Possibilities of Using the New Lactiplantibacillus plantarum EK11 Strain as a Starter Culture for the Fermentation of the Fruiting Bodies of Edible Mushrooms
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Fermented Mushrooms
2.3. Microbiological Analysis
2.4. Determination of pH
2.5. Basic Composition of Fresh and Fermented Mushrooms
2.6. Amino Acid Composition
2.7. Fatty Acid Composition
2.8. Determination of Biogenic Amines
2.9. Determination of Thiamine and Riboflavin
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Changes in pH During Mushroom Fermentation
3.2. Changes in Microbial Abundance During Fermentation
3.3. Proximate Composition
3.3.1. Protein
3.3.2. Fat
3.3.3. Digestible Carbohydrates
3.3.4. Total Fiber
3.3.5. Ash
3.3.6. Energy Value
3.4. Amino Acid Composition
3.5. Biogenic Amine Composition
3.6. Fatty Acid Composition
3.7. Thiamine and Riboflavin Content
3.8. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sławińska, A.; Michalak-Majewska, M.; Jabłońska-Ryś, E.; Skrzypczak, K.; Radzki, W.; Teterycz, D.; Gustaw, W. Grzyby Jadalne: Wartość Odżywcza, Produkcja, Przetwórstwo i Wykorzystanie; Towarzystwo Wydawnictw Naukowych Libropolis: Lublin, Poland, 2017. [Google Scholar]
- Diamantopoulou, P.; Philippoussis, A. Cultivated mushrooms: Preservation and processing. In Handbook of Vegetable Preservation and Processing, 2nd ed.; Hui, Y.H., Özgül Evranuz, E., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 495–525. [Google Scholar]
- Liu, Y.; Xie, X.X.; Ibrahim, S.A.; Khaskheli, S.G.; Yang, H.; Wang, Y.F.; Huang, W. Characterization of Lactobacillus pentosus as a starter culture for the fermentation of edible oyster mushrooms (Pleurotus spp.). LWT 2016, 68, 21–26. [Google Scholar] [CrossRef]
- Barros, L.; Baptista, P.; Correia, D.M.; Sá Morais, J.; Ferreira, I.C. Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J. Agric. Food Chem. 2007, 55, 4781–4788. [Google Scholar] [CrossRef]
- Dawadi, E.; Magar, P.B.; Bhandari, S.; Subedi, S.; Shrestha, S.; Shrestha, J. Nutritional and post-harvest quality preservation of mushrooms: A review. Heliyon 2022, 8, e12093. [Google Scholar] [CrossRef] [PubMed]
- Boylu, M.; Hitka, G.; Kenesei, G. Effect of alternative pre-treatments and fermentation on quality characteristics of oyster mushrooms. Prog. Agric. Eng. Sci. 2023, 19 (Suppl. S1), 35–45. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Sisubalan, N.; Kesika, P.; Sureka, I.; Chaiyasut, C. A concise review of the nutritional profiles, microbial dynamics, and health impacts of fermented mushrooms. J. Food Sci. 2024, 89, 3973–3994. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Ryś, E.; Siczek, P. Fermentacja mlekowa w przetwarzaniu i utrwalaniu warzyw, owoców i grzybów. Przem. Spoż. 2024, 78, 40–45. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Skrzypczak, K.; Sławińska, A.; Radzki, W.; Gustaw, W. Lactic acid fermentation of edible mushrooms: Tradition, technology, current state of research: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 655–669. [Google Scholar] [CrossRef]
- Bartkiene, E.; Zarovaite, P.; Starkute, V.; Mockus, E.; Zokaityte, E.; Zokaityte, G.; Rocha, J.M.; Ruibys, R.; Klupsaite, D. Changes in lacto-fermented Agaricus bisporus (white and brown varieties) mushroom characteristics, including biogenic amine and volatile compound formation. Foods 2023, 12, 2441. [Google Scholar] [CrossRef]
