Storage Stability of Brettanomyces bruxellensis-Spoiled Pinot Noir After UV-C Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Wine
2.3. Inoculation of Wine with Brettanomyces bruxellensis
2.4. Experimental Setup
2.5. UV-C System and Dose
2.6. Determination of Cell Counts of Brettanomyces bruxellensis
2.7. Photometric Measurement of Wine
2.8. GC-MS with SIDA Analysis of Volatile Compounds
2.9. HPLC Analysis of Phenols
2.10. Statistical Data Analysis
3. Results
3.1. Microbiological Stability of Pinot Noir During 12-Week Storage
3.2. Volatile Compounds
3.3. Phenolic Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charters, S. Wine and Society, 1st ed.; Routledge: London, UK, 2006. [Google Scholar] [CrossRef]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Principles and Practices of Winemaking; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Conterno, L.; Fondazione, E.; Henick-Kling, T. 12—Brettanomyces/Dekkera off-flavours and other wine faults associated with microbial spoilage. In Managing Wine Quality; Reynolds, A.G., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 346–387. [Google Scholar] [CrossRef]
- Mitina, I.; Grajdieru, C.; Sturza, R.; Mitin, V.; Rubtov, S.; Balanuta, A.; Behta, E.; Inci, F.; Hacıosmanoğlu, N.; Zgardan, D. The Brettanomyces bruxellensis Contamination of Wines: A Case Study of Moldovan Micro-Winery. Beverages 2025, 11, 3. [Google Scholar] [CrossRef]
- Romano, A.; Perello, M.C.; Revel, G.d.; Lonvaud-Funel, A. Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine. J. Appl. Microbiol. 2008, 104, 1577–1585. [Google Scholar] [CrossRef]
- Milheiro, J.; Filipe-Ribeiro, L.; Vilela, A.; Cosme, F.; Nunes, F.M. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches. Crit. Rev. Food Sci. Nutr. 2019, 59, 1367–1391. [Google Scholar] [CrossRef]
- Suárez, R.; Suárez-Lepe, J.A.; Morata, A.; Calderón, F. The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. Food Chem. 2007, 102, 10–21. [Google Scholar] [CrossRef]
- Sturm, M.E.; Assof, M.; Fanzone, M.; Martinez, C.; Ganga, M.A.; Jofré, V.; Ramirez, M.L.; Combina, M. Relation between coumarate decarboxylase and vinylphenol reductase activity with regard to the production of volatile phenols by native Dekkera bruxellensis strains under ‘wine-like’ conditions. Int. J. Food Microbiol. 2015, 206, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Kheir, J.; Salameh, D.; Strehaiano, P.; Brandam, C.; Lteif, R. Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts. Eur. Food Res. Technol. 2013, 237, 655–671. [Google Scholar] [CrossRef]
- Petrozziello, M.; Asproudi, A.; Guaita, M.; Borsa, D.; Motta, S.; Panero, L.; Bosso, A. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Food Chem. 2014, 149, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Agnolucci, M.; Tirelli, A.; Cocolin, L.; Toffanin, A. Brettanomyces bruxellensis yeasts: Impact on wine and winemaking. World J. Microbiol. Biotechnol. 2017, 33, 180. [Google Scholar] [CrossRef]
- Fleet, G.H. Wine Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative methods to SO2 for microbiological stabilization of wine. Compr. Rev. Food Sci. Food Saf. 2019, 18, 455–479. [Google Scholar] [CrossRef]
- Van Genuchten, E. A Guide to A Healthier Planet; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.; Fowler, P.J.; Fernandez, M.J.F.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; Husøy, T.; et al. Follow-up of the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228). EFSA J. 2022, 20, e07594. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Zamora, A.; Guamis, B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. Food Eng. Rev. 2015, 7, 130–142. [Google Scholar] [CrossRef]
- Patrignani, F.; Lanciotti, R. Applications of high and ultra high pressure homogenization for food safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef]
