From Artisan Experience to Scientific Elucidation: Preparation Processes, Microbial Diversity, and Food Applications of Chinese Traditional Fermentation Starters (Qu)
Abstract
1. Introduction
2. Process Engineering of Qu Making
2.1. Daqu from Temperature Regime to Finished Starter Process Engineering
2.2. Xiaoqu Engineering Control of the Rice Based Dual Fermentation Platform
2.3. Hongqu (Hongqu/Monascus) Dual-Objective Engineering for Pigment and Aroma Production with Toxin Control
2.4. Fuqu/Jiangqu the Enzyme Engine for Salt-Tolerant Fermentation
2.5. Douchi-Qu: Process Branches of Multi-Type Starters
2.6. Sufu Qu Preconditioning Engineering for Cheese Like Texture
3. Microbial Diversity and Community Ecology
3.1. Daqu Communities, Temperature-Regime Driven Assembly, and Functional Differentiation
3.2. Xiaoqu Communities, a Rhizopus–Saccharomyces–Lactic Acid Bacterium Symbiotic Network
3.3. Hongqu Communities, Monascus-Centered Secondary-Metabolism Ecology
3.4. Fuqu and Jiangqu Communities, a Relay Between Koji-Stage Molds and Salt-Stage Moromi Bacteria
3.5. Douchi-Qu Communities, Typified Assembly
3.6. Sufu Pehtze Communities, Mold–Bacterium Synergy for Texture and Flavor
4. Food Application Spectrum Centered on Qu
4.1. Daqu as a General Engine for Distilled Spirits and Grain Vinegars
4.1.1. Coupling Between Baijiu Aroma Style and the Daqu Temperature Regime
4.1.2. Daqu in Traditional Grain Vinegars
4.2. Xiaoqu in Southern Rice-Based Beverages and Local Baijiu
4.2.1. Household and Workshop Systems Such as Rice Wine, Sweet Rice Wine, and Black Glutinous Rice Wine
4.2.2. Xiaoqu Baijiu and Regional Styles
4.3. Hongqu, a Combined Platform for Pigment and Aroma
4.3.1. Hongqu Rice Wine and Hongqu Huangjiu
4.3.2. Hongqu Vinegar and Hongqu Sufu
4.4. Fuqu or Jiangqu as the Salt-Tolerant Core for Soy Sauce and Soybean Pastes
4.4.1. Soy Sauce Koji with Aspergillus oryzae or A. sojae
4.4.2. Doubanjiang, Huangdoujiang, and Tianmianjiang
4.5. Douchi-Qu, Community Differences, and Quality Indicators in Aspergillus-Type, Mucor or Rhizopus-Type, and Bacterial-Type Douchi
4.6. Sufu-Qu, the Cheese-like Path of Molded Tofu
5. Cross-Scale Coupling Between Functional Enzyme Spectra and Flavor Formation
5.1. A Synergistic Network of Saccharification, Alcohol Fermentation, Proteolysis, and Lipolysis with Flavor Routes
5.2. Enzyme–Substrate–Microbe Interactions from Substrate Specificity to Molecular Origins of Aroma and Taste
6. Quality and Safety from Risk Identification to Process Control
6.1. Monascus Related Citrinin Risk
6.2. Formation, Thresholds, and Intervention for Biogenic Amines Such as Histamine and Tyramine
6.3. Contamination Control in Salt and Acid Tolerant Environments the Double-Edged Roles of Halophiles and Bacillus
6.4. From Experience to Standards Quality Control Points Across Raw Materials, Qu, Fermentation, and Finished Products
6.5. Embedding the Qu to Fermentation Process Within HACCP and Regulatory Frameworks
7. Conclusions and Prospects
7.1. Limitations and Knowledge Gaps
7.1.1. Lack of Standardization in Metagenomic and Metabolomic Protocols
7.1.2. Poor Linkage Between Enzyme Activity and Sensory Outcomes
7.1.3. Limited Modeling of Thermohydrometric Dynamics in Solid-State Fermentations
7.2. Integration of Traditional Wisdom and Modern Biomanufacturing
7.2.1. From Natural Inoculation to Targeted Functional Seed Qu: Isolation, Recombination, and Solid-State Scale-Up of Core Microbes
7.2.2. Smart Qu Making: Digital Monitoring and Closed-Loop Control of Temperature, Humidity, Airflow, and Biogenic Heat
7.2.3. Low-Salt or Low-Sugar and Health-Oriented Products: Technical Challenges and Flavor-Compensation Strategies
7.2.4. Balancing Regional Flavor and Geographical Indications
7.2.5. Evidence Linking Qu, Foods, and Health
7.2.6. Open Data and Standardization: Reproducible Qu Evaluation and Cross-Process Benchmarking
7.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AEDA | Aroma extract dilution analysis |
| aw | Water activity |
| BA | Biogenic amines |
| BGC(s) | Biosynthetic gene cluster(s) |
| CCP(s) | Critical control point(s) |
| CFU | Colony-forming unit (e.g., CFU/g) |
| CFR | Code of Federal Regulations (e.g., 21 CFR Part 117) |
| CIT | Citrinin (mycotoxin) |
| EC | European Communities/Commission (e.g., Regulation (EC) No 852/2004) |
| e-nose | Electronic nose |
| EU | European Union |
| FD (factor) | Flavor dilution (factor) |
| FSMA | Food Safety Modernization Act |
| GABA | γ-Aminobutyric acid |
| GC–O | Gas chromatography–olfactometry |
| GI | Geographical indication(s) |
| HACCP | Hazard analysis and critical control point(s) |
| HPLC | High-performance liquid chromatography |
| HT-Daqu | High-temperature daqu |
| IoT | Internet of Things |
| ISO 22000 | Food safety management standard by the International Organization for Standardization |
| KCl | Potassium chloride |
| LC–MS/MS | Liquid chromatography–tandem mass spectrometry |
| LT-Daqu | Low-temperature daqu |
| LAB | Lactic acid bacteria |
| MK | Monacolin K |
| MT-Daqu | Medium-temperature daqu |
| NaCl | Sodium chloride |
| O2/CO2 | Oxygen/carbon dioxide |
| OAV | Odor activity value |
| PGI | Protected geographical indication |
| PRP(s) | Prerequisite program(s) (ISO 22000 context) |
| QCP(s) | Quality control point(s) |
| RH | Relative humidity |
| ROAV | Relative odor activity value |
| SOP | Standard operating procedure(s) |
| SP (activity) | Saccharifying power (enzyme activity) |
| SPME–GC–MS | Solid-phase microextraction gas chromatography–mass spectrometry |
| UV | Ultraviolet |
| WHO | World Health Organization |
| w/v | Weight/volume |
| v/v | Volume/volume |
References
- Wu, Y.; Yin, R.; Guo, L.; Song, Y.; He, X.; Huang, M.; Ren, Y.; Zhong, X.; Zhao, D.; Li, J.; et al. The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body. Foods 2025, 14, 2743. [Google Scholar] [CrossRef]
- Tu, W.; Cao, X.; Cheng, J.; Li, L.; Zhang, T.; Wu, Q.; Xiang, P.; Shen, C.; Li, Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front. Microbiol. 2022, 13, 919044. [Google Scholar] [CrossRef]
- Kang, J.; Huang, X.; Li, R.; Zhang, Y.; Chen, X.; Han, B. Deciphering the core microbes and their interactions in spontaneous Baijiu fermentation: A comprehensive review. Food Res. Int. 2024, 188, 114497. [Google Scholar] [CrossRef]
- Jin, G.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Hou, J. Making beer with malted cereals and qu starter in the Neolithic Yangshao culture, China. J. Archaeol. Sci. Rep. 2020, 29, 102134. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Ge, W.; Lin, Z.; Sinnott-Armstrong, N.; Yang, L. Revealing the 2300-Year-Old Fermented Beverage in a Bronze Bottle from Shaanxi, China. Fermentation 2024, 10, 365. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Li, J.; He, Y.; Gao, Z.; Jiang, L. Identification of 10,000-year- old rice beer at Shangshan in the Lower Yangzi River valley of China. Proc. Natl. Acad. Sci. USA 2024, 121, e2412274121. [Google Scholar] [CrossRef]