- Perveen, I.; Bukhari, B.; Sarwar, A.; Aziz, T.; Koser, N.; Younis, H.; Ahmad, Q.; Sabahat, S.; Tzora, A.; Skoufos, I. Applications and efficacy of traditional to emerging trends in lacto-fermentation and submerged cultivation of edible mushrooms. Biomass Convers. Biorefin. 2024, 14, 29283–29302. [Google Scholar] [CrossRef]
- Sharma, D.; Ramniwas, S.; Mugabi, R.; Uddin, J.; Nayik, G.A. Revolutionizing mushroom processing: Innovative techniques and technologies. Food Chem. 2024, 23, 101774. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Sławińska, A.; Radzki, W.; Gustaw, W. Evaluation of the potential use of probiotic strain Lactobacillus plantarum 299v in lactic fermentation of button mushroom fruiting bodies. Acta Sci. Pol. Technol. Aliment. 2016, 15, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Goral, K. Dynamics of changes in pH and the contents of free sugars, organic acids and LAB in button mushrooms during controlled lactic fermentation. Foods 2022, 11, 1553. [Google Scholar] [CrossRef]
- Frece, J.; Markov, K. Autochthonous starter cultures. In Fermented Meat Products: Health Aspects; Zdolec, N., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 270–293. [Google Scholar]
- Skrzypczak, K.; Gustaw, K.; Jabłońska-Ryś, E.; Sławińska, A.; Gustaw, W.; Winiarczyk, S. Spontaneously fermented fruiting bodies of Agaricus bisporus as a valuable source of new isolates of lactic acid bacteria with functional potential. Foods 2020, 9, 1631. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Kowalczyk, D.; Stadnik, J. Content of biogenic amines and physical properties of lacto-fermented button mushrooms. Appl. Sci. 2022, 12, 8957. [Google Scholar] [CrossRef]
- Skrzypczak, K.; Gustaw, K.; Schwonke, D.; Pałys, I.; Gordat, K.; Michalak-Majewska, M.; Gustaw, W. Possibility of reinforcement the functional potential of vegetable juices with the use of novel strain Lactiplantibacillus plantarum EK11 isolated from an unconventional fermented food matrix. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 123–134. [Google Scholar] [CrossRef]
- Jabłonska-Ryś, E.; Sławińska, A.; Szwajgier, D. Effect of lactic acid fermentation on antioxidant properties and phenolic acid contents of oyster (Pleurotus ostreatus) and chanterelle (Cantharellus cibarius) mushrooms. Food Sci. Biotechnol. 2016, 25, 439–444. [Google Scholar] [CrossRef]
- PN ISO 15214:2002; Food and Feed Microbiology—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Plate Method at 30 Degrees C. Polski Komitet Normalizacyjny: Warszawa, Poland, 2002.
- Grdeń, A.S.; Sołowiej, B.G. Macronutrients, amino and fatty acid composition, elements, and toxins in high-protein powders of crickets, Arthrospira, single cell protein, potato, and rice as potential ingredients in fermented food products. Appl. Sci. 2022, 12, 12831. [Google Scholar] [CrossRef]
- Kalač, P. A Review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- European Commission (EC). Consolidated Text: Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 (Text with EEA Relevance). OJ 2011, L 304, 18. [Google Scholar]
- Rabie, M.A.; Siliha, H.; el-Saidy, S.; el-Badawy, A.A.; Malcata, F.X. Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chem. 2011, 129, 1778–1782. [Google Scholar] [CrossRef]
- EN 14152:2014; Foodstuffs—Determination of Vitamin B2 by High-Performance Liquid Chromatography. European Committee for Standardization: Brussels, Belgium, 2014.
