Ultrasound-Assisted Extraction of Inorganic Elements and Antioxidants from Gingerbread Cookies Using Natural Deep Eutectic Solvents
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Gingerbread Materials
2.3. Preparation of Deep Eutectic Solvents
2.4. Preparation of Gingerbread Samples
2.4.1. Ultrasound-Assisted Extraction of Elements and Antioxidants Using Deep Eutectic Solvents
2.4.2. Ultrasound-Assisted Extraction of Antioxidants Using Conventional Solvents
2.4.3. Microwave-Assisted Acid Digestion
2.5. Analytical Methods
2.5.1. Fourier Transformed Infrared (FTIR) Spectroscopy
2.5.2. UV-Vis Spectrophotometry
2.5.3. Inductively Coupled Plasma Mass Spectrometry
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Synthesized Deep Eutectic Solvents
3.2. Elemental Compositions of Uniced and Iced Gingerbread Cookies
3.3. Antioxidant Capacity of Uniced and Iced Gingerbread Cookies
3.4. Greenness Assessment of the Used Analytical Procedures
3.5. Chemometric Analysis
3.5.1. Correlation Analysis Between Elemental Analysis and Antioxidant Capacity
3.5.2. Hierarchical Cluster Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IndexBox Platform. Gingerbread Production in the European Union. Available online: https://app.indexbox.io/report/190520/155/ (accessed on 28 May 2025).
- Filipčev, B.; Bodroža-Solarov, M.; Šimurina, O.; Cvetković, B. Use of Sugar Beet Molasses in Processing of Gingerbread Type Biscuits: Effect on Quality Characteristics, Nutritional Profile, and Bioavailability of Calcium and Iron. Acta Aliment. 2012, 41, 494–505. [Google Scholar] [CrossRef]
- Tugush, A.R.; Sadygova, M.K.; Anikienko, T.I.; Belova, M.V.; Kondrashova, A.V.; Ivanova, Z.I. Choux Gingerbread Production Technology Based on Light Rye Flour. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 022071. [Google Scholar] [CrossRef]
- Tulbure, A. Improving The Quality Of The Product “Gingerbread”, A Study on the Influence of Rye Flour on The Product’s Physicochemical Properties. Sci. Pap. Ser. Manag. Econom. Eng. Agric. Rural Dev. 2021, 21, 599–604. [Google Scholar]
- Tulbure, A.; Danciu, C.-A. Quality Improvement for the Product Gingerbread, Corelations Between the Product’s Physical and Chemical Properties and the Rheological Characteristics of Doughs. Sci. Pap. Ser. Manag. Econom. Eng. Agric. Rural Dev. 2022, 22, 761–765. [Google Scholar]
- Pejic, L.D.; Milincic, D.D.; Rabrenovic, B.B.; Lalicic-Petronijevic, J.G.; Stanojevic, S.P.; Kostic, A.Z.; Savic, S.K.; Pešic, M.B.; Demin, M.A. Characterization of Gingerbread Cookies Enriched with Quinoa and Defatted Apple Seed Flour: Nutritional, Antioxidant and Sensory Properties. J. Food Meas. Charact. 2024, 18, 8782–8793. [Google Scholar] [CrossRef]
- Tsykhanovska, I.; Yevlash, V.; Tovma, L.; Adamczyk, G.; Alexandrov, A.; Lazarieva, T.; Blahyi, O. Flour from Sunflower Seed Kernels in the Production of Flour Confectionery. In Bioconversion of Wastes to Value-Added Products; CRC Press: Boca Raton, FL, USA, 2023; pp. 129–167. [Google Scholar] [CrossRef]
- Alves, V.M.; Asquieri, E.R.; Damiani, C. Technological Applicability of Mama-Cadela (Brosimium gaudichaudii Trecúl) Seed Flour in Gingerbread. Rev. Ciênc. Agron. 2022, 53, e20207297. [Google Scholar] [CrossRef]
- Sturza, R.A.; Ghendov-Moşanu, A.A.; Deseatnicov, O.I.; Suhodol, N.F. Use of Sea Buckthorn Fruits in the Pastry Manufacturing. Sci. Study Res. Chem. C 2016, 1, 35–43. [Google Scholar]