- Comuzzo, P.; Calligaris, S. Potential Applications of High Pressure Homogenization in Winemaking: A Review. Beverages 2019, 5, 56. [Google Scholar] [CrossRef]
- Morata, A.; Guamis, B. Use of UHPH to obtain juices with better nutritional quality and healthier wines with low levels of SO2. Front. Nutr. 2020, 7, 598286. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Light Treatments for Food Preservation. A Review. Food Bioprocess Technol. 2010, 3, 13–23. [Google Scholar] [CrossRef]
- Santamera, A.; Escott, C.; Loira, I.; del Fresno, J.M.; González, C.; Morata, A. Pulsed Light: Challenges of a Non-Thermal Sanitation Technology in the Winemaking Industry. Beverages 2020, 6, 45. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Gavahian, M.; Franco, D.; Zhang, W.; Mousavi Khaneghah, A.; Guerrero-Sánchez, Y.; Lorenzo, J.M. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends Food Sci. Technol. 2021, 115, 1–11. [Google Scholar] [CrossRef]
- Gallo, A.; Roman, T.; Paolini, M.; Tonidandel, L.; Leonardelli, A.; Celotti, E.; Nardin, T.; Natolino, A.; Cappello, N.; Larcher, R. Influence of flash heating and aspergillopepsin I supplementation on must and wine attributes of aromatic varieties. Food Res. Int. 2024, 186, 114332. [Google Scholar] [CrossRef]
- Rosária, M.; Oliveira, M.; Correia, A.C.; Jordão, A.M. Impact of Cross-Flow and Membrane Plate Filtrations under Winery-Scale Conditions on Phenolic Composition, Chromatic Characteristics and Sensory Profile of Different Red Wines. Processes 2022, 10, 284. [Google Scholar] [CrossRef]
- Koutchma, T.; Forney, L.J.; Moraru, C.I. Ultraviolet Light in Food Technology: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for AIR and SURFACE Disinfection; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Food and Drug Administration, HHS. Irradiation in the production, processing, and handling of food. Final Rule. Fed. Regist. 2012, 77, 34212–34215. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off. J. Eur. Union 2017, L351, 72–201. [Google Scholar]
- Keyser, M.; Műller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Pala, Ç.U.; Toklucu, A.K. Effects of UV-C Light Processing on Some Quality Characteristics of Grape Juices. Food Bioprocess Technol. 2013, 6, 719–725. [Google Scholar] [CrossRef]
- Fredericks, I.N.; du Toit, M.; Krügel, M. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 2011, 28, 510–517. [Google Scholar] [CrossRef]
- Junqua, R.; Vinsonneau, E.; Ghidossi, R. Microbial stabilization of grape musts and wines using coiled UV-C reactor. OENO One 2020, 54. [Google Scholar] [CrossRef]
- Abdul Karim Shah, N.N.; Shamsudin, R.; Abdul Rahman, R.; Adzahan, N.M. Fruit Juice Production Using Ultraviolet Pasteurization: A Review. Beverages 2016, 2, 22. [Google Scholar] [CrossRef]
- Müller, A.; Stahl, M.R.; Graef, V.; Franz, C.M.A.P.; Huch, M. UV-C treatment of juices to inactivate microorganisms using Dean vortex technology. J. Food Eng. 2011, 107, 268–275. [Google Scholar] [CrossRef]
- Diesler, K.; Golombek, P.; Kromm, L.; Scharfenberger-Schmeer, M.; Durner, D.; Schmarr, H.-G.; Stahl, M.R.; Briviba, K.; Fischer, U. UV-C treatment of grape must: Microbial inactivation, toxicological considerations and influence on chemical and sensory properties of white wine. Innov. Food Sci. Emerg. Technol. 2019, 52, 291–304. [Google Scholar] [CrossRef]
- Ünlütürk, S.; Atilgan, M.R. Microbial safety and shelf life of UV-C treated freshly squeezed white grape juice. J. Food Sci. 2015, 80, M1831–M1841. [Google Scholar] [CrossRef]
- Atilgan, M.R.; Yildiz, S.; Kaya, Z.; Unluturk, S. 2.16—Kinetic and Process Modeling of UV-C Irradiation of Foods. In Innovative Food Processing Technologies; Knoerzer, K., Muthukumarappan, K., Eds.; Elsevier: Oxford, UK, 2021; pp. 227–255. [Google Scholar] [CrossRef]
- Cvetkova, S.; Hirt, B.; Stahl, M.; Scharfenberger-Schmeer, M.; Durner, D. UV-C treatment: A non-thermal inactivation method for microbiological stabilisation of must and wine. BIO Web Conf. 2023, 56, 02035. [Google Scholar] [CrossRef]