- Steinkraus, K.H. Fermentations in world food processing. Compr. Rev. Food Sci. Food Saf. 2002, 1, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.G.; Chen, J.C.; Ahmad, I. Preservation of King Oyster Mushroom by the use of different fermentation processes. J. Food Process. Preserv. 2018, 42, e13396. [Google Scholar] [CrossRef]
- Siwulski, M.; Sobieralski, K.; Sas-Golak, I. Wartość odżywcza i prozdrowotna grzybów. Żywność Nauka Technol. Jakość 2014, 21, 16–28. [Google Scholar] [CrossRef]
- Emkani, M.; Oliete, B.; Saurel, R. Effect of lactic acid fermentation on legume protein properties, A review. Fermentation 2022, 8, 244. [Google Scholar] [CrossRef]
- Ogidi, C.O.; Agbaje, R.B. Evaluation of nutrient contents, antioxidant and antimicrobial activities of two edible mushrooms fermented with Lactobacillus fermentum. Curr. Appl. Sci. Technol. 2021, 21, 255–270. [Google Scholar]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef]
- Guillamón, E.; García-Lafuente, A.; Lozano, M.; Rostagno, M.A.; Villares, A.; Martínez, J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef]
- Li, B.; Kimatu, B.M.; Pei, F.; Chen, S.; Feng, X.; Hu, Q.; Zhao, L. Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching. Int. J. Food Prop. 2017, 20, S2532–S2542. [Google Scholar] [CrossRef]
- Kumari, K. Mushrooms as source of dietary fiber and its medicinal value: A review article. J. Pharmacogn. Phytochem. 2020, 9, 2075–2078. [Google Scholar]
- Cerletti, C.; Esposito, S.; Iacoviello, L. Edible mushrooms and beta-glucans: Impact on human health. Nutrients 2021, 13, 2195. [Google Scholar] [CrossRef] [PubMed]
- Timm, T.G.; Costa, T.M.; Alberton, M.D.; Helm, C.V.; Tavares, L.B.B. Mushroom β-glucans: Application and innovation for food industry and immunotherapy. Appl. Microbiol. Biotechnol. 2023, 107, 5035–5049. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Iqbal, A.; Islam, M.N. Preservation of carrot, green chilli and brinjal by fermentation and pickling. Int. Food Res. J. 2014, 21, 2405–2412. [Google Scholar]
- Chakriya, N.; Erlinda, I.D.; Francisco, B.E.; Thavrak, H.; Kimheang, P. Physicochemical properties, proximate composition and microbial load of fresh and fermented young muskmelon (Cucumis Melo Linn). Adv. Food Technol. Public Health 2022, 112. [Google Scholar] [CrossRef]
- Bello, B.K.; Akinyele, B.J. Effect of fermentation on the microbiology and mineral composition of an edible mushroom Termitomyces robustus (Fries). Int. J. Biol. Chem. 2007, 1, 237–243. [Google Scholar] [CrossRef]
- Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963. [Google Scholar] [CrossRef]
