Tannic Acid-Modified Sodium Caseinate Pickering Emulsion Coatings: Characterization, Enhanced Mechanical/Antibacterial Properties, and Application in Cherry Tomato Preservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Nanocomposites and Pickering Emulsions
2.2.1. Preparation of SC-TA Nanocomposites
2.2.2. Preparation of Tannin-Sodium Caseinate Stabilized BEO Pickering Emulsion (PE)
2.2.3. Particle Size Distribution, Zeta Potential, and Polydispersity Index (PDI) of Nanoparticles and Pickering Emulsions
2.2.4. Circular Dichroism (CD) Spectroscopy of Nanoparticles
2.2.5. Optical Microscopy Observation of PE
2.2.6. Encapsulation Efficiency (EE) of PE
2.2.7. The Release of Essential Oil During Pickering Emulsion Storage
2.3. Preparation and Characterization of Carboxymethyl Tara Gum and Composite Coating Solution
2.3.1. Preparation of Carboxymethyl Tara Gum
2.3.2. Preparation of Composite Coating Solutions
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.5. Thermal Stability
2.3.6. Film Thickness Measurement
2.3.7. Water Vapor Permeability (WVP)
2.3.8. Mechanical Properties
2.3.9. Antimicrobial Activity
2.3.10. Antioxidant Activity
2.4. Evaluation of the Preservation Efficacy of Coatings on Cherry Tomatoes
2.4.1. Coating Treatment of Cherry Tomatoes
2.4.2. Sensory Analysis of Cherry Tomatoes on the 8th Day of Storage
2.4.3. Weight Loss, Firmness, and Respiration Rate
2.4.4. Total Soluble Solids (TSS) and Titratable Acidity
2.4.5. Vitamin C (VC) and Lycopene
2.4.6. Malondialdehyde (MDA) Concentration
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Nanoparticles and Pickering Emulsions
3.1.1. FTIR Spectroscopic Analysis of Nanoparticles
3.1.2. CD Spectroscopic Analysis of Nanoparticles
3.1.3. Particle Size Distribution, Zeta Potential, and PDI of Nanoparticles and Pickering Emulsions
3.1.4. Microstructural Characterization of Pickering Emulsions and Encapsulation Efficiency
3.1.5. The Sustained-Release Rate of Pickering Emulsion
3.2. Characterization of CMTG and Composite Coating Formulations
3.2.1. SEM
3.2.2. FTIR Spectroscopy of the Films
3.2.3. Thermal Stability
3.2.4. WVP
3.2.5. Mechanical Properties
3.2.6. Antimicrobial Activity
3.2.7. Antioxidant Activity
3.3. Evaluation of the Preservation Efficacy of Coatings on Cherry Tomatoes
3.3.1. The Visual Appearance of Cherry Tomatoes and the Sensory Analysis of Cherry Tomatoes on the 8th Day of Storage
3.3.2. Weight Loss, Firmness, and Respiration Rate
3.3.3. TSS and Titratable Acidity
3.3.4. VC and Lycopene
3.3.5. MDA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, J.; Wang, L.; Wang, L.; Li, Z.; Huai, Y.; Zhang, S.; Yu, Y. Development and Characterization of Modified Gelatin-Based Cling Films with Antimicrobial and Antioxidant Activities and Their Application in the Preservation of Cherry Tomatoes. Antioxidants 2024, 13, 431. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhou, D.; Peng, J.; Pan, L.; Tu, K. Hot Air Treatment Induces Disease Resistance through Activating the Phenylpropanoid Metabolism in Cherry Tomato Fruit. J. Agric. Food Chem. 2017, 65, 8003–8010. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Miao, X.; Guo, F.; Deng, Z.; Bian, F.; Xiao, T.; Chen, C. Optimized hybrid edible surface coating prepared with gelatin and cellulose nanofiber for cherry tomato preservation. Int. J. Biol. Macromol. 2024, 279, 134822. [Google Scholar] [CrossRef]
- Roshandel-hesari, N.; Mokaber-Esfahani, M.; Taleghani, A.; Akbari, R. Investigation of physicochemical properties, antimicrobial and antioxidant activity of edible films based on chitosan/casein containing Origanum vulgare L. essential oil and its effect on quality maintenance of cherry tomato. Food Chem. 2022, 396, 133650. [Google Scholar] [CrossRef]