- Cvetkova, S.; Wacker, M.; Keiser, J.; Hirt, B.; Stahl, M.; Scharfenberger-Schmeer, M.; Durner, D. UV-C-induced changes in a white wine: Evaluating the protective power of hydrolysable tannins and SO2. OENO One 2024, 58. [Google Scholar] [CrossRef]
- Hirt, B.; Fiege, J.; Cvetkova, S.; Gräf, V.; Scharfenberger-Schmeer, M.; Durner, D.; Stahl, M. Comparison and prediction of UV-C inactivation kinetics of S. cerevisiae in model wine systems dependent on flow type and absorbance. LWT 2022, 169, 114062. [Google Scholar] [CrossRef]
- Cvetkova, S.; Herrmann, E.; Keiser, J.; Woll, B.; Stahl, M.; Scharfenberger-Schmeer, M.; Richling, E.; Durner, D. Comparing the effect of UV treatment at wavelengths 254 nm and 280 nm: Inactivation of Brettanomyces bruxellensis and impact on chemical and sensory properties of white wine. Food Control 2025, 174, 111250. [Google Scholar] [CrossRef]
- Rahn, R.O. Potassium Iodide as a Chemical Actinometer for 254 nm Radiation: Use of lodate as an Electron Scavenger. Photochem. Photobiol. 1997, 66, 450–455. [Google Scholar] [CrossRef]
- Schober, D.; Wacker, M.; Schmarr, H.-G.; Fischer, U. Understanding the Contribution of Co-Fermenting Non-Saccharomyces and Saccharomyces Yeasts to Aroma Precursor Degradation and Formation of Sensory Profiles in Wine Using a Model System. Fermentation 2023, 9, 931. [Google Scholar] [CrossRef]
- Magni, P.; Porzano, T. Concurrent solvent recondensation large sample volume splitless injection. J. Sep. Sci. 2003, 26, 1491–1498. [Google Scholar] [CrossRef]
- Golombek, P.; Wacker, M.; Buck, N.; Durner, D. Impact of UV-C treatment and thermal pasteurization of grape must on sensory characteristics and volatiles of must and resulting wines. Food Chem. 2021, 338, 128003. [Google Scholar] [CrossRef]
- Kaya, Z.; Yıldız, S.; Ünlütürk, S. Effect of UV-C irradiation and heat treatment on the shelf life stability of a lemon–melon juice blend: Multivariate statistical approach. Innov. Food Sci. Emerg. Technol. 2015, 29, 230–239. [Google Scholar] [CrossRef]
- Tran, M.T.T.; Farid, M. Ultraviolet treatment of orange juice. Innov. Food Sci. Emerg. Technol. 2004, 5, 495–502. [Google Scholar] [CrossRef]
- Heijnen, J.J. Stoichiometry and kinetics of microbial growth from a thermodynamic perspective. In Basic Biotechnology, 3rd ed.; Ratledge, C., Kristiansen, B., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 55–72. [Google Scholar] [CrossRef]
- Boidron, J.N.; Chatonnet, P.; Pons, M. Influence du bois sur certaines substances odorantes des vins. OENO One 1988, 22, 275–294. [Google Scholar] [CrossRef]
- Holser, R.A. Near-Infrared analysis of peanut seed skins for catechins. Am. J. Anal. Chem. 2014, 5, 378–383. [Google Scholar] [CrossRef]
- Chatonnet, P.; Barbe, C.; Canal-Llauberes, R.-M.; Dubourdieu, D.; Boidron, J.-N.; Pons, M. Incidences de certaines préparations pectolytiques sur la teneur en phénols volatils des vins blancs. OENO One 1992, 26, 253–269. [Google Scholar] [CrossRef]
- Godoy, L.; García, V.; Peña, R.; Martínez, C.; Ganga, M.A. Identification of the Dekkera bruxellensis phenolic acid decarboxylase (PAD) gene responsible for wine spoilage. Food Control 2014, 45, 81–86. [Google Scholar] [CrossRef]
- González, C.; Godoy, L.; Ganga, M.A. Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480. Antonie Van Leeuwenhoek 2017, 110, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, P.; Dubourdie, D.; Boidron, J.; Pons, M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992, 60, 165–178. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Moreno-Arribas, M.V.; Polo, M.C. Wine Chemistry and Biochemistry; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Cheng, L.; Bai, H.; Zhang, M.; Yang, F.; Ren, D.; Du, Y. Inhibitory effect and molecular mechanism on polyphenol oxidase by ultraviolet-C and L-cysteine treatment. Curr. Res. Food Sci. 2025, 10, 101062. [Google Scholar] [CrossRef]
