Dynamics of Lactic Acid Bacteria Dominance in Sour Bamboo Shoot Fermentation: Roles of Interspecies Interactions and Organic Acid Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Fermentation Process
2.2. Analysis of Microbial Community
2.3. Analysis of Physicochemical Properties
2.4. Isolation and Functional Validation of Key Strains
2.4.1. Strain Isolation
2.4.2. Mono- and Co-Culture Experiments
2.4.3. Organic Acid Regulation Test
2.5. Statistical Analysis
3. Results
3.1. Microbial Community Diversity of Sour Bamboo Shoots
3.2. Representative Bacteria of Different Fermentation Stages of Sour Bamboo Shoots
3.3. Functional Potential of Microbial Community
3.4. Changes in Physicochemical Properties in the Fermentation Process of Sour Bamboo Shoots
3.5. Association Analysis of Microbial Interaction Networks and Environmental Factors
3.6. Isolation and Identification of Key Strains and Exploration of Interactions
3.6.1. Isolation and Screening of Strains
3.6.2. pH Dynamics and Bacterial Growth in Mono-Culture and Co-Culture Systems
3.7. Analysis of Concentration-Dependent Effects of Organic Acids on Growth Inhibition and Promotion of Isolated Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, H.S.; Whon, T.W.; Kim, J.; Lee, S.H.; Kim, J.Y.; Kim, Y.B.; Choi, H.; Rhee, J.; Roh, S.W. Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Food Chem. 2020, 318, 126481. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, F.; Dong, M. Dynamic changes in microbial communities and physicochemical characteristics during fermentation of non-post fermented Shuidouchi. Front. Nutr. 2022, 9, 926637. [Google Scholar] [CrossRef]
- Jiang, F.; Cheng, H.; Liu, D.; Wei, C.; An, W.; Wang, Y.; Sun, H.; Song, E. Treatment of whole-plant corn silage with lactic acid bacteria and organic acid enhances quality by elevating acid content, reducing pH, and inhibiting undesirable microorganisms. Front. Microbiol. 2020, 11, 593088. [Google Scholar] [CrossRef]
- De Castro, A.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Medina, E.; Montaño, A. Microbiota and metabolite profiling of spoiled Spanish-style green table olives. Metabolites 2018, 8, 73. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, B.; Yang, F.; Zhang, X.; Li, J.; Du, G.; Wang, L.; Chen, J. Metabolomics-driven elucidation of interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu fermentation microbiome. Fermentation 2022, 8, 33. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Xiao, H.; Huang, H.; Deng, G.; Chen, M.; Jiang, L. Bacterial communities and volatile organic compounds in traditional fermented salt-free bamboo shoots. Food Biosci. 2022, 50, 102006. [Google Scholar] [CrossRef]
- Guan, Q.; Huang, T.; Peng, F.; Huang, J.; Liu, Z.; Peng, Z.; Xie, M.; Xiong, T. The microbial succession and their correlation with the dynamics of flavor compounds involved in the natural fermentation of suansun, a traditional Chinese fermented bamboo shoots. Food Res. Int. 2022, 157, 111216. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheng, G.; Liu, Y.; Yi, Y.; Chen, D.; Zhang, L.; Wang, X.; Cao, J. Correlation between microorganisms and flavor of Chinese fermented sour bamboo shoot: Roles of Lactococcus and Lactobacillus in flavor formation. Food Biosci. 2022, 50, 101994. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Cheng, G.; Liu, Y.; Yi, Y.; Chen, D.; Wang, X.; Cao, J. Flavor changes and microbial evolution in fermentation liquid of sour bamboo shoots. J. Food Compos. Anal. 2023, 120, 105273. [Google Scholar] [CrossRef]