- Yang, L.; Fan, W.; Xu, Y. Qu-omics elucidates the formation and spatio-temporal differentiation mechanism underlying the microecology of high temperature Daqu. Food Chem. 2024, 438, 137988. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Hussain, R.; Khan, Q.F.; Zhang, H. Functional microbiota in Chinese traditional Baijiu and Mijiu Qu (starters): A review. Food Res. Int. 2020, 138, 109830. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Q.; Wu, W.; Yang, J.; Zou, W. Wheat Qu and Its Production Technology, Microbiota, Flavor, and Metabolites. J. Food Sci. 2019, 84, 2373–2386. [Google Scholar] [CrossRef]
- Mao, X.; Yue, S.; Xu, D.; Fu, R.; Han, J.; Zhou, H.; Tang, Y. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS Omega 2023, 8, 32311–32330. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, J.; Zhao, Q.; Zhang, K.; Su, C. Research Progress on Flavor Compounds and Microorganisms of Maotai Flavor Baijiu. J. Food Sci. 2019, 84, 6–18. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, W.; Xia, Y.; Mu, Z.; Tao, L.; Song, X.; Zhang, H.; Ni, B.; Ai, L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front. Microbiol. 2020, 11, 580247. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, Q.; Xu, Y.; Sun, B. Synergistic Effect of Multiple Saccharifying Enzymes on Alcoholic Fermentation for Chinese Baijiu Production. Appl. Environ. Microbiol. 2020, 86, e00013-20. [Google Scholar] [CrossRef]
- Jin, G.; Zhao, Y.; Xin, S.; Li, T.; Xu, Y. Solid-State Fermentation Engineering of Traditional Chinese Fermented Food. Foods 2024, 13, 3003. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, R.; Schneider, E.; Gunnigle, E.; Cotter, P.D.; Cryan, J.F. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci. Biobehav. Rev. 2024, 158, 105562. [Google Scholar] [CrossRef]
- Deng, J.; Zheng, J.; Li, X.; Huang, D.; Ye, G.; Luo, H. Characterization of Qu-aroma of medium-high temperature Daqu from different production areas using sensory evaluation, E-nose, and GC-MS/O analysis. Bioresour. Bioprocess. 2025, 12, 40. [Google Scholar] [CrossRef]
- Lv, X.; Huang, Z.; Zhang, W.; Rao, P.; Ni, L. Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing. J. Gen. Appl. Microbiol. 2012, 58, 33–42. [Google Scholar] [CrossRef]
- Lin, X.; Ren, X.; Huang, Y.; Liang, Z.; Li, W.; Su, H.; He, Z. Regional characteristics and discrimination of the fermentation starter Hong Qu in traditional rice wine brewing. Int. J. Food Sci. Technol. 2021, 56, 5664–5673. [Google Scholar] [CrossRef]
- Lv, X.; Jia, R.; Li, Y.; Chen, F.; Chen, Z.; Liu, B.; Chen, S.; Rao, P.; Ni, L. Characterization of the dominant bacterial communities of traditional fermentation starters for Hong Qu glutinous rice wine by means of MALDI-TOF mass spectrometry fingerprinting, 16S rRNA gene sequencing and species-specific PCRs. Food Control 2016, 67, 292–302. [Google Scholar] [CrossRef]
- Mu, Y.; Yao, S.; Huang, Y.; Zhu, Z.; Li, D.; Song, Y.; Liu, Z.; Zhang, C.; Yu, S. Unveiling the metabolic heterogeneity and formation mechanism in Chinese typical Daqu based on Qu-omics. Food Res. Int. 2025, 202, 115735. [Google Scholar] [CrossRef]
- Park, K.H.; Liu, Z.; Park, C.; Ni, L. Microbiota associated with the starter cultures and brewing process of traditional Hong Qu glutinous rice wine. Food Sci. Biotechnol. 2016, 25, 649–658. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, D.; Fan, W.L.; Mu, X.Q.; Chen, J. Traditional Chinese Biotechnology. In Advances in Biochemical Engineering-Biotechnology; Tsao, G.T., Ouyang, P., Chen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 122, pp. 189–233. ISBN 978-3-642-14994-8. [Google Scholar]
- Yi, Z.; Jin, Y.; Xiao, Y.; Chen, L.; Tan, L.; Du, A.; He, K.; Liu, D.; Luo, H.; Fang, Y.; et al. Unraveling the Contribution of High Temperature Stage to Jiang-Flavor Daqu, a Liquor Starter for Production of Chinese Jiang-Flavor Baijiu, with Special Reference to Metatranscriptomics. Front. Microbiol. 2019, 10, 472. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Y.; Liu, Q.; Zhang, Y.; Gao, B.; Zou, W.; Zhang, K. Fortified Jiuqu of the Chinese Baijiu: A review on its functional microorganisms, strengthening effects, current challenges, and perspectives. Food Biosci. 2023, 55, 103045. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, H.; Zhao, T.; Zhan, C.; Wang, A.; Xu, Y.; Chen, M. The volatile flavor and the antioxidant properties of a novel chrysanthemum rice wine during natural aging. Food Sci. Nutr. 2023, 11, 2382–2392. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zheng, Z.; Wang, Y.; Ji, X.; Li, D.; Li, P.; Liu, Y. Function-driven high-throughput screening and isolation of ester-producing strains for glutinous rice wine fermentation. Food Res. Int. 2025, 199, 115393. [Google Scholar] [CrossRef]
- Cui, D.; Wei, Y.; Lin, L.; Chen, S.; Feng, P.; Xiao, D.; Lin, X.; Zhang, C. Increasing Yield of 2,3,5,6-Tetramethylpyrazine in Baijiu Through Saccharomyces cerevisiae Metabolic Engineering. Front. Microbiol. 2020, 11, 596306. [Google Scholar] [CrossRef]
- Minhua, L.; Wenhong, Z.; Weidong, B.; Yuanshan, Y.; Chuqiang, L.; Conggui, C.; Yongtao, F. Research progress on the influence of microbial flora of Baijiu Jiuqu on flavor formation. China Brewing 2023, 42, 22–27. [Google Scholar]
- Dong, W.; Yu, X.; Wang, L.; Zou, M.; Ma, J.; Liu, J.; Feng, Y.; Zhao, S.; Yang, Q.; Hu, Y.; et al. Unveiling the microbiota of sauce-flavor Daqu and its relationships with flavors and color during maturation. Front. Microbiol. 2024, 15, 1345772. [Google Scholar] [CrossRef]
- Zhu, C.; Cheng, Y.; Zuo, Q.; Huang, Y.; Wang, L. Exploring the impacts of traditional crafts on microbial community succession in Jiang-flavored Daqu. Food Res. Int. 2022, 158, 111568. [Google Scholar] [CrossRef]
- Wei, Y.; Wen, Z.; Yao, S.; Cheng, P.; Huang, W.; Jiang, L.L.; Bai, M.; Han, D.; Song, L.; Zhu, H.; et al. Tempo-spatial dynamics of physicochemical properties and microbial communities in high-temperature Daqu during the fermentation process. Food Chem. X 2025, 29, 102815. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; He, G.; Huang, J.; Wu, C.; Jin, Y.; Zhou, R. Characterizing Relationship of Microbial Diversity and Metabolite in Sichuan Xiaoqu. Front. Microbiol. 2019, 10, 696. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, M.; Niu, J.; Lin, M.; Zhu, H.; Wang, K.; Li, X.; Sun, B. Characteristics and Correlation of the Microbial Communities and Flavor Compounds during the First Three Rounds of Fermentation in Chinese Sauce-Flavor Baijiu. Foods 2023, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Wei, Y.; Han, D.; Song, L.; Zhu, H.; Guo, L.; Chen, S.; Lin, B.; He, C.; Guo, Z.; et al. Deciphering the role of traditional flipping crafts in medium-temperature Daqu fermentation: Microbial succession and metabolic phenotypes. Curr. Res. Food Sci. 2025, 10, 101063. [Google Scholar] [CrossRef]