- Ayimbila, F.; Keawsompong, S. Nutritional quality and biological application of mushroom protein as a novel protein alternative. Curr. Nutr. Rep. 2023, 12, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, R. A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. J. Future Foods 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Timm, T.G.; Arantes, M.S.T.; de Oliveira, E.H.S.; Tavares, L.B.B.; Mathias, Á.L.; da Silva, V.R.; Helm, C.V. Substrate effects on the growth, yield, and nutritional composition of edible mushrooms. Adv. Appl. Microbiol. 2025, 130, 159–190. [Google Scholar] [CrossRef]
- Bach, F.; Helm, C.V.; Bellettini, M.B.; Maciel, G.M.; Haminiuk, C.W.I. Edible mushrooms: A potential source of essential amino acids, glucans and minerals. Int. J. Food Sci. Technol. 2017, 52, 2382–2392. [Google Scholar] [CrossRef]
- Akindahunsi, A.A.; Oyetayo, F.L. Nutrient and antinutrient distribution of edible mushroom, Pleurotus tuber-regium (fries) singer. LWT 2006, 39, 548–553. [Google Scholar] [CrossRef]
- Sun, L.B.; Zhang, Z.Y.; Xin, G.; Sun, B.X.; Bao, X.J.; Wei, Y.Y.; Zhao, X.; Xu, H.R. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci. Technol. 2020, 96, 176–187. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, H.; Wu, W.; Chen, H.; Fang, X.; Han, Y.; Mu, H. Effects of fermentation with different microbial species on the umami taste of Shiitake mushroom (Lentinus edodes). LWT 2021, 141, 110889. [Google Scholar] [CrossRef]
- Jaworska, G.; Bernaś, E. Amino acid content of frozen Agaricus bisporus and Boletus edulis mushrooms: Effects of pretreatments. Int. J. Food Prop. 2013, 16, 139–153. [Google Scholar] [CrossRef]
- Jaworska, G.; Bernaś, E.; Biernacka, A. Effect of pretreatments and storage on the amino acid content of canned mushrooms. J. Food Process. Preserv. 2012, 36, 242–251. [Google Scholar] [CrossRef]
- Bernaś, E.; Jaworska, G. Effect of preservation method on amino acid content in selected species of edible mushroom. LWT 2012, 48, 242–247. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.J.; Park, S.K. Amino acids analysis during lactic acid fermentation by single strain cultures of lactobacilli and mixed culture starter made from them. Afr. J. Biotechnol. 2014, 13, 2867–2873. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Sławińska, A.; Stachniuk, A.; Stadnik, J. Determination of biogenic amines in processed and unprocessed mushrooms from the Polish market. J. Food Compos. Anal. 2020, 92, 103492. [Google Scholar] [CrossRef]
- Dadáková, E.; Pelikánová, T.; Kalač, P. Content of biogenic amines and polyamines in some species of European wild-growing edible mushrooms. Eur. Food Res. Technol. 2009, 230, 163–171. [Google Scholar] [CrossRef]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in health and disease. Science 2018, 359, eaan2788. [Google Scholar] [CrossRef]
- Madeo, F.; Hofer, S.J.; Pendl, T.; Bauer, M.A.; Eisenberg, T.; Carmona-Gutierrez, D.; Kroemer, G. Nutritional aspects of spermidine. Ann. Rev. Nutr. 2020, 40, 135–159. [Google Scholar] [CrossRef]
- Kalač, P. Health effects and occurrence of dietary polyamines: A review for the period 2005–mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef]
