Preserving Pomelo Quality: Sodium Alginate Coating Containing Bacillus subtilis for Sustained Antifungal Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Assessment of B. subtilis Antagonistic Capacity
2.2.1. Determination of the Inhibition Spectrum
2.2.2. Determination of Inhibitory Capacity of Volatile Metabolites of B. subtilis Against Pathogenic Fungi
2.2.3. Spatial and Nutrient Competition in B. subtilis
2.2.4. Effects of B. subtilis on Morphology and Spore Germination of P. digitatum and P. italicum
2.3. Screening of Coating Substrates
2.4. Effect of Different Coatings on the Morphology of B. subtilis
2.5. Determination of Optimal In Vitro Inhibitory Concentration
2.6. Determination of Optimal In Vivo Inhibitory Concentration
2.7. Characterization of Coating Properties
2.7.1. Water Vapor Permeability (WVP)
2.7.2. Determination of Viscosity
2.7.3. Mechanical Performance Tests
2.7.4. Scanning Electron Microscope (SEM)
2.8. Determination of In Vivo Antibacterial Properties
2.9. Determination of B. subtilis Viability
2.10. Coating Samples Preparation
2.11. Determination of Quality Indexes of Wendan Pomelo
2.11.1. Appearance and Flesh Color
2.11.2. Hardness, Weight Loss Rate, Total Suspended Solids (TSS) and Total Acid (TA)
2.12. Investigation of Physiological Mechanisms of B. subtilis/SA Coatings in the Postharvest Preservation of Pomelos
2.13. Flavonoids and Total Phenolics Content
2.14. Determination of Resistance-Related Enzyme Activities
2.15. Statistical Analysis
3. Results and Discussion
3.1. Antagonistic Capacity of B. subtilis
3.1.1. Antifungal Spectrum of B. subtilis
3.1.2. Nutritional and Spatial Competition
3.1.3. Assessment of Volatile Antimicrobial Activity in B. subtilis
3.1.4. Effects of B. subtilis on Mycelium and Spores of Pathogenic Fungi
3.2. Biocompatibility of Different Coating Substrates
3.3. Antagonistic Bacterial Morphology
3.4. Screening of Optimal Inhibitory Concentrations of B. subtilis
3.5. Optimal Inhibitory Concentrations In Vivo
3.6. Characterization of SA Coating Films at Varying Concentrations
3.6.1. WVP
3.6.2. Viscosity
3.6.3. Mechanical Strength
3.6.4. SEM
3.7. In Vivo Bacteriostatic Effect of B. subtilis/SA Coating Solution
3.8. B. subtilis Viability in Coating
3.9. Effect of Different Treatments on the Quality of the Pomelo
3.9.1. Appearance and Color
3.9.2. Hardness and Weight Loss Rate
3.9.3. TSS and TA
3.10. Effect of B. subtilis/SA Coating on Total Phenolic and Flavonoid Contents in Wendan Pomelo Peel
3.11. Effects of B. subtilis/SA Coating on Resistance-Related Metabolites and Enzyme Activities in Wendan Pomelo
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sood, A.; Saini, C.S. Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocoll. 2022, 123, 107135. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Lu, Z.; Zhang, W.; Yang, J.; Hou, Y.; Wang, X.; Zhou, S.; Li, Y.; Wu, L.; et al. Carbon footprint of a typical pomelo production region in China based on farm survey data. J. Clean. Prod. 2020, 277, 124041. [Google Scholar] [CrossRef]
- Ranjith, F.H.; Muhialdin, B.J.; Yusof, N.L.; Mohammed, N.K.; Miskandar, M.H.; Hussin, A.S. Effects of lacto-fermented agricultural by-products as a natural disinfectant against post-harvest diseases of mango (Mangifera indica L.). Plants 2021, 10, 285. [Google Scholar] [CrossRef]
- De Simone, N.; Scauro, A.; Fatchurrahman, D.; Russo, P.; Capozzi, V.; Spano, G.; Fragasso, M. Inclusion of antifungal and probiotic lactiplantibacillus plantarum strains in edible alginate coating as a promising strategy to produce probiotic table grapes and exploit biocontrol activity. Horticulturae 2024, 10, 419. [Google Scholar] [CrossRef]