- Xu, J.; Wu, H.; Wang, Z.; Zheng, F.; Lu, X.; Li, Z.; Ren, Q. Microbial dynamics and metabolite changes in Chinese Rice Wine fermentation from sorghum with different tannin content. Sci. Rep. 2018, 8, 4639. [Google Scholar] [CrossRef]
- Guan, T.; Wei, X.; Qiu, X.; Liu, Y.; Yu, J.; Hou, R.; Liu, M.; Mao, Y.; Liu, Q.; Tian, L.; et al. Precipitation and temperature drive microbial community changes affecting flavor quality of Nongxiangxing Daqu. Food Chem. X 2024, 24, 102063. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, S.; Wang, X.; Chen, K.; Hu, J.; Wei, K.; Ning, Y.; Xiong, T.; Lu, F. Microbial community starters affect the profiles of volatile compounds in traditional Chinese Xiaoqu rice wine: Assement via high-throughput sequencing and gas chromatography-ion mobility spectrometry. LWT-Food Sci. Technol. 2022, 170, 114000. [Google Scholar] [CrossRef]
- Wang, S. An Archaeological Perspective of Alcoholic Beverages in the Song Dynasty (960–1279). Archaeologies-J. World Archaeol. Congr. 2022, 18, 436–467. [Google Scholar] [CrossRef]
- Sun, H.; Liu, S.; Mao, J.; Yu, Z.; Lin, Z.; Mao, J. New insights into the impacts of huangjiu compontents on intoxication. Food Chem. 2020, 317, 126420. [Google Scholar] [CrossRef]
- Liu, Q. Determination of inorganic selenium species in commercial wine collected from the Beijing region, China. Chem. Speciat. Bioavailab. 2010, 22, 81–85. [Google Scholar] [CrossRef]
- Peng, B.; Huang, H.; Xu, J.; Xin, Y.; Hu, L.; Wen, L.; Li, L.; Chen, J.; Han, Y.; Li, C. Rice Wine Fermentation: Unveiling Key Factors Shaping Quality, Flavor, and Technological Evolution. Foods 2025, 14, 2544. [Google Scholar] [CrossRef]
- Geng, J.; Li, D.; He, S.; Min, C.; Long, J.; Yang, S. The influence of cardamine hupingshanensis on the microbial community structure of jiuqu and the variation of flavor during the fermentation process of selenium-rich Chinese huangjiu. Int. J. Gastron. Food Sci. 2024, 36, 100947. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Shen, C.; Wang, S.; Mao, J.; Li, Z.; Ganzle, M.; Mao, J. Microbiota stratification and succession of amylase-producing Bacillus in traditional Chinese Jiuqu (fermentation starters). J. Sci. Food. Agric. 2020, 100, 3544–3553. [Google Scholar] [CrossRef]
- Geng, J.; He, S.; Zhang, S.; Tian, H.; Jin, W. Impact of Incorporating Shiitake Mushrooms (Lentinula edodes) on Microbial Community and Flavor Volatiles in Traditional Jiuqu. Foods 2024, 13, 1019. [Google Scholar] [CrossRef]
- Li, M.; Zhao, X.; Liu, L.; Huang, Y.; Wang, J.; Zhang, J.; Liu, J. Screening of aroma-producing yeasts and their effects on the flavor characteristics of millet Huangjiu (Chinese rice wine). Food Biosci. 2025, 65, 105992. [Google Scholar] [CrossRef]
- Guan, T.; Yin, X.; Jiang, Y.; Li, Y.; Rao, Y.; Shao, J.; Liu, Y.; Tian, L.; Mao, Y.; Wang, X. Study on the preparation of compound mold enhanced Xiaoqu and its effect on the yield and flavor of Qingxiangxing baijiu. Food Chem. X 2025, 29, 102721. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Gao, S.; Tan, Y.; Cao, J.; Yang, S.; Zheng, B. Production of red yeast rice rich in monacolin K by variable temperature solid fermentation of Monascus purpureus. RSC Adv. 2023, 13, 27303–27308. [Google Scholar] [CrossRef]
- Yanli, F.; Xiang, Y. Perspectives on Functional Red Mold Rice: Functional Ingredients, Production, and Application. Front. Microbiol. 2020, 11, 606959. [Google Scholar] [CrossRef]
- Chiu, C.; Ni, K.; Guu, Y.; Pan, T. Production of red mold rice using a modified Nagata type koji maker. Appl. Microbiol. Biotechnol. 2006, 73, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Righetti, L.; Dall’Asta, C.; Bruni, R. Risk Assessment of RYR Food Supplements: Perception vs. Reality. Front. Nutr. 2021, 8, 792529. [Google Scholar] [CrossRef]
- Subsaendee, T.; Kitpreechavanich, V.; Yongsmith, B. Growth, Glucoamylase, Pigments and Monacolin K Production on Rice Solid Culture in Flask and Koji Chamber Using Monascus sp. KB9. Chiang Mai J. Sci. 2014, 41, 1044–1057. [Google Scholar]
- Devanthi, P.V.P.; Gkatzionis, K. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, T.; Park, Y.; Kim, A.Y. Characteristics of Koji Using Liquid Starter for Soy Sauce Production. Fermentation 2023, 9, 979. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food. Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef]
- Tan, G.; Hu, M.; Li, X.; Li, X.; Pan, Z.; Li, M.; Li, L.; Wang, Y.; Zheng, Z. Microbial Community and Metabolite Dynamics During Soy Sauce Koji Making. Front. Microbiol. 2022, 13, 841529. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, S.; Du, T.; Xiao, M.; Peng, Z.; Xie, M.; Guan, Q.; Xiong, T. Effects of microbial succession on the dynamics of flavor metabolites and physicochemical properties during soy sauce koji making. Food Biosci. 2023, 53, 102636. [Google Scholar] [CrossRef]
- He, X.; Gong, Q.; Li, Z. Composition for Brewing Soy Sauce and Method for Producing Soy Sauce Koji. CN201410123898.1, 30 September 2015. [Google Scholar]
- He, G.; Chen, H.; Liu, T.; Yang, H. A Process for Fermenting and Producing Douchi. CN106235021A, 8 November 2019. [Google Scholar]
- Wang, F. A Production Process for Aspergillus oryzae-Based Douchi. CN101485426B, 31 August 2011. [Google Scholar]
- Jiang, L.; Liao, L.; Nie, Q. A Rapid Fermentation Method for Liuyang Douchi Using Pure Starter Cultures via Controlled-Process. CN103932077B, 8 April 2015. [Google Scholar]
- Zhang, P.; Lai, T.; Chen, F.; Xie, N. A Process for Producing Douchi Through Edible Mushroom Fermentation. CN103053952A, 24 April 2013. [Google Scholar]
- Li, A.; Yang, G.; Wang, Z.; Liao, S.; Du, M.; Song, J.; Kan, J. Comparative evaluation of commercial Douchi by different molds: Biogenic amines, non-volatile and volatile compounds. Food Sci. Hum. Wellness 2024, 13, 434–443. [Google Scholar] [CrossRef]
- Xi, X.; Ke, J.; Ma, Y.; Liu, X.; Gu, X.; Wang, Y. Physiochemical and taste characteristics of traditional Chinese fermented food sufu. J. Food Process Preserv. 2022, 46, e16845. [Google Scholar] [CrossRef]
- Han, B.Z.; Sesenna, B.; Beumer, R.R.; Nout, M. Behaviour of Staphylococcus aureus during sufu production at laboratory scale. Food Control 2005, 16, 243–247. [Google Scholar] [CrossRef]
