Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TTO Nanoemulsions Preparation
2.3. Droplet Size Measurement
2.4. Transmission Electron Microscope (TEM)
2.5. Nanoemulsions Stability
2.6. Preparation of Experimental Bacterial Strains
2.7. Determination of Minimum Inhibitory Concentration (MIC)
2.8. Determination of Nanoemulsions Inhibition Ability
2.9. Determination of the Antioxidant Properties of Nanoemulsions
2.10. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Appearance Evaluation of Nanoemulsions
3.2. TEM
3.3. Stability of the TTO Nanoemulsions
3.4. Antimicrobial Activity of the TTO Nanoemulsions
3.4.1. MIC of the TTO Nanoemulsions
3.4.2. Nanoemulsions’ Inhibition Ability
3.5. Antioxidant Activity of the TTO Nanoemulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
- Luo, L.; Huang, W.; Zhang, J.; Yu, Y.; Sun, T. Metal-based nanoparticles as antimicrobial agents: A review. ACS Appl. Nano Mater. 2024, 7, 2529–2545. [Google Scholar] [CrossRef]
- Murlidhar, M.; Goswami, T. A review on the functional properties, nutritional content, medicinal utilization and potential application of fenugreek. J. Food Process. Technol. 2012, 3, 181. [Google Scholar] [CrossRef]
- Singh, H.; Meghwal, M. Physical and thermal properties of various ajwain (Trachyspermum ammi L.) seed varieties as a function of moisture content. J. Food Process Eng. 2020, 43, e13310. [Google Scholar] [CrossRef]
- Cui, H.; Li, W.; Lin, L. Antibacterial activity of liposome containing curry plant essential oil against Bacillus cereus in rice. J. Food Saf. 2017, 37, e12302. [Google Scholar] [CrossRef]
- Rashed, M.M.; Tong, Q.; Nagi, A.; Li, J.; Khan, N.U.; Chen, L.; Rotail, A.; Bakry, A.M. Isolation of essential oil from Lavandula angustifolia by using ultrasonic-microwave assisted method preceded by enzymolysis treatment, and assessment of its biological activities. Ind. Crops Prod. 2017, 100, 236–245. [Google Scholar] [CrossRef]
- Hegazy, M.M.; Mekky, R.H.; Ibrahim, A.E.; Abouelela, M.E.; Kedra, T.A.; Al-Harrasi, A. Essential Oils: The Science of Extraction and Its Implications for Composition and Biological Activity—A Review. Food Anal. Methods 2025, 18, 1483–1513. [Google Scholar] [CrossRef]
- Santoro, K.; Maghenzani, M.; Chiabrando, V.; Bosio, P.; Gullino, M.L.; Spadaro, D.; Giacalone, G. Thyme and savory essential oil vapor treatments control brown rot and improve the storage quality of peaches and nectarines, but could favor gray mold. Foods 2018, 7, 7. [Google Scholar] [CrossRef]
- Dorman, H.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Code of Federal Regulations, Title 21, Food and Drug. Available online: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=114.32011,2 (accessed on 24 January 2024).
- Yen, S.H.Y.; Barrett, E.; Coyle, D.H.; Wu, J.H.; Louie, J.C.Y. The distribution and co-occurrence of food additives in pre-packaged foods in Hong Kong. Food Control 2024, 158, 110210. [Google Scholar] [CrossRef]
- Bibow, A.; Oleszek, W. Essential oils as potential natural antioxidants, antimicrobial, and antifungal agents in active food packaging. Antibiotics 2024, 13, 1168. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Gururani, M.A.; Ali, A.; Bajwa, S.; Hassan, R.; Batool, S.W.; Imam, M.; Wei, D. Antimicrobial properties and therapeutic potential of bioactive compounds in Nigella sativa: A review. Molecules 2024, 29, 4914. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hung, Y.-H.R.; Lin, H.-J.; Lee, E.-C.; Lu, W.-J.; Lin, Y.-T.; Huang, B.-B.; Lin, T.-C.; Lin, H.-T.V. Effect of lemon essential oil on the microbial control, physicochemical properties, and aroma profiles of peeled shrimp. LWT 2023, 173, 114340. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, J.; Qi, J.; Li, Q.; Wu, H.; Ju, J. Proteomic analysis of antifungal mechanism of star anise essential oil against Aspergillus niger and its application potential in prolonging bread shelf life. LWT 2022, 169, 114023. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Hu, Z.; Lu, C.; Zhang, Y.; Tong, W.; Du, L.; Liu, F. Proteomic analysis of Aspergillus flavus reveals the antifungal action of Perilla frutescens essential oil by interfering with energy metabolism and defense function. LWT 2022, 154, 112660. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef]
