produced by Leuconostoc mesenteroides SJC113: Characterization of Functional and Technological Properties and Application in Fat-Free Cheese. Macromol 2024, 4, 680–696. [Google Scholar] [CrossRef]
- Macedo, M.G.; Lacroix, C.; Champagne, C.P. Combined Effects of Temperature and Medium Composition on Exopolysaccharide Production by Lactobacillusrhamnosus RW-9595M in a Whey Permeate Based Medium. Biotechnol. Prog. 2002, 18, 167–173. [Google Scholar] [CrossRef]
- Pendón, M.D.; Madeira Jr, J.V.; Romanin, D.E.; Rumbo, M.; Gombert, A.K.; Garrote, G.L. A biorefinery concept for the production of fuel ethanol, probiotic yeast, and whey protein from a by-product of the cheese industry. Appl. Microbiol. Biotechnol. 2021, 105, 3859–3871. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Chang, X. Past, present, and future perspectives on whey as a promising feedstock for bioethanol production by yeast. J. Fungi 2022, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Drężek, K.; Kozłowska, J.; Detman, A.; Mierzejewska, J. Development of a continuous system for 2-phenylethanol bioproduction by yeast on whey permeate-based medium. Molecules 2021, 26, 7388. [Google Scholar] [CrossRef]
- Drężek, K.; Sobczyk, M.K.; Kállai, Z.; Detman, A.; Bardadyn, P.; Mierzejewska, J. Valorisation of Whey Permeate in sequential bioprocesses towards value-added products–optimisation of biphasic and classical batch cultures of Kluyveromyces marxianus. Int. J. Mol. Sci. 2023, 24, 7560. [Google Scholar] [CrossRef]
- Sampaio, F.C.; de Faria, J.T.; da Silva, M.F.; de Souza Oliveira, R.P.; Converti, A. Cheese whey permeate fermentation by Kluyveromyces lactis: A combined approach to wastewater treatment and bioethanol production. Environ. Technol. 2020, 41, 3210–3218. [Google Scholar] [CrossRef]
- Colacicco, M.; De Micco, C.; Macrelli, S.; Agrimi, G.; Janssen, M.; Bettiga, M.; Pisano, I. Process scale-up simulation and techno-economic assessment of ethanol fermentation from cheese whey. Biotechnol. Biofuels Bioprod. 2024, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, F.; Liu, X.; Zhou, X.; Jiang, K. Valorization of Cheese Whey Powder by Two-Step Fermentation for Gluconic Acid and Ethanol Preparation. Appl. Biochem. Biotechnol. 2024, 196, 5391–5402. [Google Scholar] [CrossRef]
- Zou, J.; Chen, X.; Hu, Y.; Xiao, D.; Guo, X.; Chang, X.; Zhou, L. Uncoupling glucose sensing from GAL metabolism for heterologous lactose fermentation in Saccharomyces cerevisiae. Biotechnol. Lett. 2021, 43, 1607–1616. [Google Scholar] [CrossRef]
- Pasotti, L.; Zucca, S.; Casanova, M.; Micoli, G.; Cusella De Angelis, M.G.; Magni, P. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli. BMC Biotechnol. 2017, 17, 48. [Google Scholar] [CrossRef]
- Farkas, C.; Rezessy-Szabó, J.M.; Gupta, V.K.; Bujna, E.; Pham, T.M.; Pásztor-Huszár, K.; Friedrich, L.; Bhat, R.; Thakur, V.K.; Nguyen, Q.D. Batch and Fed-Batch Ethanol Fermentation of Cheese-Whey Powder with Mixed Cultures of Different Yeasts. Energies 2019, 12, 4495. [Google Scholar] [CrossRef]
- Okamoto, K.; Nakagawa, S.; Kanawaku, R.; Kawamura, S. Ethanol Production from Cheese Whey and Expired Milk by the Brown Rot Fungus Neolentinus lepideus. Fermentation 2019, 5, 49. [Google Scholar] [CrossRef]
- Ramos, L.R.; de Menezes, C.A.; Soares, L.A.; Sakamoto, I.K.; Varesche, M.B.A.; Silva, E.L. Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT. Bioprocess Biosyst. Eng. 2020, 43, 673–684. [Google Scholar] [CrossRef]