- Chou, C.; Ho, F.; Tsai, C. Effects of Temperature and Relative Humidity on the Growth of and Enzyme Production by Actinomucor taiwanensis during Sufu Pehtze Preparation. Appl. Environ. Microbiol. 1988, 54, 688–692. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Xu, Q.; Yu, Y.; Zheng, G.; Wang, Y.; Zhang, Q.; Xu, X.; Zhang, N.; Chu, J.; et al. Microbial Community Succession and Its Correlation with Quality Characteristics during Gray Sufu Fermentation. Foods 2023, 12, 2767. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, C.; Yang, R.; Jin, H.; Liu, B.; Wang, Z.; Tan, Y.; Xue, Q.; Hu, Y. The formation mechanism of sufu gels fermented by mucor racemosus during pre-fermentation. LWT-Food Sci. Technol. 2024, 203, 116309. [Google Scholar] [CrossRef]
- Kanlayakrit, W.; Phromsak, K. Novel conditions for tofu and pehtze preparation to overcome bacterial contamination in pehtze. Int. Food Res. J. 2014, 21, 335–342. [Google Scholar]
- Phuc, T.M.; Quan, T.H.; Nhung, D.T.T.; Lien, D.T.P.; Toan, H.T. Effects of Incubation Conditions on the Nutrient Composition and Antioxidative Activity of Fermented Tofu Supplemented with Purple Sweet Potato by Actinomucor Elegans. Acta Sci. Pol. Technol. Aliment. 2024, 23, 513–524. [Google Scholar] [CrossRef]
- Hou, X.; Hui, M.; Sun, Z.; Li, X.; Shi, X.; Xiao, R.; Wang, J.; Pan, C.; Li, R. Comparative analysis of the microbiotas and physicochemical properties inside and outside medium-temperature Daqu during the fermentation and storage. Front. Microbiol. 2022, 13, 934696. [Google Scholar] [CrossRef]
- Yan, C.; Huang, Z.; Tu, R.; Zhang, L.; Wu, C.; Wang, S.; Huang, P.; Zeng, Y.; Shi, B. Revealing the Differences in Microbial Community and Quality of High-Temperature Daqu in the Southern Sichuan-Northern Guizhou Region. Foods. 2025, 14, 570. [Google Scholar] [CrossRef]
- Zuo, Q.; Huang, Y.; Guo, M. Evaluation of bacterial diversity during fermentation process: A comparison between handmade and machine-made high-temperature Daqu of Maotai-flavor liquor. Ann. Microbiol. 2020, 70, 57. [Google Scholar] [CrossRef]
- Xue, T.; Zhang, J.; Wang, T.; Bai, B.; Hou, Z.; Cheng, J.; Bo, T.; Fan, S. Reveal the microbial communities and functional prediction during the fermentation of Fen-flavor Baijiu via metagenome combining amplicon sequencing. Ann. Microbiol. 2023, 73, 16. [Google Scholar] [CrossRef]
- Liang, J.; Deng, L.; Li, Z.; Fei, Y.; Bai, W.; Zhao, W.; He, S.; Cao, R. Metagenomic analysis of core differential microbes between traditional starter and Round-Koji-mechanical starter of Chi-flavor Baijiu. Front. Microbiol. 2024, 15, 1390899. [Google Scholar] [CrossRef]
- Hu, Y.; Lei, X.; Zhang, X.; Guan, T.; Wang, L.; Zhang, Z.; Yu, X.; Tu, J.; Peng, N.; Liang, Y.; et al. Characteristics of the Microbial Community in the Production of Chinese Rice-Flavor Baijiu and Comparisons with the Microflora of Other Flavors of Baijiu. Front. Microbiol. 2021, 12, 673670. [Google Scholar] [CrossRef]
- Yan, Y.; Liang, Z.; Huo, Y.; Wu, Q.; Ni, L.; Lv, X. A Comparative Study of Microbial Communities, Biogenic Amines, and Volatile Profiles in the Brewing Process of Rice Wines with Hongqu and Xiaoqu as Fermentation Starters. Foods 2024, 13, 2452. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Su, W.; Mu, Y.; Mu, Y.; Jiang, L. Integrative Metagenomics-Metabolomics for Analyzing the Relationship Between Microorganisms and Non-volatile Profiles of Traditional Xiaoqu. Front. Microbiol. 2021, 11, 617030. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Yuan, Y.; Liang, Z.; Yan, Y.; Chen, Y.; Ni, L.; Lv, X. Metagenomic Insights into the Regulatory Effects of Microbial Community on the Formation of Biogenic Amines and Volatile Flavor Components during the Brewing of Hongqu Rice Wine. Foods 2023, 12, 3075. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, B.; Du, X.; Li, P.; Liang, B.; Cheng, X.; Du, L.; Huang, D.; Wang, L.; Wang, S. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci. Rep. 2015, 5, 8331. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, S.; Wang, H.; Wu, Q.; Guo, W.; Ni, L.; Lv, X. Metagenomic and Metabolomic Profiling Reveals the Differences of Flavor Quality between Hongqu Rice Wines Fermented with Gutian Qu and Wuyi Qu. Foods 2024, 13, 3114. [Google Scholar] [CrossRef]
- Tan, G.; Wang, Y.; Hu, M.; Li, X.; Li, X.; Pan, Z.; Li, M.; Li, L.; Zheng, Z. Comparative evaluation of the microbial diversity and metabolite profiles of Japanese-style and Cantonese-style soy sauce fermentation. Front. Microbiol. 2022, 13, 976206. [Google Scholar] [CrossRef]
- Pei, R.; Lv, G.; Guo, B.; Li, Y.; Ai, M.; He, B.; Wan, R. Physiological and transcriptomic analyses revealed the change of main flavor substance of Zygosaccharomyces rouxii under salt treatment. Front. Nutr. 2022, 9, 990380. [Google Scholar] [CrossRef]
- Link, T.; Vogel, R.F.; Ehrmann, M.A. The diversity among the species Tetragenococcus halophilus including new isolates from a lupine seed fermentation. BMC Microbiol. 2021, 21, 320. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, Z.; Zhao, X.; Li, W.; Hou, L. A Method of Reducing Salt Content in Fermented Soy Sauce Improves Its Flavor and Quality. Foods 2024, 13, 971. [Google Scholar] [CrossRef]
- Ruan, L.; Ju, Y.; Zhan, C.; Hou, L. Improved umami flavor of soy sauce by adding enzymatic hydrolysate of low-value fish in the natural brewing process. LWT-Food Sci. Technol. 2022, 155, 112911. [Google Scholar] [CrossRef]
- Lijun, B.; Yuwei, W.; Qingsong, L.; Ziyao, L.; Haiyu, F.; Bohua, W.; Jing, Y.; Xiaoming, L.; Xuewei, J. Brewing-related genes annotation of Bacillus velezensis CS1.10S isolated from traditional moromi and its effects on promoting soy sauce fermentation. Food Biosci. 2023, 56, 103267. [Google Scholar]
- Lin, X.; Tang, Y.; Hu, Y.; Lu, Y.; Sun, Q.; Lv, Y.; Zhang, Q.; Wu, C.; Zhu, M.; He, Q.; et al. Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. J. Agric. Food. Chem. 2021, 69, 8065–8080. [Google Scholar] [CrossRef]
- Qiao, H.; Li, Y.; Cui, F.; Zhang, W.; Zhang, Z.; Li, H. Nutrition, Flavor, and Microbial Communities of Two Traditional Bacterial Douchi from Gansu, China. Foods 2024, 13, 3519. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, J.; Wang, R.; Liu, X.; Peng, X.; Guo, S. Succession and Diversity of Microbial Flora during the Fermentation of Douchi and Their Effects on the Formation of Characteristic Aroma. Foods 2023, 12, 329. [Google Scholar] [CrossRef]
- Zhang, P.; Li, H.; Zhao, W.; Xiong, K.; Wen, H.; Yang, H.; Wang, X. Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type douchi during fermentation. Food Res. Int. 2022, 153, 110932. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, H.; Tu, Z.; Wang, X. High-Throughput Sequencing of Microbial Community Diversity and Dynamics during Douchi Fermentation. PLoS ONE 2016, 11, e0168166. [Google Scholar] [CrossRef]