- Volentini, S.I.; Olmedo, G.M.; Grillo-Puertas, M.; Rapisarda, V.A.; Hebert, E.M.; Cerioni, L.; Villegas, J.M. Biological control of green and blue molds on postharvest lemon by lactic acid bacteria. Biol. Control 2023, 185, 105303. [Google Scholar] [CrossRef]
- Hammami, R.; Oueslati, M.; Smiri, M.; Nefzi, S.; Ruissi, M.; Comitini, F.; Romanazzi, G.; Cacciola, S.O.; Sadfi Zouaoui, N. Epiphytic yeasts and bacteria as candidate biocontrol agents of green and blue molds of citrus fruits. J. Fungi 2022, 8, 818. [Google Scholar] [CrossRef] [PubMed]
- Riolo, M.; Villena, A.M.; Calpe, J.; Luz, C.; Meca, G.; Tuccitto, N.; Cacciola, S.O. A circular economy approach: A new formulation based on a lemon peel medium activated with lactobacilli for sustainable control of post-harvest fungal rots in fresh citrus fruit. Biol. Control 2024, 189, 105443. [Google Scholar] [CrossRef]
- Sulthana, A.; Lakshmi, S.G.; Madempudi, R.S. Genome sequencing and annotation of Bacillus subtilis UBBS-14 to ensure probiotic safety. J. Genom. 2019, 7, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Terao, D.; de Lima Nechet, K.; Ponte, M.S.; de Holanda Nunes Maia, A.; de Almeida Anjos, V.D.; de Almeida Halfeld-Vieira, B. Physical postharvest treatments combined with antagonistic yeast on the control of orange green mold. Sci. Hortic. 2017, 224, 317–323. [Google Scholar] [CrossRef]
- Abdukerim, R.; Li, L.; Li, J.-H.; Xiang, S.; Shi, Y.-X.; Xie, X.-W.; Chai, A.L.; Fan, T.-F.; Li, B.-J. Coating seeds with biocontrol bacteria-loaded sodium alginate/pectin hydrogel enhances the survival of bacteria and control efficacy against soil-borne vegetable diseases. Int. J. Biol. Macromol. 2024, 279, 135317. [Google Scholar]
- Álvarez, A.; Manjarres, J.J.; Ramírez, C.; Bolívar, G. Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. LWT—Food Sci. Technol. 2021, 151, 112225. [Google Scholar] [CrossRef]
- Hua, Q.; Wong, C.H.; Li, D. Postbiotics enhance the functionality of a probiotic edible coating for salmon fillets and the probiotic stability during simulated digestion. Food Packag. Shelf Life 2022, 34, 100954. [Google Scholar] [CrossRef]
- Fan, Q.; Tian, S.; Li, Y.; Wang, Y.; Xu, Y.; Li, J. Postharvest biological control of green mold and blue mold of citrus fruits by Bacillus subtilis. Chamorro 2000, 30, 412–914. [Google Scholar]
- Arabpoor, B.; Yousefi, S.; Weisany, W.; Ghasemlou, M. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll. 2021, 111, 106394. [Google Scholar] [CrossRef]
- Nair, M.S.; Saxena, A.; Kaur, C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem. 2018, 240, 245–252. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, D.; He, X.; Wang, F.; Wu, J.; Liu, Y.; Jiao, J.; Deng, J. Bacillus subtilis KLBC BS6 induces resistance and defence-related response against Botrytis cinerea in blueberry fruit. Physiol. Mol. Plant Pathol. 2021, 114, 101599. [Google Scholar] [CrossRef]
- Dias Fernandes, K.F.; Rimá de Oliveira, K.Á.; Cirilo, Í.F.; da Costa Lima, M.; Saraiva Câmara, M.P.; Leite de Souza, E. A novel coating formulated with sodium alginate loaded with a mixed lactic acid bacteria culture to control anthracnose in guava and mango. Food Control 2025, 175, 111341. [Google Scholar] [CrossRef]
- Dulta, K.; Koşarsoy Ağçeli, G.; Thakur, A.; Singh, S.; Chauhan, P.; Chauhan, P.K. Development of alginate-chitosan based coating enriched with ZnO nanoparticles for increasing the shelf life of orange fruits (Citrus sinensis L.). J. Polym. Environ. 2022, 30, 3293–3306. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Ferrari, C.C.; Sarantópoulos, C.I.G.L.; Hubinger, M.D. Fresh cut ‘Tommy Atkins’ mango pre-treated with citric acid and coated with cassava (Manihot esculenta Crantz) starch or sodium alginate. Innov. Food Sci. Emerg. Technol. 2011, 12, 381–387. [Google Scholar] [CrossRef]