- Guo, R.; Yu, F.; Wang, C.; Jiang, H.; Yu, L.; Zhao, M.; Liu, X. Determination of the volatiles in fermented bamboo shoots by Head Space–Solid-Phase Micro Extraction (HS-SPME) with Gas Chromatography–Olfactory–Mass Spectrometry (GC-O-MS) and Aroma Extract Dilution Analysis (AEDA). Anal. Lett. 2021, 54, 1162–1179. [Google Scholar] [CrossRef]
- Qian, Q.; Chen, Z.; Li, K.; Xiong, J.; Lu, Y.; Xu, H.; Xu, Z. Guangxi sour bamboo shoots: A study on microbial diversity and flavor characteristics across regions. J. Food Compos. Anal. 2024, 135, 106641. [Google Scholar] [CrossRef]
- Tang, H.; Ma, J.; Chen, L.; Jiang, L.; Kang, L.; Guo, Y.; Men, G.; Nie, D.; Zhong, R. Characterization of key flavor substances and their microbial sources in traditional sour bamboo shoots. Food Chem. 2024, 437, 137858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, A.; Li, J.; Shan, Y.; Gong, X.; Yao, H.; Zhou, W.; Wang, M.; Liang, B.; Wang, F.; et al. Volatiles and bacterial composition of pickled bamboo shoots within 10 pre-packaged Chinese Luosifen disclosed by GC–MS, GC-IMS, and high-throughput sequencing. Innov. Food Sci. Emerg. Technol. 2024, 96, 103794. [Google Scholar] [CrossRef]
- Danial, A.M.; Medina, A.; Magan, N. Lactobacillus plantarum strain HT-W104-B1: Potential bacterium isolated from Malaysian fermented foods for control of the dermatophyte Trichophyton rubrum. World J. Microb. Biot. 2021, 37, 57. [Google Scholar] [CrossRef]
- Kim, K.H.; Chun, B.H.; Baek, J.H.; Roh, S.W.; Lee, S.H.; Jeon, C.O. Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Food Microbiol. 2020, 86, 103341. [Google Scholar] [CrossRef]
- Liu, N.; Qin, L.; Miao, S. Regulatory mechanisms of l-lactic acid and taste substances in Chinese acid rice soup (Rice-Acid) fermented with a Lacticaseibacillus paracasei and Kluyveromyces marxianus. Front. Microbiol. 2021, 12, 594631. [Google Scholar] [CrossRef]
- Chen, G.; Li, W.; Tong, S.; Qiu, Y.; Han, J.; Lv, X.; Ai, L.; Sun, J.; Sun, B.; Ni, L. Effects of the microbial community on the formation of volatile compounds and biogenic amines during the traditional brewing of Hongqu rice wine. Curr. Res. Food Sci. 2022, 5, 1433–1444. [Google Scholar] [CrossRef]
- Öz, E.; Kaban, G.; Barış, Ö.; Kaya, M. Isolation and identification of lactic acid bacteria from pastırma. Food Control 2017, 77, 158–162. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, X.; Yu, Z.; Li, M.; Sheng, T.; Wang, Z.; Tu, J.; Song, X.; Qi, K. Gut microbiome analysis and screening of lactic acid bacteria with probiotic potential in Anhui swine. Animals 2023, 13, 3812. [Google Scholar] [CrossRef]
- Padovani, N.F.A.; Santos, T.S.; Almeida, P.; Dias, M.; Mendes, M.A.; Cesar, A.S.M.; Maffei, D.F. Salmonella and other Enterobacteriaceae in conventional and organic vegetables grown in Brazilian farms. Braz. J. Microbiol. 2023, 54, 1055–1064. [Google Scholar] [CrossRef]
- Lu, X.; Han, B.; Deng, X.; Deng, S.; Zhang, Y.; Shen, P.; Hui, T.; Chen, R.; Li, X.; Zhang, Y. Pomegranate peel extract ameliorates the severity of experimental autoimmune encephalomyelitis via modulation of gut microbiota. Gut Microbes 2020, 12, 1857515. [Google Scholar] [CrossRef]
- Knuesel, T.; Mohajeri, M.H. The role of the gut microbiota in the development and progression of major depressive and bipolar disorder. Nutrients 2022, 14, 37. [Google Scholar] [CrossRef]
- Cao, X.; Zhao, M.; Zou, S.; Li, Z.; Wu, Y.; Ji, C.; Chen, Y.; Dong, L.; Zhang, S.; Liang, H. Effect of autochthonous lactic acid bacteria-enhanced fermentation on the quality of Suancai. Foods 2022, 11, 3310. [Google Scholar] [CrossRef]
