Effect of Different Freeze–Thaw Cycles and Fucoidan on Structural and Functional Properties of Lotus Seed Starch Gels: Insights from Structural Characterization and In Vitro Gastrointestinal Digestion
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Structural Characterization of the F-LS Gel Following Multiple FT Cycles
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. X-Ray Diffraction (XRD)
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.4. In Vitro Gastrointestinal Digestion
2.5. Statistical Analysis
3. Results and Discussion
3.1. Microstructural Changes (SEM) of F-LS Gels
3.2. Crystalline Structure (XRD) of F-LS Gels
3.3. Thermal Properties (TGA) of F-LS Gels
3.4. Water Distribution (LF-NMR) of F-LS Gels
3.5. In Vitro Digestibility of F-LS Gels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Himashree, P.; Sengar, A.S.; Sunil, C.K. Food thickening agents: Sources, chemistry, properties and applications—A review. Int. J. Gastron. Food Sci. 2022, 27, 100468. [Google Scholar] [CrossRef]
- Köprüalan Aydın, Ö.; Yüksel Sarıoğlu, H.; Dirim, S.N.; Kaymak-Ertekin, F. Recent advances for rapid freezing and thawing methods of foods. Food Eng. Rev. 2023, 15, 667–690. [Google Scholar] [CrossRef]
- Wang, L.; Xie, B.J.; Xiong, G.Q.; Wu, W.J.; Wang, J.; Qiao, Y.; Liao, L. The effect of freeze–thaw cycles on microstructure and physicochemical properties of four starch gels. Food Hydrocoll. 2013, 31, 61–67. [Google Scholar] [CrossRef]
- Zhao, R.J.; Yao, J.; Li, C.; Liu, Q.N.; Liu, W.; Zhang, L.; Zhang, Z.Z.; Zhao, R.X.; Hu, H.H. Multi-scale structural influence of starch on their interaction of caffeic acid and starch after freeze-thaw: Taking potato starch and lotus seed starch as examples. Int. J. Biol. Macromol. 2025, 284, 137997. [Google Scholar] [CrossRef]
- Anwar, M.; McConnell, M.; Bekhit Alaa, E. New freeze-thaw method for improved extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta): Optimization and comprehensive characterization of physico-chemical and structural properties. Food Chem. 2021, 349, 129210. [Google Scholar] [CrossRef]
- Zhang, X.S.; Yan, H.W.; Xu, C.Z.; Dong, X.; Wang, Y.; Fu, A.P.; Li, H.; Lee, J.Y.; Zhang, S.; Ni, J.H.; et al. Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization. Nat. Commun. 2023, 14, 5010. [Google Scholar] [CrossRef]
- Guo, B.Z.; Wang, Y.T.; Pang, M.; Wu, J.Y.; Hu, X.T.; Huang, Z.H.; Wang, H.Q.; Xu, S.Q.; Luo, S.J.; Liu, C.M. Annealing treatment of amylose and amylopectin extracted from rice starch. Int. J. Biol. Macromol. 2020, 164, 3496–3500. [Google Scholar] [CrossRef]
- Lu, X.; Su, H.; Zuo, J.X.; Zhong, M.F.; Luo, S.D.; Lu, L.Y.; Zeng, S.X.; Zheng, B.D. Characterization of prebiotic oligosaccharides–starch interactions and their effects on wheat starch properties under different freezing-thawing cycles. Int. J. Biol. Macromol. 2025, 311, 143945. [Google Scholar] [CrossRef] [PubMed]
- Chandak, A.; Dhull, S.B.; Chawla, P.; Alarfaj, A.A.; Alharbi, S.A.; Ansari, M.J.; Rose, P.K.; Goksen, G.; Kumar, R.; Muzaffar, N. Exploring the potential and properties of lotus (Nelumbo nucifera G.) starches in comparison with conventional starches for food and non-food applications. Starch-Starke 2025, 77, e202400067. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Zeng, S.X.; Huang, X.H.; Guo, Z.B.; Zheng, Y.F.; Tian, Y.T.; Zheng, B.D. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review. Phytochem. Rev. 2015, 14, 321–334. [Google Scholar] [CrossRef]
- Tu, D.K.; Ou, Y.J.; Zheng, Y.X.; Zhang, Y.; Zheng, B.D.; Zeng, H.L. Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. Int. J. Biol. Macromol. 2021, 177, 447–454. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, L.; Wu, P.H.; Wang, Y.B.; Zhang, G.Z.; Wang, X. Insights into the effects of fucoidan and caffeic acid on pasting, thermal, rheological, freeze-thaw and structural properties of cassava starch. Food Res. Int. 2025, 208, 116025. [Google Scholar] [CrossRef]