- Robles-Sánchez, R.M.; Rojas-Graü, M.A.; Odriozola-Serrano, I.; González-Aguilar, G.; Martin-Belloso, O. Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT—Food Sci. Technol. 2013, 50, 240–246. [Google Scholar] [CrossRef]
- Menéndez-Cañamares, S.; Blázquez, A.; Albertos, I.; Poveda, J.; Díez-Méndez, A. Probiotic Bacillus subtilis SB8 and edible coatings for sustainable fungal disease management in strawberry. Biol. Control 2024, 196, 105572. [Google Scholar] [CrossRef]
- Marín, A.; Plotto, A.; Atarés, L.; Chiralt, A. Lactic acid bacteria incorporated into edible coatings to control fungal growth and maintain postharvest quality of grapes. HortScience 2019, 54, 337–343. [Google Scholar] [CrossRef]
- Torres-García, J.R.; Leonardo-Elias, A.; Angoa-Pérez, M.V.; Villar-Luna, E.; Arias-Martínez, S.; Oyoque-Salcedo, G.; Oregel-Zamudio, E. Bacillus subtilis Edible Films for Strawberry Preservation: Antifungal Efficacy and Quality at Varied Temperatures. Foods 2024, 13, 980. [Google Scholar] [CrossRef]
- Rosalinda, K.; Fitriyanti, M.; Purwasena, I.A. Production and characterization of biosurfactants from lactic acid bacteria in Dadiah for strawberries edible coating. Food Biosci. 2024, 62, 105386. [Google Scholar] [CrossRef]
- Silva, S.P.M.; Teixeira, J.A.; Silva, C.C.G. Recent advances in the use of edible films and coatings with probiotic and bacteriocin-producing lactic acid bacteria. Food Biosci. 2023, 56, 103196. [Google Scholar] [CrossRef]
- Calvo, H.; Marco, P.; Blanco, D.; Oria, R.; Venturini, M.E. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol. 2017, 63, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Kilani-Feki, O.; Ben Khedher, S.; Dammak, M.; Kamoun, A.; Jabnoun-Khiareddine, H.; Daami-Remadi, M.; Tounsi, S. Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol. Control 2016, 95, 73–82. [Google Scholar] [CrossRef]
- Barrios-Salgado, G.; Vázquez-Ovando, A.; Rosas-Quijano, R.; Gálvez-López, D.; Salvador-Figueroa, M. Inhibitory capacity of chitosan films containing lactic acid bacteria cell-free supernatants against colletotrichum gloeosporioides. Food Bioprocess Technol. 2022, 15, 1182–1187. [Google Scholar] [CrossRef]
- Luo, Q.; Rong, X.; Xiao, Z.; Duan, X.; Zhou, Y.; Zhang, J.; Wang, X.; Peng, Z.; Dai, J.; Liu, Y.; et al. Effect of chitosan films containing clove essential oil-loaded microemulsions combined with deep learning on pork preservation and freshness monitoring. Food Control 2025, 168, 110914. [Google Scholar] [CrossRef]
- Fernandes, K.F.D.; de Oliveira, K.Á.R.; de Souza, E.L. Application of potentially probiotic fruit-derived lactic acid bacteria loaded into sodium alginate coatings to control anthracnose development in guava and mango during storage. Probiotics Antimicrob. Proteins 2023, 15, 573–587. [Google Scholar] [CrossRef]
- Xie, J.; Sameen, D.E.; Xiao, Z.; Zhu, H.; Lai, Y.; Tang, T.; Rong, X.; Fu, F.; Qin, W.; Chen, M.; et al. Protecting anthocyanins of postharvest blueberries through konjac glucomannan/low-acyl gellan gum coatings contained thymol microcapsule during low-temperature storage. Food Chem. 2025, 463, 141347. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Huang, X.; Shi, J.; Muhammad, A.; Zhai, X.; Xiao, J.; Li, Z.; Povey, M.; Zou, X. Study on cinnamon essential oil release performance based on pH-triggered dynamic mechanism of active packaging for meat preservation. Food Chem. 2023, 400, 134030. [Google Scholar] [PubMed]
- Azhdari, S.; Moradi, M. Application of antimicrobial coating based on carboxymethyl cellulose and natamycin in active packaging of cheese. Int. J. Biol. Macromol. 2022, 209, 2042–2049. [Google Scholar] [CrossRef]