- Prakash, V.; Parida, L. Characterization and rheological behavior of Vitamin E nanoemulsions prepared by phase inversion composition technique. Results Eng. 2023, 18, 101175. [Google Scholar] [CrossRef]
- Manzoor, M.; Sharma, P.; Murtaza, M.; Jaiswal, A.K.; Jaglan, S. Fabrication, characterization, and interventions of protein, polysaccharide and lipid-based nanoemulsions in food and nutraceutical delivery applications: A review. Int. J. Biol. Macromol. 2023, 241, 124485. [Google Scholar] [CrossRef]
- Cimanga, K.; Kambu, K.; Tona, L.; Apers, S.; De Bruyne, T.; Hermans, N.; Totté, J.; Pieters, L.; Vlietinck, A.J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 2002, 79, 213–220. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, L.; Liu, Y.; Zeng, Z.; Li, C.; Fang, Z.; Hu, B.; Chen, H.; Wang, C.; Chen, S. Effect of hydroxypropyl-β-cyclodextrin and lecithin co-stabilized nanoemulsions on the konjac glucomannan/pullulan film. Int. J. Biol. Macromol. 2023, 235, 123802. [Google Scholar] [CrossRef]
- Hao, L.; Yin, Z.; Guan, M.; Zheng, Q.; Feng, Z.; Zeng, J.; Wang, J.; Chen, H.; Zhao, J.; Zhou, H. Stimuli-responsive sulfur-containing amino acid functionalized boron nitride nanosheets as nanocarriers via improved adhesion to enhance antibacterial performance against plant diseases. Chem. Eng. J. 2024, 500, 156739. [Google Scholar] [CrossRef]
- Lam, N.S.; Long, X.; Su, X.-z.; Lu, F. Melaleuca alternifolia (tea tree) oil and its monoterpene constituents in treating protozoan and helminthic infections. Biomed. Pharmacother. 2020, 130, 110624. [Google Scholar] [CrossRef] [PubMed]
- Sathiyaseelan, A.; Saravanakumar, K.; Mariadoss, A.V.A.; Ramachandran, C.; Hu, X.; Oh, D.-H.; Wang, M.-H. Chitosan-tea tree oil nanoemulsion and calcium chloride tailored edible coating increase the shelf life of fresh cut red bell pepper. Prog. Org. Coat. 2021, 151, 106010. [Google Scholar] [CrossRef]
- Vengrytė, M.; Raudonė, L. Phytochemical profiling and biological activities of rhododendron subsect. ledum: Discovering the medicinal potential of labrador tea species in the Northern Hemisphere. Plants 2024, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhao, T.; Wei, Y.; Cao, Z.; Xu, Y.; Wei, J.; Xu, F.; Wang, H.; Shao, X. Preparation and characterization of tea tree oil/hydroxypropyl-β-cyclodextrin inclusion complex and its application to control brown rot in peach fruit. Food Hydrocoll. 2021, 121, 107037. [Google Scholar] [CrossRef]
- Wulansari, A.; Jufri, M.; Budianti, A. Studies on the formulation, physical stability, and in vitro antibacterial activity of tea tree oil (Melaleuca alternifolia) nanoemulsion gel. Int. J. Appl. Pharm. 2017, 9, 135–139. [Google Scholar] [CrossRef]
- Han, R.; Wang, Z.; Zhuansun, X.; Gao, Y.; Li, Y.; Liu, Q. Preparation of tea tree oil nanoemulsion: Characterisation, antibacterial mechanism and evaluation of apoptosis. Flavour Fragr. J. 2023, 38, 135–143. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Woo, M.W.; Li, Y.; Han, W.; Dang, X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr. Polym. 2021, 256, 117590. [Google Scholar] [CrossRef]
- He, Y.; Zhao, W.; Dong, Z.; Ji, Y.; Li, M.; Hao, Y.; Zhang, D.; Yuan, C.; Deng, J.; Zhao, P. A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int. J. Biol. Macromol. 2021, 167, 182–192. [Google Scholar] [CrossRef]
- Cen, C.; Wang, F.; Wang, Y.; Li, H.; Fu, L.; Li, Y.; Chen, J.; Wang, Y. Design and characterization of an antibacterial film composited by hydroxyethyl cellulose (HEC), carboxymethyl chitosan (CMCS), and nano ZnO for food packaging. Int. J. Biol. Macromol. 2023, 231, 123203. [Google Scholar] [CrossRef]
- Mourya, V.; Inamdara, N.; Ashutosh Tiwari, N. Carboxymethyl chitosan and its applications. Adv. Mater. Lett. 2010, 1, 11–33. [Google Scholar] [CrossRef]
- Wang, Y.; Cen, C.; Chen, J.; Zhou, C.; Fu, L. Nano-emulsification improves physical properties and bioactivities of Litsea cubeba essential oil. LWT 2021, 137, 110361. [Google Scholar] [CrossRef]
- De Oliveira Felipe, L.; Bicas, J.L.; Changwatchai, T.; Abah, E.O.; Nakajima, M.; Neves, M.A. Physical stability of α-terpineol-based nanoemulsions assessed by direct and accelerated tests using photo centrifuge analysis. LWT 2024, 205, 116513. [Google Scholar] [CrossRef]