- Meng, D.M.; Wang, H.D.; Zhang, Y.X.; Xi, Z.A.; Yang, R.; Sheng, J.P.; Zhang, X.H.; Ding, Y.; Wang, J.P.; Fan, Z.C. Ornithine decarboxylase is involved in methyl jasmonate-regulated postharvest quality retention in button mushrooms (Agaricus bisporus). J. Sci. Food Agric. 2019, 99, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Reis, G.C.; Custódio, F.B.; Botelho, B.G.; Guidi, L.R.; Gloria, M.B.A. Investigation of biologically active amines in some selected edible mushrooms. J. Food Compos. Anal. 2020, 86, 103375. [Google Scholar] [CrossRef]
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous food fermentations and potential risks for human health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- Turna, N.S.; Chung, R.; McIntyre, L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C. Effects of heat treatment and storage temperature on the biogenic amine content of straw mushroom (Volvariella volvacea). J. Sci. Food Agric. 1992, 58, 59–61. [Google Scholar] [CrossRef]
- Bartkiene, E.; Zokaityte, E.; Starkute, V.; Mockus, E.; Klupsaite, D.; Lukseviciute, J.; Bogomolova, A.; Streimikyte, A.; Ozogul, F. Biopreservation of wild edible mushrooms (Boletus edulis, Cantharellus, and Rozites caperata) with lactic acid bacteria possessing antimicrobial properties. Foods 2022, 11, 1800. [Google Scholar] [CrossRef]
- Stojković, D.; Reis, F.S.; Glamočlija, J.; Ćirić, A.; Barros, L.; Van Griensven, L.J.; Ferreira, I.C.F.R.; Soković, M. Cultivated strains of Agaricus bisporus and A. brasiliensis: Chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product–natural preservatives in yoghurt. Food Funct. 2014, 5, 1602–1612. [Google Scholar] [CrossRef]
- Das, A.K.; Asif, M.; Hasan, G.A. A comparative study of fatty acid compositions of three cultivated edible mushroom species of Bangladesh. J. Agric. Food Res. 2023, 12, 100620. [Google Scholar] [CrossRef]
- Badawy, S.; Liu, Y.; Guo, M.; Liu, Z.; Xie, C.; Marawan, M.A.; Ares, I.; Lopez-Torres, B.; Martinez, M.; Maximiliano, J.-E.; et al. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res. Int. 2023, 172, 113158. [Google Scholar] [CrossRef]
- Lesa, K.N.; Khandaker, M.U.; Faraque, M.R.I.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional value, medicinal importance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Muszyńska, B.; Kała, K.; Rojowski, J.; Grzywacz-Kisielewska, A.; Opoka, W. Composition and biological properties of Agaricus bisporus fruiting bodies—A review. Pol. J. Food Nutr. Sci. 2017, 67, 173–181. [Google Scholar] [CrossRef]
- Mattila, P.; Könkö, K.; Eurola, M.; Pihlava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. [Google Scholar] [CrossRef] [PubMed]
- Furlani, R.P.Z.; Godoy, H.T. Vitamins B1 and B2 contents in cultivated mushrooms. Food Chem. 2008, 106, 816–819. [Google Scholar] [CrossRef]