- Przybylski, W.; Jaworska, D.; Sionek, B.; Sankowska, W.; Wójtowicz, M. Functional and Sensory Properties of Gingerbread Enriched with the Addition of Vegetables. Appl. Sci. 2022, 12, 9267. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics. Molecules 2020, 25, 5659. [Google Scholar] [CrossRef]
- Topka, P.; Poliński, S.; Sawicki, T.; Szydłowska-Czerniak, A.; Tańska, M. Effect of Enriching Gingerbread Cookies with Elder (Sambucus nigra L.) Products on Their Phenolic Composition, Antioxidant and Anti-Glycation Properties, and Sensory Acceptance. Int. J. Mol. Sci. 2023, 24, 1493. [Google Scholar] [CrossRef]
- Grevtseva, N.; Gorodyska, O.; Brykova, T.; Gubsky, S. The Use of Wine Waste as a Source of Biologically Active Substances in Confectionery Technologies. In Bioconversion of Wastes to Value-Added Products; CRC Press: Boca Raton, FL, USA, 2023; pp. 69–111. [Google Scholar] [CrossRef]
- Arnold, M.; Rajagukguk, Y.V.; Sidor, A.; Kulczyński, B.; Brzozowska, A.; Suliburska, J.; Wawrzyniak, N.; Gramza-Michałowska, A. Innovative Application of Chicken Eggshell Calcium to Improve the Functional Value of Gingerbread. Int. J. Environ. Res. Public Health 2022, 19, 4195. [Google Scholar] [CrossRef]
- Poliński, S.; Topka, P.; Tańska, M.; Kowalska, S.; Czaplicki, S.; Szydłowska-Czerniak, A. Effect of Grinding Process Parameters and Storage Time on Extraction of Antioxidants from Ginger and Nutmeg. Molecules 2022, 27, 7395. [Google Scholar] [CrossRef] [PubMed]
- Tymczewska, A.; Klebba, J.; Szydłowska-Czerniak, A. Antioxidant Capacity and Total Phenolic Content of Spice Extracts Obtained by Ultrasound-Assisted Extraction Using Deep Eutectic and Conventional Solvents. Appl. Sci. 2023, 13, 6987. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef]
- Hroboňová, K.; Májek, P.; Jablonský, M. Choline Chloride-L-Lactic Acid Mixtures as Solvents for Extraction of Coumarin from Cinnamon-Containing Foods. Microchem. J. 2024, 202, 110743. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Advances in Deep Eutectic Solvents as Extracting Media toward Heavy Metals from Natural, Processed and Commercialized Food Products. Food Chem. 2025, 486, 144599. [Google Scholar] [CrossRef]
- Luján, C.E.; Lemos, A.A.; Oviedo, M.N.; Llaver, M.; Wuilloud, R.G. Deep Eutectic Solvents as a Green Alternative for Trace Element Analysis in Food and Beverage Samples: Recent Advances and Challenges. Talanta 2024, 269, 125451. [Google Scholar] [CrossRef]
- Andruch, V.; Vojteková, V.; Kalyniukova, A.; Zengin, G.; Hagarová, I.; Yordanova, T. Application of Deep Eutectic Solvents for the Determination of Inorganic Analytes. Adv. Sample Prep. 2025, 13, 100158. [Google Scholar] [CrossRef]
- Yanova, M.A.; Sharopatova, A.V.; Roslyakov, Y.F.; Dzobelova, V.B. Application Efficiency of New Raw Materials in the Production of Flour Confectionery Products with Increased Nutritional Value. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 082091. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Kowaluk, A.; Strzelec, M.; Sawicki, T.; Tańska, M. Evaluation of Bioactive Compounds and Chemical Elements in Herbs: Effectiveness of Choline Chloride-Based Deep Eutectic Solvents in Ultrasound-Assisted Extraction. Molecules 2025, 30, 368. [Google Scholar] [CrossRef]
- Hamieau, M.; Loulergue, P.; Szydłowska-Czerniak, A. Green Solvent Extraction of Antioxidants from Herbs and Agro-Food Wastes: Optimization and Capacity Determination. Appl. Sci. 2024, 14, 2936. [Google Scholar] [CrossRef]
- Wojnowski, W. Analytical Greenness Calculator. Available online: https://mostwiedzy.pl/pl/wojciech-wojnowski,174235-1/AGREE? (accessed on 15 July 2025).
