Characterization of Lactiplantibacillus paraplantarum HK-1 and GABA Synthesis Under Simulated Gastrointestinal Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Characterization of GABA-Producing Strains
2.2. Evaluation of GABA Production
2.2.1. Culture Conditions
2.2.2. Gene Expression Analysis Through RT-qPCR and Method Validation
2.2.3. GABA Quantification by HPLC
2.3. Safety and Probiotic Assessment
2.3.1. Antimicrobial Susceptibility Testing
2.3.2. Hemolytic Activity Assay
2.3.3. Bile Salt Tolerance Testing
2.3.4. Acid Resistance Evaluation
2.3.5. Antimicrobial Activity Assessment
2.4. Gastrointestinal Simulation Protocol
2.4.1. Gastric Phase Simulation
2.4.2. Small Intestine Phase Simulation
2.4.3. Colonic Phase Simulation
2.4.4. Viability and GABA Quantification
2.5. Statistical Analysis
3. Results
3.1. Identification and Characterization of Lactiplantibacillus paraplantarum HK-1
3.2. Factors Influencing GABA Production
3.2.1. Effect of Glutamate Concentration on GABA Production
3.2.2. Effect of pH on GABA Production
3.2.3. Relationship Between Viability and GABA Production
3.2.4. Expression of gadB and Association with GABA Production
3.3. Safety and Probiotic Potential Evaluation
3.3.1. Antimicrobial Susceptibility
3.3.2. Hemolytic Activity
3.3.3. Bile Salt Tolerance
3.3.4. Acidic pH Tolerance
3.3.5. Antimicrobial Activity
3.4. Simulated Gastrointestinal Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GABA | Gamma-aminobutyric acid |
CNS | Central nervous system |
LAB | Lactic acid bacteria |
GRAS | Generally Recognized As Safe |
GAD | Glutamate decarboxylase |
MSG | Monosodium glutamate |
RT-qPCR | Real-time reverse transcription quantitative PCR |
HPLC | High-performance liquid chromatography |
LOD | Limit of detection |
LOQ | Limit of quantification |
CFU | Colony forming units |
PLP | Pyridoxal-5′-phosphate |
References
- Krnjevic, K.; Phillis, J.W. Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. 1963, 165, 274–304. [Google Scholar] [CrossRef]
- Sarasa, S.B.; Mahendran, R.; Muthusamy, G.; Thankappan, B.; Selta, D.R.F.; Angayarkanni, J. A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes. Curr. Microbiol. 2020, 77, 534–544. [Google Scholar] [CrossRef]
- Pencheva, D.; Teneva, D.; Denev, P. Validation of HPLC Method for Analysis of Gamma-Aminobutyric and Glutamic Acids in Plant Foods and Medicinal Plants. Molecules 2023, 28, 84. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int. J. Mol. Sci. 2022, 23, 5954. [Google Scholar] [PubMed]
- Wu, C.; Sun, D. GABA receptors in brain development, function, and injury. Metab. Brain Dis. 2015, 30, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Li, D.; Wang, L.; Lan, J.; Wang, J.; Ma, Y. Activation of GABABR Attenuates Intestinal Inflammation by Reducing Oxidative Stress through Modulating the TLR4/MyD88/NLRP3 Pathway and Gut Microbiota Abundance. Antioxidants 2024, 13, 1141. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, Y.; Lee, G.H. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch. Pharm. Res. 2019, 42, 1031–1039. [Google Scholar] [CrossRef]
- Luo, H.; Liu, Z.; Xie, F.; Bilal, M.; Liu, L.; Yang, R.; Wang, Z. Microbial production of gamma-aminobutyric acid: Applications, state-of-the-art achievements, and future perspectives. Crit. Rev. Biotechnol. 2021, 41, 491–512. [Google Scholar] [CrossRef]