- Venugopal, K.; Bernaś, E. Effect of blanching methods and probiotic bacteria on the bioactive compounds and physicochemical parameters of fermented brown Agaricus bisporus and Imleria badia mushrooms. Acta Univ. Cinbinesis Ser. E Food Technol. 2024, 28, 115–128. [Google Scholar] [CrossRef]
- Venugopal, K.; Satora, P.; Bernaś, E. Evaluation of sensory and functional compounds in fermented Lactarius deliciosus mushrooms. J. Food Process. Preserv. 2024, 2024, 2577580. [Google Scholar] [CrossRef]
- Jaworska, G.; Biernacka, A.; Wybraniec, S.; Bernas, E. Comparing the vitamin B1 and B2 content levels in frozen and sterilized canned foodstuffs of Pleurotus ostreatus, Boletus edulis, and Agaricus bisporus. Żywność Nauka Technol. Jakość 2007, 14, 177–185. [Google Scholar]
Proximate | AbF | AbLF | PoF | PoLF | LeF | LeLF |
---|---|---|---|---|---|---|
Protein | 35.8 c ± 0.8 | 35.1 c ± 0.2 | 29.5 b ± 0.5 | 25.5 a ± 0.5 | 37.5 d ± 0.5 | 26.0 a ± 0.5 |
Fat | 3.4 c ± 0.1 | 4.2 d ± 0.1 | 3.0 b ± 0.0 | 2.4 a ± 0.0 | 2.3 a ± 0.0 | 3.1 b ± 0.0 |
Digestible carbohydrates | 17.2 c ± 1.2 | 2.3 a ± 1.1 | 8.5 b ± 1.5 | 1.9 a ± 0.6 | 10.6 b ± 2.7 | 1.2 a ± 0.4 |
Total fiber | 33.3 a ± 0.3 | 35.8 a ± 1.3 | 49.9 c ± 2.1 | 47.9 c ± 1.0 | 42.2 b ± 2.1 | 46.3 c ± 0.2 |
Ash | 10.4 c ± 0.1 | 22.7 e ± 0.0 | 9.1 b ± 0.1 | 22.3 d ± 0.1 | 7.4 a ± 0.0 | 23.5 f ± 0.1 |
Energy value | 309.0 e ± 0.3 | 258.5 b ± 2.8 | 278.8 c ± 3.7 | 227.2 a ± 2.6 | 297.8 d ± 4.2 | 229.1 a ± 0.4 |
Amino Acids | AbF | AbLF | PoF | PoLF | LeF | LeLF |
---|---|---|---|---|---|---|
Aspartic acid | 37.57 e ± 0.59 | 25.57 c ± 0.22 | 15.52 a ± 0.10 | 17.41 b ± 0.20 | 27.00 d ± 0.32 | 16.36 a ± 0.16 |
Threonine * | 13.32 e ± 0.38 | 10.91 c ± 0.10 | 5.98 a ± 0.03 | 7.29 b ± 0.02 | 12.15 d ± 0.05 | 7.61 bb ± 0.13 |
Serine | 12.72 e ± 0.22 | 9.17 c ± 0.11 | 5.65 a ± 0.05 | 6.95 b ± 0.04 | 11.18 d ± 0.16 | 7.20 b ± 0.08 |
Glutamic acid | 47.78 d ± 0.81 | 32.73 c ± 0.22 | 18.52 a ± 0.06 | 18.96 a ± 0.06 | 56.28 e ± 0.43 | 29.91 b ± 0.39 |
Proline | 14.01 e ± 0.54 | 10.53 d ± 0.16 | 5.16 a ± 0.03 | 6.39 b ± 0.05 | 8.74 c ± 0.05 | 6.41 b ± 0.18 |
Glycine | 10.82 f ± 0.19 | 9.21 d ± 0.09 | 5.41 a ± 0.01 | 6.38 b ± 0.02 | 9.51 e ± 0.09 | 6.65 c ± 0.05 |
Alanine | 19.00 e ± 0.27 | 13.86 d ± 0.16 | 7.19 a ± 0.02 | 8.48 b ± 0.08 | 12.27 c ± 0.16 | 8.15 b ± 0.11 |
Cysteic acid | 5.43 c ± 0.03 | 5.21 b ± 0.15 | 6.61 d ± 0.03 | 3.47 a ± 0.03 | 7.70 e ± 0.03 | 5.19 b ± 0.06 |
Valine * | 12.51 e ± 0.32 | 10.44 c ± 0.11 | 5.62 a ± 0.13 | 7.07 b ± 0.03 | 10.89 d ± 0.13 | 7.35 b ± 0.11 |
Methionine sulfone * | 7.31 e ± 0.13 | 5.78 c ± 0.12 | 7.89 f ± 0.15 | 5.25 b ± 0.05 | 7.29 d ± 0.16 | 4.51 a ± 0.06 |
Isoleucine * | 16.79 e ± 0.32 | 13.80 d ± 0.22 | 6.04 a ± 0.03 | 8.74 b ± 0.24 | 13.67 d ± 0.06 | 10.74 c ± 0.41 |
Leucine * | 18.37 e ± 0.38 | 16.91 d ± 0.10 | 8.39 a ± 0.44 | 11.05 b ± 0.06 | 14.64 c ± 0.17 | 11.61 b ± 0.16 |
Tyrosine | 9.24 e ± 0.13 | 6.81 d ± 0.07 | 3.57 a ± 0.06 | 4.25 b ± 0.05 | 5.38 c ± 0.13 | 4.01 b ± 0.05 |