- Islam, M.; Alam, M.M.; Choudhury, M.; Kobayashi, N.; Ahmed, M. Determination of minimum inhibitory concentration (MIC) of cloxacillin for selected isolates of methicillin-resistant Staphylococcus aureus (MRSA) with their antibiogram. Bangladesh J. Vet. Med. 2008, 6, 121–126. [Google Scholar] [CrossRef]
- Sihotang, T.S.U.; Widodo, A.D.W.; Endraswari, P.D. Effect of Ciprofloxacin, Levofloxacin, and Ofloxacin on Pseudomonas aeruginosa: A case control study with time kill curve analysis. Ann. Med. Surg. 2022, 82, 104674. [Google Scholar] [CrossRef]
- Feng, J.; Sun, L.; Zhai, T.; Liang, Q.; Jiang, T.; Chen, Z. Preparation of cinnamaldehyde nanoemulsions: Formula optimization, antifungal activity, leaf adhesion, and safety assessment. Ind. Crops Prod. 2023, 200, 116825. [Google Scholar] [CrossRef]
- Al-Sakkaf, M.K.; Onaizi, S.A. Crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant: Effects of acidity/basicity and salinity on emulsion characteristics, stability, and demulsification. Fuel 2023, 344, 128052. [Google Scholar] [CrossRef]
- Li, J.; Chang, J.W.; Saenger, M.; Deering, A. Thymol nanoemulsions formed via spontaneous emulsification: Physical and antimicrobial properties. Food Chem. 2017, 232, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-H.; Chiang, B.-H. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 2012, 19, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, V.; Ranjha, R.; Gupta, A.K. Polymeric encapsulation of anti-larval essential oil nanoemulsion for controlled release of bioactive compounds. Inorg. Chem. Commun. 2023, 150, 110507. [Google Scholar] [CrossRef]
- Das, S.K.; Vishakha, K.; Das, S.; Ganguli, A. Antibacterial and antibiofilm activities of nanoemulsion coating prepared by using caraway oil and chitosan prolongs the shelf life and quality of bananas. Appl. Food Res. 2023, 3, 100300. [Google Scholar] [CrossRef]
- Nascimento, T.; Gomes, D.; Simões, R.; Da Graça Miguel, M. Tea tree oil: Properties and the therapeutic approach to acne—A review. Antioxidants 2023, 12, 1264. [Google Scholar] [CrossRef]
- Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S. River tea tree oil: Composition, antimicrobial and antioxidant activities, and potential applications in agriculture. Plants 2021, 10, 2105. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Gao, Z.; Zhong, W.; Fu, F.; Li, G.; Guo, J.; Shan, Y. Preparation, characterization, and antioxidant activity of nanoemulsions incorporating lemon essential oil. Antioxidants 2022, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Hanieh, P.N.; Longhi, C.; Carradori, S.; Secci, D.; Zengin, G.; Ammendolia, M.G.; Mattia, E.; Del Favero, E.; Marianecci, C. Neem oil nanoemulsions: Characterisation and antioxidant activity. J. Enzym. Inhib. Med. Chem. 2017, 32, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
Time (day) | Droplet Size (nm) | PDI |
---|---|---|
1 | 51.15 ± 2.8 | 0.236 ± 0.021 |
7 | 39.15 ± 3.5 | 0.289 ± 0.019 |
14 | 47.79 ± 6.2 | 0.368 ± 0.133 |
Essential Oil Concentrations (Nanoemulsions/Pure Essential Oils) | |||||||
---|---|---|---|---|---|---|---|
4.8% | 2.4% | 1.2% | 0.6% | 0.3% | 0.15% | 0.075% | |
Staphylococcus aureus | − b/− | −/− | −/− | −/− | −/+ | +/+ | +/+ |
Listeria monocytogenes | −/− | −/− | −/− | −/− | −/+ | +/+ | +/+ |
Escherichia coli | −/− | −/− | −/− | −/− | −/− | −/+ | +/+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, C.; Wang, X.; Li, H.; Miao, S.; Chen, J.; Wang, Y. Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation. Foods 2025, 14, 3405. https://doi.org/10.3390/foods14193405
Cen C, Wang X, Li H, Miao S, Chen J, Wang Y. Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation. Foods. 2025; 14(19):3405. https://doi.org/10.3390/foods14193405
Chicago/Turabian StyleCen, Congnan, Xinxuan Wang, Huan Li, Song Miao, Jian Chen, and Yanbo Wang. 2025. "Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation" Foods 14, no. 19: 3405. https://doi.org/10.3390/foods14193405
APA StyleCen, C., Wang, X., Li, H., Miao, S., Chen, J., & Wang, Y. (2025). Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation. Foods, 14(19), 3405. https://doi.org/10.3390/foods14193405