- Luo, A.; Liu, T.; Shi, S.; Liu, X.; Shi, X.; Hu, B. Characterization of Microbial Community and Flavor Compounds in Traditional Fermented Douchi Using HTS and HS-SPME-GC-MS. Food Sci. Nutr. 2025, 13, e4660. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Li, H.; Hu, Z.; Zhang, Y.; Sun, M.; Qiu, S.; Zeng, B. Difference in microbial community and taste compounds between Mucor-type and Aspergillus-type Douchi during koji-making. Food Res. Int. 2019, 121, 136–143. [Google Scholar] [CrossRef]
- Li, L.; Ruan, L.; Ji, A.; Wen, Z.; Chen, S.; Wang, L.; Wei, X. Biogenic amines analysis and microbial contribution in traditional fermented food of Douchi. Sci. Rep. 2018, 8, 12567. [Google Scholar] [CrossRef]
- Fong, F.L.Y.; Lam, K.Y.; Lau, C.S.; Ho, K.H.; Kan, Y.H.; Poon, M.Y.; El-Nezami, H.; Sze, E.T.P. Reduction in biogenic amines in douchi fermented by probiotic bacteria. PLoS ONE 2020, 15, e0230916. [Google Scholar] [CrossRef]
- Yao, D.; Xu, L.; Wu, M.; Wang, X.; Wang, K.; Li, Z.; Zhang, D. Microbial Community Succession and Metabolite Changes During Fermentation of BS Sufu, the Fermented Black Soybean Curd by Rhizopus microsporus, Rhizopus oryzae, and Actinomucor elegans. Front. Microbiol. 2021, 12, 665826. [Google Scholar] [CrossRef]
- Han, B.Z.; Ma, Y.; Rombouts, F.M.; Nout, M. Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during sufu pehtze preparation. Food Chem. 2003, 81, 27–34. [Google Scholar] [CrossRef]
- Tan, G.; Hu, M.; Li, X.; Pan, Z.; Li, M.; Li, L.; Yang, M. High-Throughput Sequencing and Metabolomics Reveal Differences in Bacterial Diversity and Metabolites Between Red and White Sufu. Front. Microbiol. 2020, 11, 758. [Google Scholar] [CrossRef]
- Han, B.Z.; Beumer, R.R.; Rombouts, F.M.; Nout, M. Microbiological safety and quality of commercial sufu—A Chinese fermented soybean food. Food Control 2001, 12, 541–547. [Google Scholar] [CrossRef]
- Han, B.Z.; Kuijpers, A.; Thanh, N.V.; Nout, M. Mucoraceous moulds involved in the commercial fermentation of Sufu Pehtze. Antonie. Van. Leeuwenhoek. 2004, 85, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hou, Y.; Chen, H.; Wang, J.; Zhang, C.; Zhao, Z.; Ao, R.; Huang, H.; Hong, J.; Zhao, D.; et al. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022, 11, 2959. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Yang, S.; Shen, Y.; Cheng, W.; Li, H.; Sun, J.; Huang, M.; Sun, B. What Are the Main Factors That Affect the Flavor of Sauce-Aroma Baijiu. Foods 2022, 11, 3534. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fan, W.; Xu, Y. GC × GC-TOF/MS and UPLC-Q-TOF/MS based untargeted metabolomics coupled with physicochemical properties to reveal the characteristics of different type daqus for making soy sauce aroma and flavor type baijiu. LWT-Food Sci. Technol. 2021, 146, 111416. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, Y.; Huang, J.; Zhou, R. Synthetic and natural microbial communities in high-temperature Daqu production: Insights into metabolic pathways and volatile organic compounds. Food Res. Int. 2025, 219, 116962. [Google Scholar] [CrossRef]
- Wu, J.; Chen, R.; Li, X.; Fu, Z.; Xian, C.; Zhao, W.; Zhao, C.; Wu, X. Comprehensive identification of key compounds in different quality grades of soy sauce-aroma type baijiu by HS-SPME-GC-MS coupled with electronic nose. Front. Nutr. 2023, 10, 1132527. [Google Scholar] [CrossRef]
- Xiang, D.; Li, P.; Gong, R.; Sun, Y.; Chen, X.; Wei, H.; Xu, Y. Quantification and Distribution of Thiols in Fermented Grains of Sauce-Aroma Baijiu Production Process. Foods 2023, 12, 2658. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, S.; He, Y.; Nie, Y.; Xu, Y. Quantitation of pyrazines in Baijiu and during production process by a rapid and sensitive direct injection UPLC-MS/MS approach. LWT-Food Sci. Technol. 2020, 128, 109371. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Wang, X.; Zhu, J.; Xu, J.; Zhang, R.; Cai, F.; Zhu, Z.; Cao, J.; Yu, Q. Optimizing Baijiu fermentation with high-yield ethyl caproate-producing Candida parapsilosis strain. LWT-Food Sci. Technol. 2024, 203, 116347. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Li, H.; Hui, M.; Pan, C. Strategies and Challenges of Microbiota Regulation in Baijiu Brewing. Foods 2024, 13, 1954. [Google Scholar] [CrossRef] [PubMed]
- Que, P.; Yao, S.; Hu, J.; Hu, F.; Wang, D.; Huang, W. Associations of microbial communities with metabolites and enzyme activities in different colors of high-temperature Daqu. World J. Microbiol. Biotechnol. 2025, 41, 324. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Zheng, Y.; Xie, S.; Zhang, X.; Song, J.; Xia, M.; Wang, M. Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar. Sci. Rep. 2017, 7, 9240. [Google Scholar] [CrossRef]
- Wang, K.; Shi, Y.; Feng, J.; Zhao, Y.; Zhu, H.; Chen, D.; Gong, X.; Fang, M.; Yu, Y. Investigation of Zhenjiang Aromatic Vinegar Production Using a Novel Dry Gelatinization Process. Foods 2024, 13, 1071. [Google Scholar] [CrossRef]
- Ye, X.; Yu, Y.; Liu, J.; Zhu, Y.; Yu, Z.; Liu, P.; Wang, Y.; Wang, K. Inoculation strategies affect the physicochemical properties and flavor of Zhenjiang aromatic vinegar. Front. Microbiol. 2023, 14, 1126238. [Google Scholar] [CrossRef]
- Li, W.; Han, T.; Wen, Y.; Zhang, H.; Li, D. Preparation of Rice Bran-Enriched Sweet Rice Wine and Its Quality Improvement Through Extrusion. Foods 2025, 14, 1582. [Google Scholar] [CrossRef]
- Tian, P.; Wan, J.; Yin, T.; Liu, L.; Ren, H.; Cai, H.; Liu, X.; Zhang, H. Acidity, sugar, and alcohol contents during the fermentation of Osmanthus-flavored sweet rice wine and microbial community dynamics. PeerJ. 2025, 13, e18826. [Google Scholar] [CrossRef]
- Wan, B.; Tian, T.; Xiong, Y.; Wang, S.; Luo, X.; Liao, W.; Liu, P.; Miao, L.; Gao, R. Isolation and Evaluation of Rhizopus arrhizus Strains from Traditional Rice Wine Starters (Jiuqu): Enzyme Activities, Antioxidant Capacity, and Flavour Compounds. Foods 2025, 14, 312. [Google Scholar] [CrossRef]
- Tang, A.; Peng, B. Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms. Foods 2023, 12, 3576. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Huang, T.; Huang, Z.; Wu, Z.; Che, J.; Qin, F.; Zhang, W. Effects of six commercially available koji (Chinese Xiaoqu) on the production of ethyl acetate, ethyl lactate, and higher alcohols in Chinese Baijiu (distilled spirit) brewing. Heliyon 2023, 9, e17739. [Google Scholar] [CrossRef]