- Jeong, S.H.; Jung, J.Y.; Lee, S.H.; Jin, H.M.; Jeon, C.O. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. Int. J. Food Microbiol. 2013, 164, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiang, W.; Kosik, R.O.; Song, Y.; Luo, Q.; Qiao, T.; Tong, J.; Liu, S.; Deng, C.; Qin, S.; et al. Gut microbiota changes and its potential relations with thyroid carcinoma. J. Adv. Res. 2022, 35, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chen, H.; Ji, C.; Lin, X.; Zhang, W.; Li, L. Dynamic and functional characteristics of predominant species in industrial paocai as revealed by combined DGGE and metagenomic sequencing. Front. Microbiol. 2018, 9, 2416. [Google Scholar] [CrossRef] [PubMed]
- Singhal, P.; Satya, S.; Naik, S.N. Fermented bamboo shoots: A complete nutritional, anti-nutritional and antioxidant profile of the sustainable and functional food to food security. Food Chem. Mol. Sci. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Kozukue, E.; Kozukue, N.; Kurosaki, T. Organic acid, sugar and amino acid composition of bamboo shoots. J. Food Sci. 1983, 48, 935–938. [Google Scholar] [CrossRef]
- Sun, J.; Li, Q.; Xu, H.; Zhang, W. Analysis of metabolomic changes in xylem and phloem sap of cucumber under phosphorus stresses. Metabolites 2022, 12, 361. [Google Scholar] [CrossRef]
- Pswarayi, F.; Gänzle, M.G. Composition and origin of the fermentation microbiota of mahewu, a Zimbabwean fermented cereal beverage. Appl. Environ. Microbiol. 2019, 85, e03130-18. [Google Scholar] [CrossRef]
- Wuyts, S.; Van Beeck, W.; Oerlemans, E.F.M.; Wittouck, S.; Claes, I.J.J.; De Boeck, I.; Weckx, S.; Lievens, B.; De Vuyst, L.; Lebeer, S. Carrot juice fermentations as man-made microbial ecosystems dominated by lactic acid bacteria. Appl. Environ. Microbiol. 2018, 84, e00134-18. [Google Scholar] [CrossRef]
- Lee, J.; Heo, G.; Lee, J.W.; Oh, Y.; Park, J.A.; Park, Y.; Pyun, Y.; Ahn, J.S. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2005, 102, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; She, X.; Chen, X.; Qian, Y.; Tao, Y.; Li, Y.; Guo, S.; Xiang, W.; Liu, G.; Rao, Y. Microbiota succession and chemical composition involved in the radish fermentation process in different containers. Front. Microbiol. 2020, 11, 445. [Google Scholar] [CrossRef]
- Wu, R.; Yu, M.; Liu, X.; Meng, L.; Wang, Q.; Xue, Y.; Wu, J.; Yue, X. Changes in flavour and microbial diversity during natural fermentation of suan-cai, a traditional food made in Northeast China. Int. J. Food Microbiol. 2015, 211, 23–31. [Google Scholar] [CrossRef]
- Chiş, M.S.; Păucean, A.; Man, S.M.; Bonta, V.; Pop, A.; Stan, L.; Beldean Tătar, B.V.; Pop, C.R.; Mureşan, V.; Muste, S. Effect of rice flour fermentation with Lactobacillus spicheri DSM 15429 on the nutritional features of gluten-free muffins. Foods 2020, 9, 822. [Google Scholar] [CrossRef]
- Aiello, A.; Pizzolongo, F.; De Luca, L.; Blaiotta, G.; Aponte, M.; Addeo, F.; Romano, R. Production of butyric acid by different strains of Lactobacillus plantarum (Lactiplantibacillus plantarum). Int. Dairy J. 2023, 140, 105589. [Google Scholar] [CrossRef]
- Todorov, S.D.; Baretto Penna, A.L.; Venema, K.; Holzapfel, W.H.; Chikindas, M.L. Recommendations for the use of standardised abbreviations for the former Lactobacillus genera, reclassified in the year 2020. Benef. Microbes 2023, 15, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Bai, C.; Xu, H.; Na, N.; Jiang, Y.; Yin, G.; Liu, S.; Xue, Y. Succession of bacterial community during the initial aerobic, intense fermentation, and stable phases of whole-plant corn silages treated with lactic acid bacteria suspensions prepared from other silages. Front. Microbiol. 2021, 12, 655095. [Google Scholar] [CrossRef]