- Braga, J.D.; Thongngam, M.; Kumrungsee, T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut–brain axis. npj Sci. Food 2024, 8, 16. [Google Scholar] [CrossRef]
- Hyland, N.P.; Golubeva, A.V. GABAB receptors in the bladder and bowel: Therapeutic potential for positive allosteric modulators?: Commentary on Kalinichev et al., Br J Pharmacol 171: 995–1006. Br. J. Pharmacol. 2015, 172, 4588–4590. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Q.; Prud’homme, G.J. GABAergic system in the endocrine pancreas: A new target for diabetes treatment. Diabetes Metab. Syndr. Obes. 2015, 8, 79–87. [Google Scholar]
- Garbarino, S.; Lanteri, P.; Bragazzi, N.L.; Magnavita, N.; Scoditti, E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 2021, 4, 1304. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A.; Nishihira, J.; Scholey, A. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front. Neurosci. 2020, 14, 923. [Google Scholar] [CrossRef] [PubMed]
- Liwinski, T.; Lang, U.E.; Brühl, A.B.; Schneider, E. Exploring the Therapeutic Potential of Gamma-Aminobutyric Acid in Stress and Depressive Disorders through the Gut–Brain Axis. Biomedicines 2023, 11, 3128. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef]
- Devi, P.B.; Rajapuram, D.R.; Jayamanohar, J.; Verma, M.; Kavitake, D.; Meenachi Avany, B.A.; Rani, P.U.; Ravi, R.; Shetty, P.H. Gamma-aminobutyric acid (GABA) production by potential probiotic strains of indigenous fermented foods origin and RSM based production optimization. LWT 2023, 176, 114511. [Google Scholar] [CrossRef]
- Diez-Gutiérrez, L.; Vicente, L.S.; Sáenz, J.; Esquivel, A.; Barron, L.J.R.; Chávarri, M. Biosynthesis of gamma-aminobutyric acid by Lactiplantibacillus plantarum K16 as an alternative to revalue agri-food by-products. Sci. Rep. 2022, 12, 18904. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Wang, H.; Huang, Y.; Qi, M.; Liao, S.; Bin, P.; Yin, Y. Effects of GABA Supplementation on Intestinal SIgA Secretion and Gut Microbiota in the Healthy and ETEC-Infected Weanling Piglets. Mediat. Inflamm. 2020, 2020, 7368483. [Google Scholar] [CrossRef]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef]
- Icer, M.A.; Sarikaya, B.; Kocyigit, E.; Atabilen, B.; Çelik, M.N.; Capasso, R.; Ağagündüz, D.; Budán, F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024, 13, 2437. [Google Scholar] [CrossRef]
- Ikegami, M.; Narabayashi, H.; Nakata, K.; Yamashita, M.; Sugi, Y.; Fuji, Y.; Matsufuji, H.; Harata, G.; Yoda, K.; Miyazawa, K.; et al. Intervention in gut microbiota increases intestinal γ-aminobutyric acid and alleviates anxiety behavior: A possible mechanism via the action on intestinal epithelial cells. Front. Cell. Infect. Microbiol. 2024, 14, 1421791. [Google Scholar] [CrossRef]
- Li, H.; Qiu, T.; Huang, G.; Cao, Y. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Factories 2010, 9, 85. [Google Scholar]
- Cho, Y.R.; Chang, J.Y.; Chang, H.C. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 2007, 17, 104–109. [Google Scholar] [PubMed]
- Yogeswara, I.B.A.; Maneerat, S.; Haltrich, D. Glutamate Decarboxylase from Lactic Acid Bacteria—A Key Enzyme in GABA Synthesis. Microorganisms 2020, 8, 1923. [Google Scholar] [CrossRef] [PubMed]