- Yin, X.; Yoshizaki, Y.; Kurazono, S.; Sugimachi, M.; Takeuchi, H.; Han, X.; Okutsu, K.; Futagami, T.; Tamaki, H.; Takamine, K. Characterization of Flavor Compounds in Rice-flavor baijiu, a Traditional Chinese Distilled Liquor, Compared with Japanese Distilled Liquors, awamori and kome-shochu. Food Sci. Technol. Res. 2020, 26, 411–422. [Google Scholar] [CrossRef]
- Wang, H.; Sun, C.; Yang, S.; Ruan, Y.; Lyu, L.; Guo, X.; Wu, X.; Chen, Y. Exploring the impact of initial moisture content on microbial community and flavor generation in Xiaoqu baijiu fermentation. Food Chem. X 2023, 20, 100981. [Google Scholar] [CrossRef]
- Zhao, Z.; Sugimachi, M.; Yoshizaki, Y.; Yin, X.; Han, X.; Okutsu, K.; Futagami, T.; Tamaki, H.; Takamine, K. Correlation between key aroma and manufacturing processes of rice-flavor baijiu and awamori, Chinese and Japanese traditional liquors. Food Biosci. 2021, 44, 101375. [Google Scholar] [CrossRef]
- Dong, H.; Liu, S.; Cai, G.; Yang, H. Improving the Quality and Flavor of Monascus Rice Wine Brewed by Pure Culture Using the Addition of Trichosanthis Fructus. Fermentation 2024, 10, 192. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, J.; Chen, Q.; Yang, C. Effects of Main Nutrient Sources on Improving Monascus Pigments and Saccharifying Power of Monascus purpureus in Submerged Fermentation. Fermentation 2023, 9, 696. [Google Scholar] [CrossRef]
- Jiang, Y.; Lv, X.; Zhang, C.; Zheng, Y.; Zheng, B.; Duan, X.; Tian, Y. Microbial dynamics and flavor formation during the traditional brewing of Monascus vinegar. Food Res. Int. 2019, 125, 108531. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Kan, M.S.; Siow, L.F.; Palniandy, L.K. Effect of temperature on moromi fermentation of soy sauce with intermittent aeration. Afr. J. Biotechnol. 2010, 9, 702–706. [Google Scholar] [CrossRef]
- Zhou, W.; Sun-Waterhouse, D.; Xiong, J.; Cui, C.; Wang, W.; Dong, K. Desired soy sauce characteristics and autolysis of Aspergillus oryzae induced by low temperature conditions during initial moromi fermentation. J. Food Sci. Technol.-Mysore 2019, 56, 2888–2898. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xu, Y.; Ye, J.; Yang, Z.; Huang, S.; Liu, Y.; Zhou, S. Isolation, identification and application on soy sauce fermentation flavor bacteria of CS1.03. J. Food Sci. Technol.-Mysore 2019, 56, 2016–2026. [Google Scholar] [CrossRef]
- Ding, W.; Liu, Y.; Zhao, X.; Peng, C.; Ye, X.; Che, Z.; Liu, Y.; Liu, P.; Lin, H.; Huang, J.; et al. Characterization of volatile compounds of Pixian Douban fermented in closed system of gradient steady-state temperature field. Food Sci. Nutr. 2021, 9, 2862–2876. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, J.; Peng, J.; Huang, Y.; Yang, W. Unraveling the correlation between physicochemical properties, volatile flavor compounds, and microbial communities during the fermentation of Aspergillus-type douchi. Curr. Res. Food Sci. 2025, 11, 101192. [Google Scholar] [CrossRef]
- Wang, S.; Chang, Y.; Liu, B.; Chen, H.; Sun, B.; Zhang, N. Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach. Molecules 2021, 26, 3048. [Google Scholar] [CrossRef]
- Sui, L.; Wang, S.; Wang, X.; Su, L.; Xu, H.; Xu, W.; Chen, L.; Li, H. Analysis of Different Strains Fermented Douchi by GCxGC-TOFMS and UPLC-Q-TOFMS Omics Analysis. Foods 2024, 13, 3521. [Google Scholar] [CrossRef]
- Zelong, Z.; Tianyi, L.; Kaiping, H.; Min, Z.; Xiaoxue, C.; Yansong, X.; Beizhong, H.; Diqiang, W.; Jun, L. Microbial enzymes: The bridge between Daquflavor and microbial communities. Food Innov. Adv. 2024, 3, 426–437. [Google Scholar]
- Zhou, J.; Li, X.; Li, S.; Ding, H.; Lang, Y.; Xu, P.; Wang, C.; Wu, Y.; Liu, X.; Qiu, S. Airborne microorganisms and key environmental factors shaping their community patterns in the core production area of the Maotai-flavor Baijiu. Sci. Total Environ. 2024, 912, 169010. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Huang, J.; Zhou, R.; Wu, C.; Jin, Y. Effect of Fortified Daqu on the Microbial Community and Flavor in Chinese Strong-Flavor Liquor Brewing Process. Front. Microbiol. 2019, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Huang, J.; Zhou, R.; Mao, F.; Pan, Q.; Chen, S.; Lu, Z.; Du, L.; Xie, F. Exploring the response patterns of strong-flavor baijiu brewing microecosystem to fortified Daqu under different pit ages. Food Res. Int. 2022, 155, 111062. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Huang, J.; Wu, C.; Jin, Y.; Zhou, R. Bioturbation effect of fortified Daqu on microbial community and flavor metabolite in Chinese strong-flavor liquor brewing microecosystem. Food Res. Int. 2020, 129, 108851. [Google Scholar] [CrossRef]
- Chenxi, Z.; Fuping, Z.; Hehe, L.; Jihong, W.; Mingquan, H.; Baoguo, S. Research progress on flavor compounds of Baijiu Daqu. China Brewing. 2019, 38, 6–12. [Google Scholar]
- Qin, D.; Shen, Y.; Yang, S.; Zhang, G.; Wang, D.; Li, H.; Sun, J. Whether the Research on Ethanol-Water Microstructure in Traditional Baijiu Should Be Strengthened? Molecules 2022, 27, 8290. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Sun, B. Low Quantity but Critical Contribution to Flavor: Review of The Current Understanding of Volatile Sulfur-containing Compounds in Baijiu. J. Food Compos. Anal. 2021, 103, 104079. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Wu, Y.; Zhao, D. Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation. J. Food Compos. Anal. 2022, 109, 104499. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, Y.; Tang, S.; Yang, Z.; Wu, Q.; Liang, Z.; Chen, S.; Li, W.; Lv, X.; Ni, L. Comparative analysis of microbial communities and volatile flavor components in the brewing of Hongqu rice wines fermented with different starters. Curr. Res. Food Sci. 2023, 7, 100628. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Z.; Liang, Z.; Wu, Q.; Yan, Y.; Chen, S.; Li, X.; Ai, L.; Ni, L.; Lv, X. The regulatory effects of microbial community on the formation of higher alcohols and volatile flavor components in Hongqu rice wine brewing. Food Biosci. 2023, 56, 103142. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, J.; Liu, X.; Zhang, C.; Zhao, Z.; Li, X.; Sun, B. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef]
- Kang, J.; Xue, Y.; Chen, X.; Han, B. Integrated multi-omics approaches to understand microbiome assembly in Jiuqu, a mixed-culture starter. Compr. Rev. Food. Sci. Food Saf. 2022, 21, 4076–4107. [Google Scholar] [CrossRef]
- Mou, L.; Pan, R.; Jiang, W.; Zhang, W.; Xin, F.; Jiang, Y.; Jiang, M. Strategies on improvement of pigment formation and reduction of citrinin in Monascus fermentation. Biofuels Bioprod. Biorefining 2023, 17, 261–272. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Q.; Yang, L.; Ablimit, A.; Dong, H.; Wang, H.; Wang, C.; Wang, C. Mutation Breeding of Monascus to Produce a High Yield of Orange Pigment and Low Citrinin Content Using the ARTP Method. J. Fungi 2024, 10, 553. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Li, Y.; Lin, F.; Wu, L. Screening and identification of Monascus strains with high-yield monacolin K and undetectable citrinin by integration of HPLC analysis and pksCT and ctnA genes amplification. J. Appl. Microbiol. 2020, 129, 1410–1418. [Google Scholar] [CrossRef]