- Mainardis, M.; Flaibani, S.; Trigatti, M.; Goi, D. Techno-economic feasibility of anaerobic digestion of cheese whey in small Italian dairies and effect of ultrasound pre-treatment on methane yield. J. Environ. Manag. 2019, 246, 557–563. [Google Scholar] [CrossRef]
- Treu, L.; Tsapekos, P.; Peprah, M.; Campanaro, S.; Giacomini, A.; Corich, V.; Kougias, P.G.; Angelidaki, I. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresour. Technol. 2019, 275, 375–385. [Google Scholar] [CrossRef]
- Zolfaghari, S.; Hashemi, S.S.; Karimi, K.; Sadeghi, M. Valorization of cheese whey to eco-friendly food packaging and biomethane via a biorefinery. J. Clean. Prod. 2022, 366, 132870. [Google Scholar] [CrossRef]
- Rosseto, M.; Rigueto, C.V.T.; Gomes, K.S.; Krein, D.D.C.; Loss, R.A.; Dettmer, A.; Richards, N.S.P.D.S. Whey filtration: A review of products, application, and pretreatment with transglutaminase enzyme. J. Sci. Food Agric. 2024, 104, 3185–3196. [Google Scholar] [CrossRef]
- Ghosh, B.C.; Prasad, L.; Saha, N. Enzymatic hydrolysis of whey and its analysis. J. Food Sci. Technol. 2017, 54, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Martín-del-Campo, S.T.; Martínez-Basilio, P.C.; Sepúlveda-Álvarez, J.C.; Gutiérrez-Melchor, S.E.; Galindo-Peña, K.D.; Lara-Domínguez, A.K.; Cardador-Martínez, A. Production of Antioxidant and ACEI Peptides from Cheese Whey Discarded from Mexican White Cheese Production. Antioxidants 2019, 8, 158. [Google Scholar] [CrossRef]
- Zapata Bustamante, S.; Sepulveda Valencia, J.U.; Correa Londono, G.A.; Durango Restrepo, D.L.; Gil Gonzalez, J.H. Hydrolysates from ultrafiltrated double-cream cheese whey: Enzymatic hydrolysis, antioxidant, and ACE-inhibitory activities and peptide characterization. J. Food Process. Preserv. 2021, 45, 15790. [Google Scholar] [CrossRef]
- Le Maux, S.; Nongonierma, A.B.; Barre, C.; FitzGerald, R.J. Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chem. 2016, 199, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, H.A.; Ejima, A.; Sato, K. Generation of antibacterial peptides from crude cheese whey using pepsin and rennet enzymes at various pH conditions. J. Sci. Food Agric. 2019, 99, 555–563. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Y.; Liu, J.; Meng, Z.; Huang, A.; Xu, F.; Wang, X. Identification, characterization and in vitro activity of hypoglycemic peptides in whey hydrolysates from rubing cheese by-product. Food Res. Int. 2023, 164, 112382. [Google Scholar] [CrossRef]
- Daliri, E.B.M.; Lee, B.H.; Park, B.J.; Kim, S.H.; Oh, D.H. Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Sci. Biotechnol. 2018, 27, 1781–1789. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Robles-Porchas, G.R.; González-Velázquez, D.A.; Torres-Llanez, M.J.; Martínez-Porchas, M.; García-Sifuentes, C.O.; González-Córdova, A.F.; Vallejo-Córdoba, B. Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation 2020, 6, 19. [Google Scholar] [CrossRef]
- Olvera-Rosales, L.B.; Pérez-Escalante, E.; Castañeda-Ovando, A.; Contreras-López, E.; Cruz-Guerrero, A.E.; Regal-López, P.; Cardelle-Cobas, A.; González-Olivares, L.G. ACE-Inhibitory Activity of Whey Proteins Fractions Derived of Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102. Foods 2023, 12, 2416. [Google Scholar] [CrossRef] [PubMed]
- Hati, S.; Patel, N.; Sakure, A.; Mandal, S. Influence of Whey Protein Concentrate on the Production of Antibacterial Peptides Derived from Fermented Milk by Lactic Acid Bacteria. Int. J. Pept. Res. Ther. 2018, 24, 87–98. [Google Scholar] [CrossRef]