- Falah, F.; Vasiee, A.; Alizadeh Behbahani, B.; Tabatabaee Yazdi, F.; Mortazavi, S.A. Optimization of gamma-aminobutyric acid production by Lactobacillus brevis PML1 in dairy sludge-based culture medium through response surface methodology. Food Sci. Nutr. 2021, 9, 3317–3326. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef]
- Banerjee, S.; Poore, M.; Gerdes, S.; Nedveck, D.; Lauridsen, L.; Kristensen, H.T.; Jensen, H.M.; Byrd, P.M.; Ouwehand, A.C.; Patterson, E.; et al. Transcriptomics reveal different metabolic strategies for acid resistance and gamma-aminobutyric acid (GABA) production in select Levilactobacillus brevis strains. Microb. Cell Factories 2021, 20, 173. [Google Scholar] [CrossRef]
- Lyu, C.; Zhao, W.; Peng, C.; Hu, S.; Fang, H.; Hua, Y.; Yao, S.; Huang, J.; Mei, L. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microb. Cell Factories 2018, 17, 180. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, J.; Lv, C.; Hu, S.; Yao, S.; Mei, L.; Lei, Y. pH stabilization of lactic acid fermentation via the glutamate decarboxylation reaction: Simultaneous production of lactic acid and γ-aminobutyric acid. Process Biochem. 2015, 50, 1523–1527. [Google Scholar]
- Iorizzo, M.; Paventi, G.; Di Martino, C. Biosynthesis of Gamma-Aminobutyric Acid (GABA) by Lactiplantibacillus plantarum in Fermented Food Production. Curr. Issues Mol. Biol. 2024, 46, 200–220. [Google Scholar]
- Park, S.-Y.; Lee, J.-W.; Lim, S.-D. The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi. Food Sci. Biotechnol. 2014, 23, 1951–1957. [Google Scholar] [CrossRef]
- García-López, J.D.; Teso-Pérez, C.; Martín-Platero, A.M.; Peralta-Sánchez, J.M.; Fonollá-Joya, J.; Martínez-Bueno, M.; Baños, A. Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6, Two Bacteriocinogenic Isolated Strains from Andalusian Spontaneous Fermented Sausages. Foods 2023, 12, 2445. [Google Scholar] [CrossRef]
- Moon, S.J.; Hwang, J.; Kang, W.K.; Ahn, J.-P.; Kim, H.J. Administration of the probiotic Lactiplantibacillus paraplantarum is effective in controlling hyperphosphatemia in 5/6 nephrectomy rat model. Life Sci. 2022, 306, 120856. [Google Scholar] [CrossRef]
- Afreen, A.; Ahmed, Z.; Khalid, N.; Ferheen, I.; Ahmed, I. Optimization and cholesterol-lowering activity of exopolysaccharide from Lactiplantibacillus paraplantarum NCCP 962. Appl. Microbiol. Biotechnol. 2023, 107, 1189–1204. [Google Scholar] [CrossRef]
- Sezgin, E.; Tekin, B. Molecular evolution and population genetics of glutamate decarboxylase acid resistance pathway in lactic acid bacteria. Front. Genet. 2023, 14, 1027156. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Shin, B.-H.; Kim, Y.-H.; Nam, S.-W.; Jeon, S.-J. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol. Bioprocess Eng. 2007, 12, 707–712. [Google Scholar] [CrossRef]
- Milon, R.B.; Hu, P.; Zhang, X.; Hu, X.; Ren, L. Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. Bioresour. Bioprocess. 2024, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Gökmen, G.G.; Sarıyıldız, S.; Cholakov, R.; Nalbantsoy, A.; Baler, B.; Aslan, E.; Düzel, A.; Sargın, S.; Göksungur, Y.; Kışla, D. A novel Lactiplantibacillus plantarum strain: Probiotic properties and optimization of the growth conditions by response surface methodology. World J. Microbiol. Biotechnol. 2024, 40, 66. [Google Scholar] [CrossRef]