- Farawahida, A.H.; Palmer, J.; Flint, S. Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice. Int. J. Food Microbiol. 2022, 379, 109829. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jin, Y.H.; Mah, J. Biogenic amine reduction by food additives in Cheonggukjang, a Korean fermented soybean paste, fermented with tyramine-producing heterogeneous bacterial species. Heliyon 2024, 10, e26135. [Google Scholar] [CrossRef] [PubMed]
- Turna, N.S.; Chung, R.; Mcintyre, L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef]
- Kalac, P. Health effects and occurrence of dietary polyamines: A review for the period 2005–mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef]
- Wust, N.; Rauscher-Gabernig, E.; Steinwider, J.; Bauer, F.; Paulsen, P. Risk assessment of dietary exposure to tryptamine for the Austrian population. Food Addit. Contam. Part A-Chem. 2017, 34, 404–420. [Google Scholar] [CrossRef]
- Yilmaz, C.; Gokmen, V. Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res. Int. 2020, 128, 108744. [Google Scholar] [CrossRef]
- Hemme, D.; Foucaud-Scheunemann, C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 2004, 14, 467–494. [Google Scholar] [CrossRef]
- Xie, Y.; Geng, Y.; Yao, J.; Ji, J.; Chen, F.; Xiao, J.; Hu, X.; Ma, L. N-nitrosamines in processed meats: Exposure, formation and mitigation strategies. J. Agric. Food Res. 2023, 13, 100645. [Google Scholar] [CrossRef]
- Kalac, P.; Krausová, P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90, 219–230. [Google Scholar] [CrossRef]
- Trevisani, M.; Cevoli, C.; Ragni, L.; Cecchini, M.; Berardinelli, A. Effect of Non-thermal Atmospheric Plasma on Viability and Histamine-Producing Activity of Psychotrophic Bacteria in Mackerel Fillets. Front. Microbiol. 2021, 12, 653597. [Google Scholar] [CrossRef]
- Margareta, G.; Nakamura, A.; Nimura, K.; Yamazaki, M.; Oshima, I.; Kuda, T.; Takahashi, H. Investigation of bacterial community and histamine production in fresh mackerel at low temperature storage. PLoS ONE 2025, 20, e0331331. [Google Scholar] [CrossRef]
- Swider, O.; Roszko, M.L.; Wojcicki, M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods—A review. Crit. Rev. Food. Sci. Nutr. 2024, 64, 12935–12960. [Google Scholar] [CrossRef]
- Kuda, T.; Mihara, T.; Yano, T. Detection of histamine and histamine-related bacteria in fish-nukazuke, a salted and fermented fish with rice-bran, by simple colorimetric microplate assay. Food Control 2007, 18, 677–681. [Google Scholar] [CrossRef]
- Ventosa, A.; Nieto, J.J. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol. 1995, 11, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ardakani, M.R.; Poshtkouhian, A.; Amoozegar, M.A.; Zolgharnein, H. Isolation of Moderately Halophilic Pseudoalteromonas Producing Extracellular Hydrolytic Enzymes from Persian Gulf. Indian J. Microbiol. 2012, 52, 94–98. [Google Scholar] [CrossRef]
- Gu, J.; Dong, X.; Zhou, Y.; Zhao, Y.; Du, Q.; Chen, J.; Mao, X.; Wang, F.; Tu, B. Analysis of Halophilic Phenotypic Variation and Cytotoxicity of Vibrio parahaemolyticus from Different Sources. Pathogens 2025, 14, 182. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Schwarz, T.; Lentzen, G. Ectoine as a natural component of food: Detection in red smear cheeses. J. Dairy. Res. 2007, 74, 446–451. [Google Scholar] [CrossRef]
- Caglayan, P.; Birbir, M.; Sanchez-Porro, C.; Ventosa, A. Detection of industrially potential enzymes of moderately halophilic bacteria on salted goat skins. Turk. J. Biochem. 2018, 43, 312–322. [Google Scholar] [CrossRef]
- Graü, C.; Elguezabal, L.; Vallenilla, O.; Zerpa, A. Evaluation of halophile microbial flora spoiling dry-salted fish processed in Sucre state. Rev. Cient.-Fac. Cienc. Vet. 2003, 13, 319–325. [Google Scholar]
- Delgado-Garcia, M.; Flores-Gallegos, A.C.; Kirchmayr, M.; Rodriguez, J.A.; Mateos-Diaz, J.C.; Aguilar, C.N.; Muller, M.; Camacho-Ruiz, R.M. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron. J. Biotechnol. 2019, 39, 52–60. [Google Scholar] [CrossRef]
- Satari, L.; Guillen, A.; Latorre-Perez, A.; Porcar, M. Beyond Archaea: The Table Salt Bacteriome. Front. Microbiol. 2021, 12, 714110. [Google Scholar] [CrossRef]
- Jing, Y.; Xi-hong, Y.; Chen, L.; Dong-xing, Y.; Wan-cui, X. Research progress on the effects of halophilic microorganisms on the flavor of fermented seafood condiments. Food Mach. 2020, 36, 203–234. [Google Scholar]
- Kivisto, A.T.; Karp, M.T. Halophilic anaerobic fermentative bacteria. J. Biotechnol. 2011, 152, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qiao, D.; Yuan, T.; Feng, Y.; Zhang, P.; Wang, X.; Zhang, L. Biotechnological production of ectoine: Current status and prospects. Folia. Microbiol. 2024, 69, 247–258. [Google Scholar] [CrossRef]
- Gopikrishna, T.; Suresh Kumar, H.K.; Perumal, K.; Elangovan, E. Impact of Bacillus in fermented soybean foods on human health. Ann. Microbiol. 2021, 71, 30. [Google Scholar] [CrossRef]
- Icer, M.A.; Ozbay, S.; Agagunduz, D.; Kelle, B.; Bartkiene, E.; Rocha, J.M.F.; Ozogul, F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023, 12, 2965. [Google Scholar] [CrossRef] [PubMed]
- Francesco, B.; Frederic, L. Review: Bacterially produced vitamin K2 and its potential to generate health benefits in humans. Trends Food Sci. Technol. 2024, 147, 104461. [Google Scholar] [CrossRef]
- Nagarajan, M.; Rajasekaran, B.; Venkatachalam, K. Microbial metabolites in fermented food products and their potential benefits. Int. Food Res. J. 2022, 29, 466–486. [Google Scholar] [CrossRef]
- Li, K.J.; Brouwer-Brolsma, E.M.; Burton-Pimentel, K.J.; Vergeres, G.; Feskens, E.J.M. A systematic review to identify biomarkers of intake for fermented food products. Genes Nutr. 2021, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Yee, C.S.; Zahia-Azizan, N.A.; Abd Rahim, M.H.; Zaini, N.A.M.; Raja-Razali, R.B.; Ushidee-Radzi, M.A.; Ilham, Z.; Wan-Mohtar, W.A.A.Q. Smart Fermentation Technologies: Microbial Process Control in Traditional Fermented Foods. Fermentation 2025, 11, 323. [Google Scholar] [CrossRef]
- Twaruzek, M.; Altyn, I.; Kosicki, R. Dietary Supplements Based on Red Yeast Rice-A Source of Citrinin? Toxins 2021, 13, 497. [Google Scholar] [CrossRef]
- ISO 22000:2018; Food Safety Management Systems—Requirements for Any Organization in the Food Chain. International Organization for Standardization: Geneva, Switzerland, 2018.