- Ma, Q.; Hu, D.; Wang, H.; Wang, L. Tara gum edible film incorporated with oleic acid. Food Hydrocoll. 2016, 56, 127–133. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, W.; He, Q. The gelation properties of tara gum blended with κ-carrageenan or xanthan. Food Hydrocoll. 2018, 77, 764–771. [Google Scholar] [CrossRef]
- Santos, M.B.; dos Santos, C.H.C.; de Carvalho, M.G.; de Carvalho, C.W.P.; Garcia-Rojas, E.E. Physicochemical, thermal and rheological properties of synthesized carboxymethyl tara gum (Caesalpinia spinosa). Int. J. Biol. Macromol. 2019, 134, 595–603. [Google Scholar] [CrossRef]
- Yang, Q.; Zheng, F.; Chai, Q.; Li, Z.; Zhao, H.; Zhang, J.; Nishinari, K.; Zhao, M.; Cui, B. Effect of emulsifiers on the properties of corn starch films incorporated with Zanthoxylum bungeanum essential oil. Int. J. Biol. Macromol. 2024, 256, 128382. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, X.; Shi, H.; Wang, F.; Li, X. Modulation of major components of bergamot essential oil in Escherichia coli through metabolic engineering strategies. Ind. Crop. Prod. 2024, 217, 118867. [Google Scholar] [CrossRef]
- Xing, C.; Qin, C.; Li, X.; Zhang, F.; Linhardt, R.J.; Sun, P.; Zhang, A. Chemical composition and biological activities of essential oil isolated by HS-SPME and UAHD from fruits of bergamot. LWT 2019, 104, 38–44. [Google Scholar] [CrossRef]
- Ribes, S.; Fuentes, A.; Talens, P.; Barat, J.M.; Ferrari, G.; Donsì, F. Influence of emulsifier type on the antifungal activity of cinnamon leaf, lemon and bergamot oil nanoemulsions against Aspergillus niger. Food Control 2017, 73, 784–795. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Zhou, Y.; Wu, S.; Peng, L.; Tian, J.; Geng, Z.; Zhou, M.; Li, Q. Gelatin/cinnamon essential oil pickering emulsion crosslinking composite films with enhanced mechanical and antibacterial performance. J. Food Eng. 2024, 371, 111992. [Google Scholar] [CrossRef]
- Masoumi, B.; Tabibiazar, M.; Fazelioskouei, T.; Mohammadifar, M.; Hamishehkar, H. Pickering emulsion stabilized by conjugated sodium caseinate-ascorbic acid nanoparticles: Synthesis and physicochemical characterization. Food Hydrocoll. 2023, 145, 109168. [Google Scholar] [CrossRef]
- Nourabi, A.; Tabibiazar, M.; Mashhadi, H.; Mahmoudzadeh, M. Characterization of pickering emulsion stabilized by colloidal sodium caseinate nanoparticles prepared using complexation and antisolvent method. LWT 2023, 180, 114686. [Google Scholar] [CrossRef]
- Fan, S.; Yang, Q.; Wang, D.; Zhu, C.; Wen, X.; Li, X.; Richel, A.; Fauconnier, M.-L.; Yang, W.; Hou, C.; et al. Zein and tannic acid hybrid particles improving physical stability, controlled release properties, and antimicrobial activity of cinnamon essential oil loaded Pickering emulsions. Food Chem. 2024, 446, 138512. [Google Scholar] [CrossRef]
- Zhan, F.; Li, J.; Wang, Y.; Shi, M.; Li, B.; Sheng, F. Bulk, Foam, and Interfacial Properties of Tannic Acid/Sodium Caseinate Nanocomplexes. J. Agric. Food Chem. 2018, 66, 6832–6839. [Google Scholar] [CrossRef]
- Ran, R.; Zheng, T.; Tang, P.; Xiong, Y.; Yang, C.; Gu, M.; Li, G. Antioxidant and antimicrobial collagen films incorporating Pickering emulsions of cinnamon essential oil for pork preservation. Food Chem. 2023, 420, 136108. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Lin, W.; Wang, J.; Yan, H.; Sun, P. Citral and cinnamaldehyde—Pickering emulsion stabilized by zein coupled with chitosan against Aspergillus spp. and their application in food storage. Food Chem. 2023, 403, 134272. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, X.; Luo, X.; Wang, Y.; Li, Y.; Li, B.; Liu, S. Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan. Food Chem. 2020, 331, 127108. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, J.; Tian, R.; Kuang, Y.; Wu, K.; Xiao, M.; Liu, Y.; Qian, H.; Jiang, F. Properties of konjac glucomannan/curdlan-based emulsion films incorporating camellia oil and the preservation effect as coatings on ‘Kyoho’ grapes. Int. J. Biol. Macromol. 2024, 258, 128836. [Google Scholar] [CrossRef]