Phenylalanine * | 14.01 d ± 0.32 | 11.95 c ± 0.17 | 9.10 b ± 0.06 | 7.84 a ± 0.01 | 11.99 c ± 0.22 | 8.23 a ± 0.09 |
Histidine * | 7.25 d ± 0.14 | 6.10 c ± 0.11 | 3.31 a ± 0.02 | 3.87 b ± 0.03 | 5.96 c ± 0.04 | 4.05 b ± 0.05 |
Lysine * | 15.46 e ± 0.27 | 13.26 d ± 0.11 | 6.79 a ± 0.01 | 8.72 b ± 0.07 | 13.50 d ± 0.22 | 9.28 c ± 0.15 |
Arginine | 11.12 d ± 0.22 | 10.81 d ± 0.11 | 6.41 a ± 0.05 | 8.40 c ± 0.06 | 12.52 e ± 0.11 | 7.73 b ± 0.04 |
Tryptophan * | 6.13 f ± 0.04 | 2.57 d ± 0.08 | 1.44 a ± 0.03 | 1.61 b ± 0.10 | 4.05 e ± 0.06 | 1.86 c ± 0.02 |
Σ AA | 278.86 f ± 4.99 | 215.62 d ± 2.16 | 128.61 a ± 0.49 | 142.13 b ± 0.16 | 244.73 e ± 2.16 | 156.83 c ± 2.13 |
Σ EAA | 111.15 e ± 2.03 | 91.72 d ± 0.90 | 54.57 a ± 0.43 | 61.43 b ± 0.37 | 94.14 d ± 0.85 | 65.23 c ± 1.10 |
Biogenic Amines | AbF | AbLF | PoF | PoLF | LeF | LeLF |
---|---|---|---|---|---|---|
Cadaverine | ND | ND | ND | ND | ND | ND |
Putrescine | ND | ND | ND | ND | ND | ND |
Tyramine | ND | ND | ND | ND | ND | ND |
Histamine | ND | ND | ND | ND | ND | ND |
Spermine | ND | ND | ND | ND | ND | ND |
Spermidine | 2.56 c ± 0.42 | 1.68 b ± 0.02 | 0.69 a ± 0.00 | 0.60 a ± 0.01 | 1.53 b ± 0.02 | 0.87 a ± 0.01 |
Agmatine | ND | ND | ND | ND | ND | ND |
Fatty Acids | AbF | AbLF | PoF | PoLF | LeF | LeLF |
---|---|---|---|---|---|---|
C6:0 | 0.28 b ± 0.03 | 0.38 c ± 0.05 | 0.56 d ±0.04 | 0.07 a ± 0.00 | 0.80 e ± 0.03 | 0.34b c ± 0.02 |
C8:0 | 0.21 b ± 0.03 | 0.63 d ± 0.04 | 0.36 c ± 0.01 | 0.03 a ± 0.01 | 1.99 e ± 0.04 | 0.58 d ± 0.02 |
C10:0 | 0.31 b ± 0.04 | 1.71 d ± 0.06 | 0.88 c ± 0.02 | 0.02 a ± 0.00 | 7.40 f ± 0.10 | 1.95 e ± 0.02 |
C12:0 | 0.25 b ± 0.02 | 0.74 d ± 0.01 | 0.49 c ± 0.04 | 0.04 a ± 0.00 | 3.32 f ± 0.02 | 1.01 e ± 0.00 |
C14:0 | 0.90 b ± 0.00 | 1.82 d ± 0.01 | 1.48 c ± 0.10 | 0.34 a ± 0.01 | 6.89 f ± 0.01 | 2.74 e ± 0.03 |
C15:0 | 0.46 a ± 0.01 | 0.52 b ± 0.00 | 0.69 c ± 0.01 | 1.13 e ± 0.01 | 1.03 d ± 0.00 | 1.03 d ± 0.00 |
C16:0 | 16.65 c ± 0.31 | 15.17 b ± 0.09 | 20.31 e ± 0.19 | 14.50 a ± 0.10 | 23.65 f ± 0.03 | 18.48 d ± 0.09 |
C16:1n7 | 0.67 c ± 0.02 | 0.39 a ± 0.02 | 1.85 e ± 0.07 | 0.80 d ± 0.01 | 0.51 b ± 0.03 | 0.50 b ± 0.00 |
C17:0 | 0.40 c ± 0.05 | 0.35 c ± 0.00 | 0.18 b ± 0.00 | 0.10 a ± 0.00 | 0.41 c ± 0.02 | 0.22 b ± 0.02 |
C18:0 | 5.33 b ± 0.15 | 5.35 b ± 0.14 | 6.11 d ± 0.04 | 2.03 a ± 0.01 | 12.79 e ± 0.01 | 5.84 c ± 0.01 |
C18:1n9c + C18:1n9t | 7.61 b ± 0.07 | 3.55 a ± 0.01 | 30.79 e ± 0.05 | 20.97 d ± 0.11 | 11.26 c ± 0.09 | 7.45 b ± 0.03 |
C18:2n6c + C18:2n6t | 63.07 d ± 0.39 | 65.10 e ± 0.22 | 32.50 b ± 0.30 | 54.21 c ± 0.02 | 26.33 a ± 0.20 | 53.98 c ± 0.01 |
C18:3n6 (γ) | ND | ND | ND | ND | 0.13 a ± 0.01 | 0.29 b ± 0.00 |
C18:3n3 (α) | ND | ND | 0.04 a ± 0.01 | 0.09 b ± 0.00 | 0.04 a ± 0.01 | 0.08 b ± 0.00 |
C20:0 | 1.66 b ± 0.06 | 1.78 c ± 0.04 | ND | 0.24 a ± 0.01 | 0.32 a ± 0.02 | 0.25 a ± 0.02 |
C20:1n9 | ND | ND | ND | 0.14 b ± 0.00 | 0.21 c ± 0.02 | 0.10 a ± 0.00 |