- Dineshbhai, C.K.; Basaiawmoit, B.; Sakure, A.A.; Maurya, R.; Bishnoi, M.; Kondepudi, K.K.; Patil, G.B.; Mankad, M.; Liu, Z.; Hati, S. Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. Food Biosci. 2022, 48, 101758. [Google Scholar] [CrossRef]
- Gutiérrez-Cortés, C.; Suarez, H.; Buitrago, G.; Nero, L.A.; Todorov, S.D. Enhanced Bacteriocin Production by Pediococcus pentosaceus 147 in Co-culture With Lactobacillus plantarum LE27 on Cheese Whey Broth. Front. Microbiol. 2018, 9, 2952. [Google Scholar] [CrossRef]
- Kocabaş, D.S.; Lyne, J.; Ustunol, Z. Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends Food Sci. Technol. 2022, 119, 467–475. [Google Scholar] [CrossRef]
- de Divitiis, M.; Ami, D.; Pessina, A.; Palmioli, A.; Sciandrone, B.; Airoldi, C.; Regonesi, M.E.; Brambilla, L.; Lotti, M.; Natalello, A.; et al. Cheese-whey permeate improves the fitness of Escherichia coli cells during recombinant protein production. Biotechnol. Biofuels Bioprod. 2023, 16, 30. [Google Scholar] [CrossRef]
- Bianchi, G.; Pessina, A.; Ami, D.; Signorelli, S.; de Divitiis, M.; Natalello, A.; Lotti, M.; Brambilla, L.; Brocca, S.; Mangiagalli, M. Sustainable production of a biotechnologically relevant β-galactosidase in Escherichia coli cells using crude glycerol and cheese whey permeate. Bioresour. Technol. 2024, 406, 131063. [Google Scholar] [CrossRef]
- Nascimento, M.F.; Barreiros, R.; Oliveira, A.C.; Ferreira, F.C.; Faria, N.T. Moesziomyces spp. cultivation using cheese whey: New yeast extract-free media, β-galactosidase biosynthesis and mannosylerythritol lipids production. Biomass Convers. Biorefinery 2024, 14, 6783–6796. [Google Scholar] [CrossRef]
- Bosso, A.; Setti, A.C.I.; Tomal, A.B.; Guemra, S.; Morioka, L.R.I.; Suguimoto, H.H. Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate. Biocatal. Agric. Biotechnol. 2019, 21, 101335. [Google Scholar] [CrossRef]
- El-Naga, M.Y.A.; Khan, M.A.; Abu-Hussien, S.H.; Mahdy, S.M.; Al-Farga, A.; Hegazy, A.A. Optimizing lipase production by Bacillus subtilis on cheese whey and evaluating its antimicrobial, antibiofilm, anti virulence and biosafety properties. Sci. Rep. 2025, 15, 11087. [Google Scholar] [CrossRef]
- Knob, A.; Izidoro, S.C.; Lacerda, L.T.; Rodrigues, A.; de Lima, V.A. A novel lipolytic yeast Meyerozyma guilliermondii: Efficient and low-cost production of acid and promising feed lipase using cheese whey. Biocatal. Agric. Biotechnol. 2020, 24, 101565. [Google Scholar] [CrossRef]
- Hausjell, J.; Miltner, M.; Herzig, C.; Limbeck, A.; Saracevic, Z.; Saracevic, E.; Weissensteiner, J.; Molitor, C.; Halbwirth, H.; Spadiut, O. Valorisation of cheese whey as substrate and inducer for recombinant protein production in E. coli HMS174(DE3). Bioresour. Technol. Rep. 2019, 8, 100340. [Google Scholar]
- Alizadeh Behbahani, B.; Jooyandeh, H.; Falah, F.; Vasiee, A. Gamma-aminobutyric acid production by Lactobacillus brevis A3: Optimization of production, antioxidant potential, cell toxicity, and antimicrobial activity. Food Sci. Nutr. 2020, 8, 5330–5339. [Google Scholar] [CrossRef] [PubMed]
- Karimian, E.; Moayedi, A.; Khomeiri, M.; Aalami, M.; Mahoonak, A.S. Application of high-GABA producing Lactobacillus plantarum isolated from traditional cabbage pickle in the production of functional fermented whey-based formulate. J. Food Meas. Charact. 2020, 14, 3408–3416. [Google Scholar] [CrossRef]
- De Giorgi, S.; Raddadi, N.; Fabbri, A.; Toschi, T.G.; Fava, F. Potential use of ricotta cheese whey for the production of lactobionic acid by Pseudomonas taetrolens strains. New Biotechnol. 2018, 42, 71–76. [Google Scholar] [CrossRef]