- Yerlikaya, O.; Saygili, D.; Akpinar, A. Evaluation of antimicrobial activity and antibiotic susceptibility profiles of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains isolated from commercial yoghurt starter cultures. Food Sci. Technol. 2021, 41, 418–425. [Google Scholar] [CrossRef]
- Gutiérrez-Zamorano, C.; González-Ávila, M.; Díaz-Blas, G.; Smith, C.T.; González-Correa, C.; García-Cancino, A. Increased anti-Helicobacter pylori effect of the probiotic Lactobacillus fermentum UCO-979C strain encapsulated in carrageenan evaluated in gastric simulations under fasting conditions. Food Res. Int. 2019, 121, 812–816. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef]
- Cai, H.; Li, X.; Li, D.; Liu, W.; Han, Y.; Xu, X.; Yang, P.; Meng, K. Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai. Foods 2023, 12, 3034. [Google Scholar] [CrossRef]
- Otaru, N.; Ye, K.; Mujezinovic, D.; Berchtold, L.; Constancias, F.; Cornejo, F.A.; Krzystek, A.; de Wouters, T.; Braegger, C.; Lacroix, C.; et al. GABA Production by Human Intestinal Bacteroides spp.: Prevalence, Regulation, and Role in Acid Stress Tolerance. Front. Microbiol. 2021, 12, 656895. [Google Scholar] [CrossRef]
- Laroute, V.; Mazzoli, R.; Loubière, P.; Pessione, E.; Cocaign-Bousquet, M. Environmental Conditions Affecting GABA Production in Lactococcus lactis NCDO 2118. Microorganisms 2021, 9, 122. [Google Scholar] [CrossRef]
- Lin, Q. Submerged fermentation of Lactobacillus rhamnosus YS9 for g-aminobutyric acid (GABA) production. Braz. J. Microbiol. 2013, 44, 183–187. [Google Scholar] [CrossRef]
- Yunes, R.A.; Poluektova, E.U.; Dyachkova, M.S.; Klimina, K.M.; Kovtun, A.S.; Averina, O.V.; Orlova, V.S.; Danilenko, V.N. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 2016, 42, 197–204. [Google Scholar] [CrossRef]
- Feehily, C.; Karatzas, K.A.G. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 2013, 114, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhang, R.; Zhao, J.; Li, C.; Guo, T.; Yang, S.; Han, T.; Kong, J. Fast-acidification promotes GABA synthesis in response to acid stress in Streptococcus thermophilus. LWT 2022, 164, 113671. [Google Scholar] [CrossRef]
- Santos-Espinosa, A.; Beltrán-Barrientos, L.M.; Reyes-Díaz, R.; Mazorra-Manzano, M.Á.; Hernández-Mendoza, A.; González-Aguilar, G.A.; Sáyago-Ayerdi, S.G.; Vallejo-Cordoba, B.; González-Córdova, A.F. Gamma-aminobutyric acid (GABA) production in milk fermented by specific wild lactic acid bacteria strains isolated from artisanal Mexican cheeses. Ann. Microbiol. 2020, 70, 12. [Google Scholar] [CrossRef]
- Li, W.; Wei, M.; Wu, J.; Rui, X.; Dong, M. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells. PeerJ 2016, 4, e2292. [Google Scholar] [CrossRef]
- Casertano, M.; Fryganas, C.; Valentino, V.; Troise, A.D.; Vitaglione, P.; Fogliano, V.; Ercolini, D. Gut production of GABA by a probiotic formula: An in vitro study. Benef. Microbes 2024, 15, 67–81. [Google Scholar] [CrossRef]