- Santana, A.P.R.; Andrade, D.F.; Mora-Vargas, J.A.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Natural Deep Eutectic Solvents for Sample Preparation Prior to Elemental Analysis by Plasma-Based Techniques. Talanta 2019, 199, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Santana, A.P.R.; Mora-Vargas, J.A.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Sustainable Synthesis of Natural Deep Eutectic Solvents (NADES) by Different Methods. J. Mol. Liq. 2019, 293, 111452. [Google Scholar] [CrossRef]
- Jurić, T.; Uka, D.; Holló, B.B.; Jović, B.; Kordić, B.; Popović, B.M. Comprehensive Physicochemical Evaluation of Choline Chloride-Based Natural Deep Eutectic Solvents. J. Mol. Liq. 2021, 343, 116968. [Google Scholar] [CrossRef]
- Vorobyova, V.; Skiba, M.; Vasyliev, G. Deep Eutectic Solvents: Quantum Chemical Investigation, Thermal Stability and Physicochemical Properties. Chem. Phys. 2024, 586, 112401. [Google Scholar] [CrossRef]
- Hazal, F.; Özbek, H.N.; Yılmaztekin, M.; Göğüş, F.; Koçak Yanık, D. A Sustainable Approach for Xylitol Production from Pistachio Shell Using Candida tropicalis. Biofuels Bioprod. Biorefining 2025, 19, 151–162. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Karimarji, S.; Khorsandi, A.; Azimi, G.; Mardani, Z. Investigation of Optical Properties of Choline Chloride-Lactic Acid Deep Eutectic Solvent under Continuous Wave Laser Irradiation Regime. Opt. Mater. 2024, 148, 114912. [Google Scholar] [CrossRef]
- Jangir, A.K.; Mandviwala, H.; Patel, P.; Sharma, S.; Kuperkar, K. Acumen into the Effect of Alcohols on Choline Chloride: L-Lactic Acid-Based Natural Deep Eutectic Solvent (NADES): A Spectral Investigation Unified with Theoretical and Thermophysical Characterization. J. Mol. Liq. 2020, 317, 113923. [Google Scholar] [CrossRef]
- Ninayan, R.; Levshakova, A.S.; Khairullina, E.M.; Vezo, O.S.; Tumkin, I.I.; Ostendorf, A.; Logunov, L.S.; Manshina, A.A.; Shishov, A.Y. Water-Induced Changes in Choline Chloride-Carboxylic Acid Deep Eutectic Solvents Properties. Colloids Surf. Physicochem. Eng. Asp. 2023, 679, 132543. [Google Scholar] [CrossRef]
- Kilcast, D.; Portmann, M.-O.; Byrne, B.E. Sweetness of Bulk Sweeteners in Aqueous Solution in the Presence of Salts. Food Chem. 2000, 70, 1–8. [Google Scholar] [CrossRef]
- Altunay, N.; Elik, A.; Bingöl, D. Simple and Green Heat-Induced Deep Eutectic Solvent Microextraction for Determination of Lead and Cadmium in Vegetable Samples by Flame Atomic Absorption Spectrometry: A Multivariate Study. Biol. Trace Elem. Res. 2020, 198, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Habibi, E.; Ghanemi, K.; Fallah-Mehrjardi, M.; Dadolahi-Sohrab, A. A novel digestion method based on a choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples. Anal. Chim. Acta 2013, 762, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Santana, A.P.R.; Andrade, D.F.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Synthesis of Natural Deep Eutectic Solvents Using a Mixture Design for Extraction of Animal and Plant Samples Prior to ICP-MS Analysis. Talanta 2020, 216, 120956. [Google Scholar] [CrossRef]
- Ivanišová, E.; Mošaťová, D.; Hlaváčová, Z.; Hlaváč, P.; Kunecová, D.; Gálik, B.; Čech, M.; Harangozo, Ľ.; Kubiak, P. Nutritional, Physical and Sensory Quality of Gingerbread Prepared Using Different Sweeteners. Agron. Res. 2023, 21, 1143–1153. [Google Scholar] [CrossRef]