C20:3n6 | 0.12 a ± 0.04 | 0.09 a ± 0.00 | ND | ND | ND | ND |
C20:5n3 | 1.13 d ± 0.05 | 1.00 c ± 0.05 | 0.27 ab ± 0.01 | 0.29 b ± 0.01 | 0.21 ab ± 0.01 | 0.19 a ± 0.01 |
C22:0 | ND | ND | ND | 0.14 b ± 0.01 | ND | 0.07 a ± 0.01 |
C22:1n9 | 0.50 bc ± 0.02 | 0.31 ab ± 0.12 | 0.38 ab ± 0.06 | 0.25 ab ± 0.08 | 0.74 c ± 0.11 | 0.22 a ± 0.13 |
C22:2n6 | ND | ND | ND | 0.07 a ± 0.01 | ND | 0.07 a ± 0.00 |
C23:0 | 0.45 a ± 0.02 | 1.12 b ± 0.02 | 2.55 d ± 0.30 | 3.56 e ± 0.14 | 1.97 c ± 0.28 | 4.61 f ± 0.18 |
C22:6n3 | ND | ND | 0.56 a ± 0.14 | 0.97 b ± 0.00 | ND | ND |
SFA | 26.90 b ± 0.45 | 29.56 c ± 0.15 | 33.61 d ± 0.08 | 22.20 a ± 0.03 | 60.56 f ± 0.45 | 37.11 e ± 0.17 |
MUFA | 8.78 c ± 0.03 | 4.25 a ± 0.13 | 33.02 f ± 0.16 | 22.16 e ± 0.04 | 12.72 d ± 0.25 | 8.27 b ± 0.16 |
PUFA | 64.32 e ± 0.48 | 66.19 f ± 0.27 | 33.37 b ± 0.15 | 55.63 d ± 0.01 | 26.71 a ± 0.21 | 54.62 c ± 0.01 |
Omega 3 | 1.13 c ± 0.05 | 1.00 bc ± 0.05 | 0.87 b ±0.15 | 1.35 d ± 0.00 | 0.25 a ± 0.00 | 0.27 a ± 0.01 |
Omega 6 | 63.19 d ± 0.43 | 65.19 e ± 0.22 | 32.50 b ± 0.30 | 54.28 c ± 0.01 | 26.46 a ± 0.20 | 54.34 c ± 0.00 |
Omega 9 | 8.11 b ± 0.05 | 3.85 a ± 0.11 | 31.17 e ± 0.10 | 21.36 d ± 0.03 | 12.21 c ± 0.21 | 7.77 b ± 0.16 |
Vitamine | AbF | AbLF | PoF | PoLF | LeF | LeLF |
---|---|---|---|---|---|---|
Thiamine | 0.44 d ± 0.02 | 0.08 b ± 0.00 | 0.10 b ± 0.01 | 0.02 a ± 0.00 | 0.30 c ± 0.02 | 0.29 c ± 0.01 |
Riboflavin | 4.52 f ± 0.02 | 2.11 e ± 0.02 | 1.39 c ± 0.04 | 0.28 a ± 0.01 | 1.90 d ± 0.02 | 0.52 b ± 0.01 |
Samples | Color | Aroma | Taste | Texture |
---|---|---|---|---|
AbLF | 7.57 a ± 1.04 | 7.17 ab ± 1.07 | 7.91 a ± 0.9 | 8.04 b ± 0.77 |
PoLF | 7.17 a ± 1.3 | 6.87 a ± 1.14 | 7.17 a ± 1.44 | 6.96 a ± 1.15 |
LeLF | 7.00 a ± 1.48 | 7.78 b ± 1.28 | 7.61 a ± 1.23 | 6.83 a ± 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabłońska-Ryś, E.; Przygoński, K. Possibilities of Using the New Lactiplantibacillus plantarum EK11 Strain as a Starter Culture for the Fermentation of the Fruiting Bodies of Edible Mushrooms. Foods 2025, 14, 2833. https://doi.org/10.3390/foods14162833
Jabłońska-Ryś E, Przygoński K. Possibilities of Using the New Lactiplantibacillus plantarum EK11 Strain as a Starter Culture for the Fermentation of the Fruiting Bodies of Edible Mushrooms. Foods. 2025; 14(16):2833. https://doi.org/10.3390/foods14162833
Chicago/Turabian StyleJabłońska-Ryś, Ewa, and Krzysztof Przygoński. 2025. "Possibilities of Using the New Lactiplantibacillus plantarum EK11 Strain as a Starter Culture for the Fermentation of the Fruiting Bodies of Edible Mushrooms" Foods 14, no. 16: 2833. https://doi.org/10.3390/foods14162833
APA StyleJabłońska-Ryś, E., & Przygoński, K. (2025). Possibilities of Using the New Lactiplantibacillus plantarum EK11 Strain as a Starter Culture for the Fermentation of the Fruiting Bodies of Edible Mushrooms. Foods, 14(16), 2833. https://doi.org/10.3390/foods14162833