- Aggarwal, S.; Ahuja, V.; Paul, J. Attenuated GABAergic Signaling in Intestinal Epithelium Contributes to Pathogenesis of Ulcerative Colitis. Dig. Dis. Sci. 2017, 62, 2768–2779. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Linearity Range (µg/mL) | 6.13–1533.33 |
Regression Equation | y = 32.6x − 525.85 |
R2 | 0.9941 |
LOD (µg/mL) | 24.90 |
LOQ (µg/mL) | 75.60 |
Sample 1 | Sample 2 | N | Correlation | 95% IC | p-Value |
---|---|---|---|---|---|
MSG (mM) | GABA (mAU) | 8 | 0.908 | (0.566; 0.983) | 0.002 |
pH_48 h | GABA (mAU) | 8 | 0.909 | (0.567; 0.984) | 0.002 |
UFC_48 h | GABA (mAU) | 8 | −0.132 | (−0.766; 0.631) | 0.755 |
gadB_RE | GABA (mAU) | 4 | 0.741 | (−0.765; 0.994) | 0.259 |
MSG (mM) | gadB_RE | 4 | 0.773 | (−0.732; 0.995) | 0.227 |
pH_48 h | UFC_48 h | 8 | −0.118 | −0.76 | 0.78 |
Antibiotic | Concentration (μg) | Halo Diameter (mm) | Interpretation |
---|---|---|---|
Penicillin | 10 | 30 | Susceptible |
Sulfa Trimetoprim | 23.75/1.25 | 15 | Intermediate |
Tetracycline | 30 | 23 | Susceptible |
Kanamycin | 30 | 6 | Resistant |
Ceftriaxone | 30 | 30 | Susceptible |
Ampicillin | 10 | 30 | Susceptible |
Erythromycin | 15 | 30 | Susceptible |
Amoxicillin/Clavulanic Acid | 20-11 | 30 | Susceptible |
Amikacin | 30 | 6 | Resistant |
Gentamicin | 10 | 6 | Resistant |
Vancomycin | 30 | 6 | Resistant |
Ciprofloxacin | 5 | 15 | Intermediate |
Phase | Cumulative Time (h) | pH | Count (CFU/mL) | Survival (%) | GABA (µg/mL) |
---|---|---|---|---|---|
Stomach | 0 | 3.50 | 4.67 × 108 ± 2.89 × 107 | 100 | ND |
Stomach | 2 | 2.97 | 4.00 × 108 ± 8.66 × 107 | 85.7 | ND |
Intestine | 2 | 5.08 | 3.00 × 108 ± 5.00 × 107 | 64.3 | 10.5 ± 6.8 |
Intestine | 6 | 4.67 | 1.67 × 108 ± 5.77 × 107 | 35.8 | 15.7 ± 12.1 |
Colon | 6 | 6.13 | 3.00 × 108 ± 5.77 × 107 | 64.3 | 19.0 ± 4.2 |
Colon | 72 | 5.28 | 7.40 × 107 ± 2.51 × 107 | 15.9 | 148.3 ± 19.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Seriche, S.; Alvarez-Norambuena, J.; Lincoñir-Campos, P.; Gutiérrez-Zamorano, C.; Ruiz-Garrido, A.; Jerez-Angulo, B.; García-Cancino, A.; Jerez-Morales, A. Characterization of Lactiplantibacillus paraplantarum HK-1 and GABA Synthesis Under Simulated Gastrointestinal Conditions. Foods 2025, 14, 3345. https://doi.org/10.3390/foods14193345
Castro-Seriche S, Alvarez-Norambuena J, Lincoñir-Campos P, Gutiérrez-Zamorano C, Ruiz-Garrido A, Jerez-Angulo B, García-Cancino A, Jerez-Morales A. Characterization of Lactiplantibacillus paraplantarum HK-1 and GABA Synthesis Under Simulated Gastrointestinal Conditions. Foods. 2025; 14(19):3345. https://doi.org/10.3390/foods14193345
Chicago/Turabian StyleCastro-Seriche, Susana, Joaquin Alvarez-Norambuena, Paulina Lincoñir-Campos, Cristian Gutiérrez-Zamorano, Alvaro Ruiz-Garrido, Bruno Jerez-Angulo, Apolinaria García-Cancino, and Alonso Jerez-Morales. 2025. "Characterization of Lactiplantibacillus paraplantarum HK-1 and GABA Synthesis Under Simulated Gastrointestinal Conditions" Foods 14, no. 19: 3345. https://doi.org/10.3390/foods14193345
APA StyleCastro-Seriche, S., Alvarez-Norambuena, J., Lincoñir-Campos, P., Gutiérrez-Zamorano, C., Ruiz-Garrido, A., Jerez-Angulo, B., García-Cancino, A., & Jerez-Morales, A. (2025). Characterization of Lactiplantibacillus paraplantarum HK-1 and GABA Synthesis Under Simulated Gastrointestinal Conditions. Foods, 14(19), 3345. https://doi.org/10.3390/foods14193345