- Muldabekova, B.; Zhazykbayeva, G.; Maliktayeva, P.; Izteliyeva, R.; Alashbayeva, L. Preparation and Examination of the Quality of Gingerbread Made with Composite Flour and Sugar Beet. Potravinarstvo Slovak J. Food Sci. 2023, 17, 514–528. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, Z.; Chen, Y.; Huan, W.; Shi, M.; Lei, L.; Yu, X.; Chen, L. Determination of Trace Heavy Metal Elements in Litterfall by Inductively Coupled Plasma Optical Emission Spectrometry after Extraction Using Choline Chloride-Based Deep Eutectic Solvents. RSC Adv. 2024, 14, 22497–22503. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Amiri, H.; Jazi, B. Dielectric Constants of Water, Methanol, Ethanol, Butanol and Acetone: Measurement and Computational Study. J. Solut. Chem. 2010, 39, 701–708. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Suthar, K.J. Advances in the Extraction of Polyphenols Using Natural Deep Eutectic Solvents: A Comprehensive Review. Chem. Pap. 2025, 79, 3563–3585. [Google Scholar] [CrossRef]
- Jiménez-Ortega, L.A.; Kumar-Patra, J.; Kerry, R.G.; Das, G.; Mota-Morales, J.D.; Heredia, J.B. Synergistic Antioxidant Activity in Deep Eutectic Solvents: Extracting and Enhancing Natural Products. ACS Food Sci. Technol. 2024, 4, 2776–2798. [Google Scholar] [CrossRef]
- Tzani, A.; Kalafateli, S.; Tatsis, G.; Bairaktari, M.; Kostopoulou, I.; Pontillo, A.R.N.; Detsi, A. Natural Deep Eutectic Solvents (NaDESs) as Alternative Green Extraction Media for Ginger (Zingiber officinale Roscoe). Sustain. Chem. 2021, 2, 576–598. [Google Scholar] [CrossRef]
- Sulejmanović, M.; Panić, M.; Redovniković, I.R.; Milić, N.; Drljača, J.; Damjanović, A.; Vidović, S. Sustainable Isolation of Ginger (Zingiber officinale) Herbal Dust Bioactive Compounds with Favorable Toxicological Profile Employing Natural Deep Eutectic Solvents (NADES). Food Chem. 2025, 464, 141545. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.; Li, Y.; Pan, Z.; Chen, Z.; Lu, J.; Yuan, J.; Zhu, Z.; Zhang, J. Ultrasonication-Assisted Synthesis of Alcohol-Based Deep Eutectic Solvents for Extraction of Active Compounds from Ginger. Ultrason. Sonochem. 2020, 63, 104915. [Google Scholar] [CrossRef]
- Brito, T.A.; Costa, F.S.; Oliveira, R.C.; Amaral, C.D.B.; Labuto, G.; Gonzalez, M.H. Green Extraction Using Natural Deep Eutectic Solvents for Determination of As, Cd, and Pb in Plant and Food Matrices by ICP-MS. Food Chem. 2025, 464, 141922. [Google Scholar] [CrossRef]
- Ioannou, G.D.; Ioannou, K.A.; Christou, A.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. The Utilization of an Aloe Vera Rind By-Product: Deep Eutectic Solvents as Eco-Friendly and Recyclable Extraction Media of Polyphenolic Compounds. Antioxidants 2024, 13, 162. [Google Scholar] [CrossRef]
Abbreviation | Hydrogen Bond Acceptor (HBA) | Hydrogen Bond Donor (HBD) | Molar Ratio (mol/mol) | ||
---|---|---|---|---|---|
Chemical Name | Structural Formula | Chemical Name | Structural Formula | ||
DES1-Xyl:MalA | Malic Acid | Xylitol | 1:1 | ||
DES2-ChCl:MalA | Choline Chloride | Malic Acid | 1:1 | ||
DES3-ChCl:LacA | Choline Chloride | Lactic Acid | 1:1 |
Element | Concentration * ± SD (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