- Meng, W.; Zhang, Y.; Cao, M.; Zhang, W.; Lü, C.; Yang, C.; Gao, C.; Xu, P.; Ma, C. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca. Microb. Cell Factories 2020, 19, 162. [Google Scholar] [CrossRef]
- Mata-Gómez, L.C.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J.; Méndez-Zavala, A.; Morales-Oyervides, L.; Montañez, J. Microbial Carotenoid Synthesis Optimization in Goat Cheese Whey Using the Robust Taguchi Method: A Sustainable Approach to Help Tackle Vitamin A Deficiency. Foods 2023, 12, 658. [Google Scholar] [CrossRef]
- Ruchala, J.; Andreieva, Y.A.; Tsyrulnyk, A.O.; Sobchuk, S.M.; Najdecka, A.; Wen, L.; Kang, Y.; Dmytruk, O.V.; Dmytruk, K.V.; Fedorovych, D.V.; et al. Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata. Microb. Cell Factories 2022, 21, 161. [Google Scholar] [CrossRef]
- Charalampia, D.; Antonios, K.E.; Rafaela, M.; Skiadaresis, A.; Haralabos, K.; Yanniotis, S.; Charalampia, D. Using cheese whey for the production of carotenoids, ergosterol and novel functional foods of industrial interest though a series of optimized bio-and chemical-processes. J. Agric. Environ. Biotechnol. 2019, 4, 529–538. [Google Scholar] [CrossRef]
- Sahoo, A.; Mahanty, B.; Daverey, A.; Dutta, K. Nattokinase production from Bacillus subtilis using cheese whey: Effect of nitrogen supplementation and dynamic modelling. J. Water Process Eng. 2020, 38, 101533. [Google Scholar] [CrossRef]
- Velez, M.E.V.; da Luz, J.M.R.; da Silva, M.D.C.S.; Cardoso, W.S.; de Souza Lopes, L.; Vieira, N.A.; Kasuya, M.C.M. Production of bioactive compounds by the mycelial growth of Pleurotus djamor in whey powder enriched with selenium. LWT 2019, 114, 108376. [Google Scholar] [CrossRef]


| Total Solids (% w/w) | Protein (% w/w) | Fat (% w/w) | Lactose (% w/w) | Ash (% w/w) | COD (g/L) | BOD (g/L) | Reference | ||
|---|---|---|---|---|---|---|---|---|---|
| Milk | Cow | 11.8–13 | 3.0–3.9 | 1.3–5.4 | 4.2–5.6 | 0.6–0.8 | [59,60,61] | ||
| Buffalo | 15.7–17.2 | 2.7–4.7 | 5.3–9.0 | 3.2–4.9 | 0.8–0.9 | [60] | |||
| Goat | 11.9–16.3 | 2.5–5.2 | 3.0–7.2 | 3.2–5.0 | 0.7–0.9 | [60,61,62,63] | |||
| Sheep | 18.1–20.0 | 4.5–7.0 | 5.0–9.0 | 4.1–5.9 | 0.8–1.0 | [60] | |||
| Human | 1.1–1.4 | 3.5–3.8 | 6.6 | 0.1–0.2 | [61,62] | ||||
| Whey | Cow | 6.6 | 0.8 | 0.2 | 5.0 | 50–102 | 27–60 | [64,65] | |
| Buffalo | 6.0–7.0 | 0.7–0.9 | 0.1–0.8 | 4.2–5.0 | [10,37] | ||||
| Goat | 5.1 | 0.43 | 1.2 | 4.1 | [64] | ||||
| Sheep | 9.5 | 1.75 | 1.5 | 3.7 | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selmi, H.; Presutto, E.; Spano, G.; Capozzi, V.; Fragasso, M. Valorising Whey: From Environmental Burden to Bio-Based Production of Value-Added Compounds and Food Ingredients. Foods 2025, 14, 3646. https://doi.org/10.3390/foods14213646
Selmi H, Presutto E, Spano G, Capozzi V, Fragasso M. Valorising Whey: From Environmental Burden to Bio-Based Production of Value-Added Compounds and Food Ingredients. Foods. 2025; 14(21):3646. https://doi.org/10.3390/foods14213646
Chicago/Turabian StyleSelmi, Hiba, Ester Presutto, Giuseppe Spano, Vittorio Capozzi, and Mariagiovanna Fragasso. 2025. "Valorising Whey: From Environmental Burden to Bio-Based Production of Value-Added Compounds and Food Ingredients" Foods 14, no. 21: 3646. https://doi.org/10.3390/foods14213646
APA StyleSelmi, H., Presutto, E., Spano, G., Capozzi, V., & Fragasso, M. (2025). Valorising Whey: From Environmental Burden to Bio-Based Production of Value-Added Compounds and Food Ingredients. Foods, 14(21), 3646. https://doi.org/10.3390/foods14213646