- Gonzalez, A.; Navas-Molina, J.A.; Kosciolek, T.; McDonald, D.; Vazquez-Baeza, Y.; Ackermann, G.; DeReus, J.; Janssen, S.; Swafford, A.D.; Orchanian, S.B.; et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods 2018, 15, 796. [Google Scholar] [CrossRef] [PubMed]
- Jarmusch, A.K.; Wang, M.; Aceves, C.M.; Advani, R.S.; Aguirre, S.; Aksenov, A.A.; Aleti, G.; Aron, A.T.; Bauermeister, A.; Bolleddu, S.; et al. ReDU: A framework to find and reanalyze public mass spectrometry data. Nat. Methods 2020, 17, 901. [Google Scholar] [CrossRef] [PubMed]





| System | Ecological Driver and Key Boundaries | Dominant/Core Taxa (Genus Level) | Functional Orientation and Representative Metabolism | Typical Spatiotemporal Features |
|---|---|---|---|---|
| Daqu—low temperature | Lower temperature regime; mild heat stress; acidity gradually increased | Pichia, Lactobacillus, etc. | Saccharification and acid production proceeded in parallel, forming a gentle metabolic base | Early yeast dominance followed by LAB takeover; smooth succession |
| Daqu—medium temperature | Moderate peak temperature; spatial structure with a “more enriched center layer” | Bacillus (higher in the inner layer), Saccharopolyspora (higher in the outer layer); filamentous fungi Aspergillus, Rhizopus, Thermomyces, Thermoascus co-occurred with layer preferences | Inner layer favored primary hydrolysis of glyco-/proteinaceous substrates; surface favored thermotolerant enzymes and lipolysis jointly drove flavor precursor conversion | Community reassembly coupled to “heat peak–slow cooling–maturation”; stabilization during storage |
| Daqu—high temperature | Strong selection by high-temperature pulses and extended holding | Bacillaceae, Kroppenstedtia, Desmospora with thermotolerant fungi (e.g., Thermoascus); Lentibacillus dominated in the high-temperature window | Efficient cleavage of proteins/polysaccharides and generation of nitrogen-containing flavor precursors; pyrazine-related pathways active | α-diversity decreased then increased; functional core reshaped; Firmicutes proportion markedly increased |
| Xiaoqu community | Rice-based solid state with few core genera and concentrated dominance | Rhizopus, Saccharomyces, Lactobacillus (with Weissella/Pediococcus at the start) | Mold-led saccharification, yeast-driven alcohol fermentation; LAB established an acidic environment and coupled to ethyl lactate formation | Three-stage symbiosis: “Rhizopus first—yeast takeover—LAB steady state”; xiaoqu provided the core backbone while the environment supplied additional bacteria |
| Red koji community | Monascus-led and biosynthetic gene clusters (BGCs) steered metabolism; pigment/lovastatin outputs balanced against CIT risk | Monascus, Saccharomyces (with Aspergillus in some systems) | Pigment and polyketide synthesis; subsequent yeast and LAB co-modulated flavor; CIT was modulated by strain and interactions | Succession of “Monascus leading—yeast takeover”; pathway enrichment differed across starters |
| Wheat-bran/soy-sauce koji community | Two-stage ecological relay: solid-state, oxygen-rich koji → high-salt, low-oxygen moromi | Koji stage: Aspergillus with early colonizing bacteria; moromi stage: Tetragenococcus, Staphylococcus, Zygosaccharomyces rouxii and other halotolerant members | Front end built an extracellular enzyme library and depolymerized substrates; back end completed acidification and N/C-skeleton transformations at 18–22% NaCl | Fungal signals decayed rapidly in moromi; bacterial diversity converged over time; temperature–oxygen strategy shaped dominant genera |
| Douchi-qu community | Typified assembly across “starter—natural microbial pool—salt infiltration and ripening” | Aspergillus-type, Mucor/Rhizopus-type, and bacterial-type; Bacillus dominated in the bacterial type | Aspergillus-type relied on mold leadership with subsequent yeast/bacterial relay; bacterial type depended on a Bacillus backbone with osmotic-tolerant yeasts to deepen flavor | Stepwise succession; systematic differences in co-occurrence networks and metabolic emphases |
| Sufu mold-curd community | Short-course, high-humidity molding; mold–bacterium synergy for texture | Core molds: Actinomucor, Mucor, Rhizopus; later convergence of LAB and Enterococcus | High-throughput extracellular hydrolases during molding shaped “cheese-like” texture and precursor supply; during salting/ripening, bacteria took over flavor formation | Molds built the base; bacteria took over under high osmotic/low-oxygen conditions; the starter mold pool was stable across regions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Zhong, X.; Wu, Y.; Guo, J.; Song, L.; Yang, L. From Artisan Experience to Scientific Elucidation: Preparation Processes, Microbial Diversity, and Food Applications of Chinese Traditional Fermentation Starters (Qu). Foods 2025, 14, 3814. https://doi.org/10.3390/foods14223814
Song D, Zhong X, Wu Y, Guo J, Song L, Yang L. From Artisan Experience to Scientific Elucidation: Preparation Processes, Microbial Diversity, and Food Applications of Chinese Traditional Fermentation Starters (Qu). Foods. 2025; 14(22):3814. https://doi.org/10.3390/foods14223814
Chicago/Turabian StyleSong, Dandan, Xian Zhong, Yashuai Wu, Jiaqi Guo, Lulu Song, and Liang Yang. 2025. "From Artisan Experience to Scientific Elucidation: Preparation Processes, Microbial Diversity, and Food Applications of Chinese Traditional Fermentation Starters (Qu)" Foods 14, no. 22: 3814. https://doi.org/10.3390/foods14223814
APA StyleSong, D., Zhong, X., Wu, Y., Guo, J., Song, L., & Yang, L. (2025). From Artisan Experience to Scientific Elucidation: Preparation Processes, Microbial Diversity, and Food Applications of Chinese Traditional Fermentation Starters (Qu). Foods, 14(22), 3814. https://doi.org/10.3390/foods14223814