- Adame, M.Y.; Shi, C.; Li, C.; Aziz, T.; Alharbi, M.; Cui, H.; Lin, L. Fabrication and characterization of pullulan/tapioca starch-based antibacterial films incorporated with Litsea cubeba essential oil for meat preservation. Int. J. Biol. Macromol. 2024, 268, 131775. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Liang, S.; Li, Y. Enhanced antioxidant and antibacterial activities of chitosan/zein nanoparticle Pickering emulsion-incorporated chitosan coatings in the presence of cinnamaldehyde and tea polyphenol. Int. J. Biol. Macromol. 2024, 266, 131181. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Han, R.; Yu, D.; Wang, Z.; Zhuansun, X.; Li, Y. Characterization of thyme essential oil composite film based on soy protein isolate and its application in the preservation of cherry tomatoes. LWT 2024, 191, 115686. [Google Scholar] [CrossRef]
- Ding, R.; Dai, X.; Zhang, Z.; Bi, Y.; Prusky, D. Composite Coating of Oleaster Gum Containing Cuminal Keeps Postharvest Quality of Cherry Tomatoes by Reducing Respiration and Potentiating Antioxidant System. Foods 2024, 13, 1542. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Zhang, T.; Li, S.; Xiao, M.; Tian, Z.; Zhang, J.; Lu, T.; Yang, W. Innovative chitosan-onion polysaccharide composite films: A study on the preservation effects on cherry tomatoes. J. Food Sci. 2024, 89, 5712–5723. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Kleiber, T.; Kaczmarek, A. Effect of increasing manganese concentration in nutrient solution on the antioxidant activity, vitamin C, lycopene and polyphenol contents of tomato fruit. Food Addit. Contam. Part A 2017, 34, 379–389. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Jiang, L.; Yang, Z.; Fang, Y.; Zhang, W. Shear emulsification condition strategy impact high internal phase Pickering emulsions stabilized by coconut globulin-tannic acid: Structure of protein at the oil-water interface. LWT 2023, 187, 115283. [Google Scholar] [CrossRef]
- Ding, J.; Qiu, X.; Li, Y.; Wang, Y.; Mao, Y.; Yang, C.; Sun, Y. Preparation and characterization of protein-antioxidant complex pickering particles for high internal phase emulsions. Food Hydrocoll. 2024, 151, 109861. [Google Scholar] [CrossRef]
- Hasni, I.; Bourassa, P.; Hamdani, S.; Samson, G.; Carpentier, R.; Tajmir-Riahi, H.-A. Interaction of milk α- and β-caseins with tea polyphenols. Food Chem. 2011, 126, 630–639. [Google Scholar] [CrossRef]
- Jia, C.; Cao, D.; Ji, S.; Zhang, X.; Muhoza, B. Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocoll. 2020, 104, 105717. [Google Scholar] [CrossRef]
- Ran, R.; Zhang, X.; Guo, X.; Yang, C.; Zhang, F.; Li, G. An “intelligent-sensing and targeted release” antimicrobial pickering emulsion for banana preservation. Food Hydrocoll. 2024, 156, 110325. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, Y.; Jiang, H.; Chen, L.; Shen, C.; Zhang, W.; Cao, J.; Jiang, W. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chem. 2024, 435, 137534. [Google Scholar] [CrossRef] [PubMed]
- Bano, S.; Negi, Y.S. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr. Polym. 2017, 157, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Shu, Y.; Li, M.; Li, C.; Liang, T.; Zhang, Z. Characterisation of an edible active film prepared from bacterial nanocellulose/forsythia essential oil Pickering emulsions with funoran and its application in fresh meat. Int. J. Biol. Macromol. 2024, 280, 136141. [Google Scholar] [CrossRef] [PubMed]