DES1-Xyl:MalA | DES2-ChCl:MalA | DES3-ChCl:LacA | MW-AD | |||||
Uniced | Iced | Uniced | Iced | Uniced | Iced | Uniced | Iced | |
K | 95.0 ± 14.0 a | 532.0 ± 112.0 b | 128.3 ± 20.0 a | 476.2 ± 30.0 b | 2.6 ± 0.6 a | 2.9 ± 0.1 a | 1384.7 ± 135.0 d | 1194.4 ± 27.0 c |
Na | 51.1 ± 1.8 a | 509.8 ± 15.0 b | 57.7 ± 1.2 a | 627.8 ± 1.3 c | 51.0 ± 1.0 a | 69.7 ± 1.9 a | 590.5 ± 11.0 c | 1859.9 ± 53.0 d |
Mg | 40.1 ± 1.0 a | 80.2 ± 0.4 c,d | 46.3 ± 0.5 b | 101.0 ± 1.0 e | 77.7 ± 0.9 c | 81.4 ± 2.8 d | 330.3 ± 1.0 f | 302.4 ± 2.0 e |
Ca | 10.8 ± 5.0 a,b | 74.6 ± 18.0 c | 28.7 ± 2.0 b | 81.3 ± 1.0 c | 0.0 ± 0.0 a | 17.5 ± 2.4 a,b | 254.6 ± 10.0 d | 270.7 ± 16.0 d |
Mn | 0.29 ± 0.02 a | 1.47 ± 0.10 c | 0.64 ± 0.04 b | 2.07 ± 0.02 d | 0.26 ± 0.05 a | 0.54 ± 0.05 b | 7.19 ± 0.10 f | 6.53 ± 0.10 e |
Zn | 1.92 ± 0.30 b | 1.40 ± 0.20 a | 2.41 ± 0.08 c | 2.69 ± 0.13 c | 12.19 ± 0.04 f | 28.66 ± 0.19 g | 5.63 ± 0.20 e | 5.01 ± 0.10 d |
Fe | 1.07 ± 0.03 a | 2.52 ± 0.02 b | 2.96 ± 0.19 b | 5.34 ± 0.07 c | 8.84 ± 0.68 d | 9.86 ± 0.13 e | 12.32 ± 0.01 g | 11.55 ± 0.40 f |
Cu | 0.42 ± 0.04 a | 1.48 ± 0.03 f | 0.56 ± 0.01 b,c | 0.68 ± 0.02 d | 1.05 ± 0.05 e | 3.45 ± 0.08 g | 0.58 ± 0.01 c | 0.48 ± 0.01 a,b |
Cd | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Method | Antioxidant Capacity * ± SD (mmol TE/100 g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DES1-Xyl:MalA | DES2-ChCl:MalA | DES3-ChCl:LacA | 70% MeOH | 70% EtOH | ||||||
Uniced | Iced | Uniced | Iced | Uniced | Iced | Uniced | Iced | Uniced | Iced | |
ABTS | 0.59 ± 0.02 a | 1.22 ± 0.06 c | 1.05 ± 0.03 b,c | 3.28 ± 0.06 d | 1.20 ± 0.21 c | 0.84 ± 0.22 b | 4.81 ± 0.23 e | 5.52 ± 0.17 f | 5.41 ± 0.17 f | 5.36 ± 0.11 f |
DPPH | <LOD | <LOD | <LOD | <LOD | 0.71 ± 0.15 a | 0.75 ± 0.10 a | 1.87 ± 0.56 b | 1.77 ± 0.67 b | 2.09 ± 0.93 b | 1.78 ± 0.48 b |
CUPRAC | 0.04 ± 0.00 a | 0.71 ± 0.03 b | 0.06 ± 0.00 a | 1.17 ± 0.03 c | 1.54 ± 0.54 c,d | 1.12 ± 0.52 c | 1.73 ± 0.01 d,e | 1.79 ± 0.03 d,e | 2.13 ± 0.03 e | 2.06 ± 0.03 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowaluk, A.; Guédon, J.; Kryska, N.; Rabiej-Kozioł, D.; Strzelec, M.; Szydłowska-Czerniak, A. Ultrasound-Assisted Extraction of Inorganic Elements and Antioxidants from Gingerbread Cookies Using Natural Deep Eutectic Solvents. Foods 2025, 14, 3165. https://doi.org/10.3390/foods14183165
Kowaluk A, Guédon J, Kryska N, Rabiej-Kozioł D, Strzelec M, Szydłowska-Czerniak A. Ultrasound-Assisted Extraction of Inorganic Elements and Antioxidants from Gingerbread Cookies Using Natural Deep Eutectic Solvents. Foods. 2025; 14(18):3165. https://doi.org/10.3390/foods14183165
Chicago/Turabian StyleKowaluk, Agnieszka, Jean Guédon, Natalia Kryska, Dobrochna Rabiej-Kozioł, Michał Strzelec, and Aleksandra Szydłowska-Czerniak. 2025. "Ultrasound-Assisted Extraction of Inorganic Elements and Antioxidants from Gingerbread Cookies Using Natural Deep Eutectic Solvents" Foods 14, no. 18: 3165. https://doi.org/10.3390/foods14183165
APA StyleKowaluk, A., Guédon, J., Kryska, N., Rabiej-Kozioł, D., Strzelec, M., & Szydłowska-Czerniak, A. (2025). Ultrasound-Assisted Extraction of Inorganic Elements and Antioxidants from Gingerbread Cookies Using Natural Deep Eutectic Solvents. Foods, 14(18), 3165. https://doi.org/10.3390/foods14183165