- Vivijs, B.; Moons, P.; Aertsen, A.; Michiels, C.W. Acetoin synthesis acquisition favors Escherichia coli growth at low pH. Appl. Environ. Microbiol. 2014, 80, 6054–6061. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage. Front. Microbiol. 2018, 9, 1817. [Google Scholar] [CrossRef]
- Lu, H.; Huang, C.; Yu, K.; Liu, Z. Effects of mixed inoculation of Leuconostoc citreum and Lactobacillus plantarum on suansun (Sour bamboo shoot) fermentation. Food Biosci. 2022, 47, 101688. [Google Scholar] [CrossRef]
- Chang, L.; Mu, G.; Wang, M.; Zhao, T.; Tuo, Y.; Zhu, X.; Qian, F. Microbial diversity and quality-related physicochemical properties of spicy cabbage in northeastern China and their correlation analysis. Foods 2022, 11, 1511. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Xiong, T.; Peng, Z.; Liu, C.; Huang, T.; Yu, H.; Xie, M. Correlation between microbiota and flavours in fermentation of Chinese Sichuan Paocai. Food Res. Int. 2018, 114, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The Carbohydrate metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef]
- Cirlini, M.; Ricci, A.; Galaverna, G.; Lazzi, C. Application of lactic acid fermentation to elderberry juice: Changes in acidic and glucidic fractions. LWT 2020, 118, 108779. [Google Scholar] [CrossRef]
- Briz-Cid, N.; Rial-Otero, R.; Cámara, M.A.; Oliva, J.; Simal-Gandara, J. Dissipation of three fungicides and their effects on anthocyanins and color of Monastrell red wines. Int. J. Mol. Sci. 2019, 20, 1447. [Google Scholar] [CrossRef]
- Gong, L.; Ren, C.; Xu, Y. GlnR negatively regulates glutamate-dependent acid resistance in Lactobacillus brevis. Appl. Environ. Microbiol. 2020, 86, e02615-19. [Google Scholar] [CrossRef]
- Kawai, T.; Ohshima, T.; Tanaka, T.; Ikawa, S.; Tani, A.; Inazumi, N.; Shin, R.; Itoh, Y.; Meyer, K.; Maeda, N. Limosilactobacillus (Lactobacillus) fermentum ALAL020, a probiotic candidate bacterium, produces a cyclic dipeptide that suppresses the periodontal pathogens Porphyromonas gingivalis and Prevotella intermedia. Front. Cell. Infect. Microbiol. 2022, 12, 804334. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.; Li, X.; Hao, X.; Xu, D.; Zhou, Y.; Mehmood, A.; Wang, C. Genetic and biochemical evidence that Enterococcus faecalis Gr17 produces a novel and sec-dependent bacteriocin, Enterocin Gr17. Front. Microbiol. 2019, 10, 1806. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de Las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, C.; Gong, M.; Li, P.; Tang, H.; Jiang, L.; Liu, Y. Dynamics of Lactic Acid Bacteria Dominance in Sour Bamboo Shoot Fermentation: Roles of Interspecies Interactions and Organic Acid Stress. Foods 2025, 14, 3481. https://doi.org/10.3390/foods14203481
Zhang X, Zhang C, Gong M, Li P, Tang H, Jiang L, Liu Y. Dynamics of Lactic Acid Bacteria Dominance in Sour Bamboo Shoot Fermentation: Roles of Interspecies Interactions and Organic Acid Stress. Foods. 2025; 14(20):3481. https://doi.org/10.3390/foods14203481
Chicago/Turabian StyleZhang, Xinxin, Changfeng Zhang, Menglian Gong, Pao Li, Hui Tang, Liwen Jiang, and Yang Liu. 2025. "Dynamics of Lactic Acid Bacteria Dominance in Sour Bamboo Shoot Fermentation: Roles of Interspecies Interactions and Organic Acid Stress" Foods 14, no. 20: 3481. https://doi.org/10.3390/foods14203481
APA StyleZhang, X., Zhang, C., Gong, M., Li, P., Tang, H., Jiang, L., & Liu, Y. (2025). Dynamics of Lactic Acid Bacteria Dominance in Sour Bamboo Shoot Fermentation: Roles of Interspecies Interactions and Organic Acid Stress. Foods, 14(20), 3481. https://doi.org/10.3390/foods14203481