- George, A.; Shrivastav, P.S. Fucoidan, a brown seaweed polysaccharide in nanodrug delivery. Drug Deliv. Transl. Res. 2023, 13, 2427–2446. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.B.; Zeng, S.X.; Lu, X.; Zhou, M.L.; Zheng, M.J.; Zheng, B.D. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chem. 2015, 186, 223–230. [Google Scholar] [CrossRef]
- Xie, S.Z.; Mo, C.F.; Cao, W.X.; Xie, S.; Li, S.; Zhang, Z.L.; Li, X.H. Bacteria-propelled microtubular motors for efficient penetration and targeting delivery of thrombolytic agents. Acta Biomater. 2022, 142, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Su, J.H.; He, S.Q.; Lei, S.Z.; Huang, K.Q.; Li, C.N.; Zhang, Y.; Zeng, H. Interaction force between laminarin and different crystal starches describes the gelatinization properties. Food Hydrocoll. 2024, 147, 109380. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Q.; Bodjrenou, D.M.; Zhang, Y.; Wang, Y.; Zheng, B.; Zeng, H.L. Effects of Porphyra haitanensis polysaccharides on the short-term retrogradation and simulated digestion in vitro of three crystalline starches. Int. J. Biol. Macromol. 2025, 309, 142454. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Q.; Zhang, Y.X.; Wang, X.Y.; Zheng, B.D.; Guo, Z.B. Formation and structural dynamics of Lotus seed starch-linolenic acid complexes under high pressure microfluidization and their evolution during simulated gastrointestinal digestion. Food Chem. 2025, 484, 144400. [Google Scholar] [CrossRef]
- Zhang, C.B.; Wang, Y.L.; Yin, Z.C.; Yan, Y.J.; Wang, Z.Y.; Wang, H.Y. Quantitative characterization of the crosslinking degree of hydroxypropyl guar gum fracturing fluid by low-field NMR. Int. J. Biol. Macromol. 2024, 277, 134445. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Englyst, H.N.; Hudson, G.J. The classification and measurement of dietary carbohydrates. Food Chem. 1996, 57, 15–21. [Google Scholar] [CrossRef]
- Zheng, M.J.; Lei, S.Z.; Wu, H.Q.; Zheng, B.D.; Zhang, Y.; Zeng, H.L. Effect of chitosan on the digestibility and molecular structural properties of lotus seed starch. Food Chem. Toxicol. 2019, 133, 110731. [Google Scholar] [CrossRef]
- Lin, Q.; Liang, W.; Zhao, W.Q.; Niu, L.; Li, W.H. Rational design of a starch/whey protein isolate/caffeic acid ternary system to alleviate gel deterioration during freeze-thaw cycles. Carbohydr. Polym. 2025, 352, 123221. [Google Scholar] [CrossRef] [PubMed]
- Arocas, A.; Sanz, T.; Fiszman, S.M. Improving effect of xanthan and locust bean gums on the freeze-thaw stability of white sauces made with different native starches. Food Hydrocoll. 2009, 23, 2478–2484. [Google Scholar] [CrossRef]
- Charoenrein, S.; Tatirat, O.; Rengsutthi, K.; Thongngam, M. Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohydr. Polym. 2011, 83, 291–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, H.L.; Wang, Y.; Zeng, S.X.; Zheng, B.D. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food Chem. 2014, 155, 311–318. [Google Scholar] [CrossRef]
- Zheng, M.J.; Lin, Y.; Wu, H.Q.; Zeng, S.X.; Zheng, B.D.; Zhang, Y.; Zeng, H.L. Water migration depicts the effect of hydrocolloids on the structural and textural properties of lotus seed starch. Food Chem. 2020, 315, 126240. [Google Scholar] [CrossRef]
- Tao, H.; Huang, J.S.; Xie, Q.T.; Zou, Y.M.; Wang, H.L.; Wu, X.Y.; Xu, X.M. Effect of multiple freezing-thawing cycles on structural and functional properties of starch granules isolated from soft and hard wheat. Food Chem. 2018, 265, 18–22. [Google Scholar] [CrossRef]
- Montes, L.; Santamaria, M.; Garzon, R.; Rosell, C.M.; Moreira, R. Effect of the addition of different sodium alginates on viscoelastic, structural features and hydrolysis kinetics of corn starch gels. Food Biosci. 2022, 47, 101628. [Google Scholar] [CrossRef]
- Lu, W.C.; Chan, Y.J.; Liang, Z.C.; Li, Z.E.; Li, P.H. Mechanistic insights into the role of hydrocolloids in modulating the rheological properties and flow behavior of alkaline-treated cassava starch. Carbohydr. Polym. 2025, 366, 123781. [Google Scholar] [CrossRef]