- Moscoso-Moscoso, E.; Ligarda-Samanez, C.A.; Choque-Quispe, D.; Huamán-Carrión, M.L.; Arévalo-Quijano, J.C.; De la Cruz, G.; Luciano-Alipio, R.; Calsina Ponce, W.C.; Sucari-León, R.; Quispe-Quezada, U.R.; et al. Preliminary Assessment of Tara Gum as a Wall Material: Physicochemical, Structural, Thermal, and Rheological Analyses of Different Drying Methods. Polymers 2024, 16, 838. [Google Scholar] [CrossRef]
- Liu, F.; Chang, W.; Chen, M.; Xu, F.; Ma, J.; Zhong, F. Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocoll. 2020, 98, 105007. [Google Scholar] [CrossRef]
- Santos, M.B.; Geraldo de Carvalho, M.; Garcia-Rojas, E.E. Carboxymethyl tara gum-lactoferrin complex coacervates as carriers for vitamin D3: Encapsulation and controlled release. Food Hydrocoll. 2021, 112, 106347. [Google Scholar] [CrossRef]
- Bahraminejad, S.; Mousavi, M.; Askari, G.; Gharaghani, M.; Pourramzan, H. Octenylsuccinated alginate as a delivery agent for encapsulation of bergamot essential oil: Preparation, functional properties and release behavior. Int. J. Biol. Macromol. 2024, 282, 136616. [Google Scholar] [CrossRef]
- Cui, S.; Sun, M.-J.; Yang, J.-H.; Zhang, D.; Liu, K.; Tao, H.; Yan, Z.-H.; Kang, C.-Y.; Zhao, C.-Q. Nano-chitosan-nisin composite membrane: Physicochemical properties and its impact on sturgeon storage quality. LWT 2025, 215, 117267. [Google Scholar] [CrossRef]
- Ma, Q.; Du, L.; Yang, Y.; Wang, L. Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocoll. 2017, 63, 677–684. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Shen, R.; Yang, X. Characterizations of novel konjac glucomannan emulsion films incorporated with high internal phase Pickering emulsions. Food Hydrocoll. 2020, 109, 106088. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Li, Y.; Huang, X.; Li, Z.; Zhai, X.; Shi, J.; Zou, X.; Xiao, J.; Sun, Y.; et al. Sodium alginate/guar gum based nanocomposite film incorporating β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion for mushroom preservation. Food Chem. 2024, 437, 137891. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Leksawasdi, N.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Chaiyaso, T.; Ruksiriwanich, W.; Phongthai, S.; et al. Effect of Monochloroacetic Acid on Properties of Carboxymethyl Bacterial Cellulose Powder and Film from Nata de Coco. Polymers 2021, 13, 488. [Google Scholar] [CrossRef]
- Xu, F.; Yun, D.; Huang, X.; Sun, B.; Tang, C.; Liu, J. Preparation, Characterization, and Application of pH-Response Color-Changeable Films Based on Pullulan, Cooked Amaranth (Amaranthus tricolor L.) Juice, and Bergamot Essential Oil. Foods 2023, 12, 2779. [Google Scholar] [CrossRef] [PubMed]
- Nuerxiati, R.; Mutailipu, P.; Abuduwaili, A.; Dou, J.; Aisa, H.A.; Yili, A. Effects of different chemical modifications on the structure and biological activities of polysaccharides from Orchis chusua D. Don. J. Food Sci. 2021, 86, 2434–2444. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, T.; Li, S.; Jia, S.; Yang, X.; Cui, Y.; Ma, H.; Yan, S.; Zhang, S. Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life. Foods 2025, 14, 2729. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Y.; Xu, H.; Zhao, X.; Tan, Y.; Li, P.; Li, D.; Tao, Y.; Liu, D. Fruit softening correlates with enzymatic activities and compositional changes in fruit cell wall during growing in Lycium barbarum L. Int. J. Food Sci. Technol. 2021, 56, 3044–3054. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S.; Ma, Y. Construction of photocatalytic coating for alleviating the shriveling of postharvest fruit cucumber after simulated transportation. Food Chem. 2024, 439, 138130. [Google Scholar] [CrossRef]