- Müller, A.; Noack, L.; Greiner, R.; Stahl, M.R.; Posten, C. Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juices. Innov. Food Sci. Emerg. Technol. 2014, 26, 498–504. [Google Scholar] [CrossRef]
- dos Santos Júnior, J.R.; dos Santos, I.D.; Klein, B.; Wagner, R.; de Castilhos, M.B.M.; Del Bianchi, V.L. Comprehensive study of the volatile profile of Niágara Rosada (Vitis labrusca) wines produced from Brettanomyces anomalus using GC–FID–MS: A chemical and sensory approach. Eur. Food Res. Technol. 2023, 249, 2977–2988. [Google Scholar] [CrossRef]
- Conterno, L.; Aprea, E.; Franceschi, P.; Viola, R.; Vrhovsek, U. Overview of Dekkera bruxellensis behaviour in an ethanol-rich environment using untargeted and targeted metabolomic approaches. Food Res. Int. 2013, 51, 670–678. [Google Scholar] [CrossRef]
- Schopp, L.M.; Lee, J.; Osborne, J.P.; Chescheir, S.C.; Edwards, C.G. Metabolism of Nonesterified and Esterified Hydroxycinnamic Acids in Red Wines by Brettanomyces bruxellensis. J. Agric. Food Chem. 2013, 61, 11610–11617. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Nikolantonaki, M. Quinone Reactions in Wine Oxidation. In Advances in Wine Research; American Chemical Society: Washington, DC, USA, 2015; Volume 1203, pp. 291–301. [Google Scholar]
- Makris, D.P.; Psarra, E.; Kallithraka, S.; Kefalas, P. The effect of polyphenolic composition as related to antioxidant capacity in white wines. Food Res. Int. 2003, 36, 805–814. [Google Scholar] [CrossRef]
Week | Control [CFU/mL] | UV-C-Treated [CFU/mL] | UV-C Untreated [CFU/mL] |
---|---|---|---|
0 | ˂LOQ | ˂LOQ | 3.6 × 105 ± 4.0 × 104 d |
2 | ˂LOQ | ˂LOQ | 3.7 × 105 ± 4.0 × 104 d |
4 | ˂LOQ | ˂LOQ | 9.0 × 105 ± 3.0 × 104 c |
6 | ˂LOQ | ˂LOQ | 9.3 × 105 ± 5.0 × 104 c |
8 | ˂LOQ | ˂LOQ | 1.4 × 106 ± 4.0 × 104 a |
10 | ˂LOQ | ˂LOQ | 1.2 × 106 ± 8.0 × 104 b |
12 | ˂LOQ | ˂LOQ | 9.4 × 105 ± 7.0 × 104 c |
p-value | n.d. | n.d. | ˂0.0001 |
Ethyl Acetate [mg/L] | Ethyl Butanoate [µg/L] | 3-Methylbutyl Acetate [µg/L] | Ethyl Hexanoate [µg/L] | Ethyl Octanoate [µg/L] | Ethyl Decanoate [µg/L] | |
---|---|---|---|---|---|---|
Control | 35 ± 4 a | 151 ± 17 a | 54 ± 8 a | 155 ± 20 a | 117 ± 18 a | <LOD |
UV-C-treated | 33 ± 3 a | 142 ± 16 a | 58 ± 4 a | 154 ± 16 a | 118 ± 19 a | <LOD |
UV-C-untreated | 57 ± 7 b | 213 ± 23 b | 594 ± 57 b | 231 ± 38 b | 242 ± 39 b | 36 ± 10 |
p-value | ˂0.0001 | 0.0002 | ˂0.0001 | 0.0002 | ˂0.0001 | n.d. |
Catechin [mg/L] | Gallic Acid [mg/L] | Caftaric Acid [mg/L] | p-Coumaric Acid [mg/L] | Ferulic Acid [mg/L] | |
---|---|---|---|---|---|
Control | 20 ± 3 a | 16 ± 2 a | 50 ± 1 a | 1.3 ± 0.1 a | ˂LOQ |
UV-C-treated | 19 ± 2 a | 15 ± 1 a | 44 ± 2 b | 1.0 ± 0.1 b | ˂LOQ |
UV-C-untreated | 19 ± 1 a | 17 ± 1 a | 52 ± 2 a | 0.8 ± 0.1 c | ˂LOQ |
p-value | 0.813 | 0.296 | 0.003 | 0.0025 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvetkova, S.; Herrmann, E.; Woll, B.; Stahl, M.R.; Durner, D.; Scharfenberger-Schmeer, M. Storage Stability of Brettanomyces bruxellensis-Spoiled Pinot Noir After UV-C Treatment. Foods 2025, 14, 3164. https://doi.org/10.3390/foods14183164
Cvetkova S, Herrmann E, Woll B, Stahl MR, Durner D, Scharfenberger-Schmeer M. Storage Stability of Brettanomyces bruxellensis-Spoiled Pinot Noir After UV-C Treatment. Foods. 2025; 14(18):3164. https://doi.org/10.3390/foods14183164
Chicago/Turabian StyleCvetkova, Svetlana, Elke Herrmann, Benedikt Woll, Mario R. Stahl, Dominik Durner, and Maren Scharfenberger-Schmeer. 2025. "Storage Stability of Brettanomyces bruxellensis-Spoiled Pinot Noir After UV-C Treatment" Foods 14, no. 18: 3164. https://doi.org/10.3390/foods14183164
APA StyleCvetkova, S., Herrmann, E., Woll, B., Stahl, M. R., Durner, D., & Scharfenberger-Schmeer, M. (2025). Storage Stability of Brettanomyces bruxellensis-Spoiled Pinot Noir After UV-C Treatment. Foods, 14(18), 3164. https://doi.org/10.3390/foods14183164