- Wei, Z.X.; Ou, Y.J.; Wang, J.Y.; Zheng, B.D. Structure-digestibility relationships in the effect of fucoidan on A- and B-wheat starch. Int. J. Biol. Macromol. 2022, 215, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cai, X.L.; Liu, L.; Zhang, T.; Qin, L.K.; Jia, Y.L. Preparation and performance characterization of insoluble dietary fiber-alginate-pea protein ternary composite gels. Food Hydrocoll. 2025, 160, 110852. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.N.; Patil, M.P.; Cho, Y.J.; Kim, G.D.; Park, Y.B.; Woo, H.C.; Chun, B.S. Hydrothermal degradation of seaweed polysaccharide: Characterization and biological activities. Food Chem. 2018, 268, 179–187. [Google Scholar] [CrossRef]
- Zheng, F.Y.; Ren, F.Y.; Zhu, X.C.; Han, Z.W.; Jia, Y.Q.; Liu, X.Y.; Chen, B.Y.; Liu, H.Z. The interaction between starch and phenolic acids: Effects on starch physicochemical properties, digestibility and phenolic acids stability. Food Funct. 2025, 16, 4202–4225. [Google Scholar] [CrossRef]
- Meng, N.; Kang, Z.Y.; Jiang, P.; Liu, Y.X.; Liu, M.; Li, Q.Y. Effects of fucoidan and ferulic acid on potato starch: Pasting, rheological and retrogradation properties and their interactions. Food Hydrocoll. 2024, 150, 109635. [Google Scholar] [CrossRef]
- Zhuang, W.J.; Zheng, S.Y.; Chen, F.; Gao, S.J.; Zhong, M.F.; Zheng, B.D. Effects of Tremella fuciformis mushroom polysaccharides on structure, pasting, and thermal properties of Chinese Chestnuts (Castanea henryi) starch granules under different freeze–thaw cycles. Foods 2023, 12, 4118. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Li, M.; Gu, C.Q.; Lu, A.N.; Dong, L.J.; Zhang, X.L.; Hu, X.F.; Liu, Y.; Lu, J. Effect of fucoidan on structure and bioactivity of Chinese steamed dread. Foods 2024, 13, 1057. [Google Scholar] [CrossRef]
- Yang, X.; Guo, J.Y.; Niu, M.L.; Lu, C.; Wang, P.; Luo, D.L. Mitigating effect of fucoidan versus sodium alginate on quality degradation of frozen dough and final steamed bread. Food Chem. X 2024, 23, 101608. [Google Scholar] [CrossRef]
- Yu, W.X.; Yu, Y.D.; Li, J.; Liang, H.S.; Li, Y.; Li, B. Effects of deacetylated konjac glucomannan on the retrogradation properties of pea, mung bean and potato starches during the storage. Int. J. Biol. Macromol. 2025, 304, 140922. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.J.; Gu, Z.B.; Cheng, L.; Li, Z.F.; Li, C.M.; Hong, Y. Effect of hydrocolloids on starch digestion: A review. Food Chem. 2024, 444, 138636. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.H.; Donner, E.; Liu, Q. Effect of roasted pea flour/starch and encapsulated pea starch incorporation on the in vitro starch digestibility of pea breads. Food Chem. 2018, 245, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Huang, R.W.; Xu, X.Q.; Chang, Y.G.; Xue, C.H. The characterization of fucoidan-sodium caseinate electrostatic complexes with application for pH-triggered release: Microstructure and digestive behavior. Food Res. Int. 2025, 207, 116076. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Wang, H.; Ou, Y.; Zheng, B.; Zhang, Y. Effect of Different Freeze–Thaw Cycles and Fucoidan on Structural and Functional Properties of Lotus Seed Starch Gels: Insights from Structural Characterization and In Vitro Gastrointestinal Digestion. Foods 2025, 14, 3177. https://doi.org/10.3390/foods14183177
Wu H, Wang H, Ou Y, Zheng B, Zhang Y. Effect of Different Freeze–Thaw Cycles and Fucoidan on Structural and Functional Properties of Lotus Seed Starch Gels: Insights from Structural Characterization and In Vitro Gastrointestinal Digestion. Foods. 2025; 14(18):3177. https://doi.org/10.3390/foods14183177
Chicago/Turabian StyleWu, Hongqiang, Haoyu Wang, Yujia Ou, Baodong Zheng, and Yi Zhang. 2025. "Effect of Different Freeze–Thaw Cycles and Fucoidan on Structural and Functional Properties of Lotus Seed Starch Gels: Insights from Structural Characterization and In Vitro Gastrointestinal Digestion" Foods 14, no. 18: 3177. https://doi.org/10.3390/foods14183177
APA StyleWu, H., Wang, H., Ou, Y., Zheng, B., & Zhang, Y. (2025). Effect of Different Freeze–Thaw Cycles and Fucoidan on Structural and Functional Properties of Lotus Seed Starch Gels: Insights from Structural Characterization and In Vitro Gastrointestinal Digestion. Foods, 14(18), 3177. https://doi.org/10.3390/foods14183177