- Xiang, F.; Xia, Y.; Wang, Y.; Wang, Y.; Wu, K.; Ni, X. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation. Food Packag. Shelf Life 2021, 29, 100701. [Google Scholar] [CrossRef]
- Liu, G.; Chen, B.; Liu, H.; Wang, X.; Zhang, Y.; Wang, C.; Liu, C.; Zhong, Y.; Qiao, Y. Effects of Hydroxyethyl Cellulose and Sulfated Rice Bran Polysaccharide Coating on Quality Maintenance of Cherry Tomatoes during Cold Storage. Foods 2023, 12, 3156. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, J.; Tian, Y.; Guo, Y.; He, T.; Xie, Y.; Wu, K.; Zhu, F.; Jiang, F. Improved konjac glucomannan/curdlan-based emulsion coating by mung bean protein addition for cherry tomato preservation. Int. J. Biol. Macromol. 2025, 291, 139080. [Google Scholar] [CrossRef]
- Akhtar, H.M.S.; Shah, T.A.; Hamed, Y.S.; Abdin, M.; Ullah, S.; Shaukat, F.; Abdullah, Z.; Saeed, M.T. Application of chitosan-based chickpea (Cicer arietinum L.) hull polysaccharides edible coating on cherry tomatoes preservation. eFood 2023, 5, e125. [Google Scholar] [CrossRef]
- Bai, H.; Yang, L.; Wu, L.; Xiao, D.; Dong, A. Enhanced food preservation platform integrating photodynamic and chemical antibacterial strategies via geraniol-loaded porphyrin-based MOFs for cherry tomato storage. Chem. Eng. J. 2024, 498, 155503. [Google Scholar] [CrossRef]
Nanoparticles | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
SC | 35.93 | 0.70 | 31.62 | 31.75 |
SC-TA | 38.96 | 2.60 | 28.72 | 29.72 |
Nanoparticles | Size (nm) | PDI | Zeta-Potential (mV) | Pikering Elusions | Size (μm) | PDI | Zeta-Potential (mV) |
---|---|---|---|---|---|---|---|
SC | 291.20 ± 3.73 a | 0.40 ± 0.07 a | −31.33 ± 0.84 b | SC-PE | 2.90 ± 0.28 b | 0.54 ± 0.05 a | −35.37 ± 3.17 a |
SC-TA | 290.83 ± 13.31 a | 0.67 ± 0.13 b | −33.03 ± 0.65 a | SC-TA-PE | 1.60 ± 0.16 a | 0.48 ± 0.01 a | −41.97 ± 0.25 b |
Film Type | Thickness (μm) | WVP (mg/Pa·h·m) | TS (MPa) | EAB (%) |
---|---|---|---|---|
TG | 51.00 ± 1.00 a | 1.39 ± 0.13 c | 4.81 ± 0.81 b | 19.22 ± 3.84 b |
CMTG | 71.00 ± 2.00 c | 1.09 ± 0.01 b | 11.39 ± 0.29 c | 40.89 ± 1.57 c |
TG + PE | 57.33 ± 0.58 b | 1.36 ± 0.13 c | 2.59 ± 0.28 a | 4.67 ± 0.91 a |
CMTG + PE | 80.00 ± 1.00 d | 0.87 ± 0.02 a | 13.27 ± 1.19 d | 37.68 ± 3.27 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Wang, H.; Yang, X.; Wang, L.; Li, T.; Guo, L.; Jia, S.; Yang, Y.; Yu, Y.; Zhang, S. Tannic Acid-Modified Sodium Caseinate Pickering Emulsion Coatings: Characterization, Enhanced Mechanical/Antibacterial Properties, and Application in Cherry Tomato Preservation. Foods 2025, 14, 3190. https://doi.org/10.3390/foods14183190
Feng Q, Wang H, Yang X, Wang L, Li T, Guo L, Jia S, Yang Y, Yu Y, Zhang S. Tannic Acid-Modified Sodium Caseinate Pickering Emulsion Coatings: Characterization, Enhanced Mechanical/Antibacterial Properties, and Application in Cherry Tomato Preservation. Foods. 2025; 14(18):3190. https://doi.org/10.3390/foods14183190
Chicago/Turabian StyleFeng, Qiyuan, Hesheng Wang, Xinyu Yang, Linna Wang, Tian Li, Limin Guo, Silong Jia, Yaqian Yang, Youwei Yu, and Shaoying Zhang. 2025. "Tannic Acid-Modified Sodium Caseinate Pickering Emulsion Coatings: Characterization, Enhanced Mechanical/Antibacterial Properties, and Application in Cherry Tomato Preservation" Foods 14, no. 18: 3190. https://doi.org/10.3390/foods14183190
APA StyleFeng, Q., Wang, H., Yang, X., Wang, L., Li, T., Guo, L., Jia, S., Yang, Y., Yu, Y., & Zhang, S. (2025). Tannic Acid-Modified Sodium Caseinate Pickering Emulsion Coatings: Characterization, Enhanced Mechanical/Antibacterial Properties, and Application in Cherry Tomato Preservation. Foods, 14(18), 3190. https://doi.org/10.3390/foods14183190