- Rashid, M.S.; Deshmukh, R.K.; Kumar, P.; Tripathi, S.; Esatbeyoglu, T.; Gaikwad, K.K. Development and characterization of edible films and coatings from Butea monosperma and guar gum for prolonging tomato freshness. Int. J. Biol. Macromol. 2025, 311, 143958. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Jiang, G.; Shen, G.; Wu, H.; Liu, Y.; Zhang, Z. Optimization, characterization and rheological behavior study of pectin extracted from chayote (Sechium edule) using ultrasound assisted method. Int. J. Biol. Macromol. 2020, 147, 688–698. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013, 115, 459–465. [Google Scholar] [CrossRef]
- Azarakhsh, N.; Osman, A.; Ghazali, H.M.; Tan, C.P.; Mohd Adzahan, N. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol. Technol. 2014, 88, 1–7. [Google Scholar]
- Li, Y.; Guo, L.; Wei, J.; Yao, Y.; Xu, L.; Zhou, Z. Effect of polyethoxylated flavonoids (PMFs)-loaded citral and chitosan composite coatings on citrus preservation: From the perspective of fruit resistance. Food Chem. X 2024, 22, 101417. [Google Scholar] [CrossRef]
- Linh, C.T.M.; Ngoc, V.D.; Phat, D.T.; Phong, H.X.; Quy, N.N.; Tung, N.T.X.; Nhi, T.T.Y. Effectiveness of sodium alginate-based coating on the preservation of Da xanh pomelo fresh-cut. Appl. Food Res. 2024, 4, 100426. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Rivera-Cabrera, F.; Kader, A.A. Quality retention and potential shelf-life of fresh-cut lemons as affected by cut type and temperature. Postharvest Biol. Technol. 2007, 43, 245–254. [Google Scholar] [CrossRef]
- Qu, S.; Li, M.; Wang, G.; Yu, W.; Zhu, S. Transcriptomic, proteomic and LC-MS analyses reveal anthocyanin biosynthesis during litchi pericarp browning. Sci. Hortic. 2021, 289, 110443. [Google Scholar] [CrossRef]
- De Simone, N.; Scauro, A.; Fatchurrahman, D.; Amodio, M.L.; Capozzi, V.; Colelli, G.; Spano, G.; Fragasso, M.; Russo, P. Probiotic Lactiplantibacillus plantarum strains showing anti-Botrytis activity: A food-grade approach to improve the overall quality of strawberry in post-harvest. Postharvest Biol. Technol. 2024, 218, 113125. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, Z.; Wang, X.; Cao, S.; Liu, Y.; Liu, S.; Zhang, Y.; Li, M.; Chen, Q.; Zhang, Y.; et al. Exogenous proanthocyanidins improved postharvest quality and resistance to Botrytis cinerea infection of strawberry via enhanced non-enzymatic antioxidants accumulation and salicylic acid signaling pathway. Postharvest Biol. Technol. 2025, 230, 113732. [Google Scholar] [CrossRef]
Radius of Area of Incidence (cm) | ||||||
---|---|---|---|---|---|---|
0 d | 1 d | 2 d | 3 d | 4 d | 5 d | |
CK | - | - | 1.62 ± 0.12 a | 4.74 ± 0.08 a | 6.43 ± 0.23 a | 9.46 ± 0.21 a |
2.0% SA | - | - | - | - | 1.26 ± 0.04 b | 1.82 ± 0.13 b |
B. subtilis/SA | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Liu, Y.; Tang, T.; Lei, S.; Wu, J.; Ding, T.; Zhu, X.; Fang, W.; Zheng, J.; Liu, Y.; et al. Preserving Pomelo Quality: Sodium Alginate Coating Containing Bacillus subtilis for Sustained Antifungal Activity. Foods 2025, 14, 3303. https://doi.org/10.3390/foods14193303
Wei X, Liu Y, Tang T, Lei S, Wu J, Ding T, Zhu X, Fang W, Zheng J, Liu Y, et al. Preserving Pomelo Quality: Sodium Alginate Coating Containing Bacillus subtilis for Sustained Antifungal Activity. Foods. 2025; 14(19):3303. https://doi.org/10.3390/foods14193303
Chicago/Turabian StyleWei, Xi, Yan Liu, Tingting Tang, Shanshan Lei, Jing Wu, Tianhua Ding, Xiaoyi Zhu, Weirui Fang, Jiayi Zheng, Yuxin Liu, and et al. 2025. "Preserving Pomelo Quality: Sodium Alginate Coating Containing Bacillus subtilis for Sustained Antifungal Activity" Foods 14, no. 19: 3303. https://doi.org/10.3390/foods14193303
APA StyleWei, X., Liu, Y., Tang, T., Lei, S., Wu, J., Ding, T., Zhu, X., Fang, W., Zheng, J., Liu, Y., Qin, W., Chen, M., & Liu, Y. (2025). Preserving Pomelo Quality: Sodium Alginate Coating Containing Bacillus subtilis for Sustained Antifungal Activity. Foods, 14(19), 3303. https://doi.org/10.3390/foods14193303