Insights into the Flavor Profiles and Key Aroma-Active Compounds of Sichuan Xiaoqu Qingxiangxing Baijiu Across Distilling Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Alcohol Content Measurement
2.3. E-Nose Analysis
2.4. E-Tongue Analysis
2.5. Extraction of VFCs by HS-SPME
2.6. VFC Detection in Raw Baijiu
2.7. Identification of Differential VFCs
2.8. Relative Odor Activity Value (ROAV) Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Alcohol Content Analysis
3.2. E-Nose Results Analysis
3.3. E-Tongue Results Analysis
3.4. VFC Analysis
3.4.1. Alcohols
3.4.2. Esters
3.4.3. Acids
3.4.4. Aldehydes
3.4.5. Phenolic Compounds
3.4.6. Ketones
3.5. Potential Differential Marker of VFCs
3.6. Analysis of ROAV Value
3.7. Correlation Between E-Nose, E-Tongue, Alcohol Content, and HS-SPME-GC×GC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, L.; Xu, P.; Chen, J.; Chen, H.; Qin, J.; Wu, X.; Liu, C.; He, Z.; Liu, Y.; Guan, T. Comprehensive analysis of spatial heterogeneity reveals the important role of the upper-layer fermented grains in the fermentation and flavor formation of Qingxiangxing baijiu. Food Chem. X 2024, 22, 101508. [Google Scholar] [CrossRef]
- He, F.; Yang, S.; Zhang, G.; Xu, L.; Li, H.; Sun, J.; Huang, M.; Zheng, F.; Sun, B. Exploration of key aroma active compounds in strong flavor Baijiu during the distillation by modern instrument detection technology combined with multivariate statistical analysis methods. J. Food Compos. Anal. 2022, 110, 104577. [Google Scholar] [CrossRef]
- He, F.; Duan, J.; Zhao, J.; Li, H.; Sun, J.; Huang, M.; Sun, B. Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-mass spectrometry combined with chemometric strategies. Food Chem. 2021, 365, 130430. [Google Scholar] [CrossRef]
- Ding, X.; Wu, C.; Huang, J.; Zhou, R. Changes in volatile compounds of Chinese Luzhou-flavor liquor during the fermentation and distillation process. J. Food Sci. 2015, 80, C2373–C2381. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liang, R.; Huang, J.; Zhou, R.; Chen, Z.; Wu, C.; Zhou, R.; Liao, X. Volatile compounds of raw spirits from different distilling stages of Luzhou-flavor spirit. Food Sci. Technol. Res. 2014, 20, 283–293. [Google Scholar] [CrossRef]
- Zheng, J.; Liang, R.; Wu, C.; Zhou, R.; Liao, X. Discrimination of different kinds of Luzhou-flavor raw liquors based on their volatile features. Food Res. Int. 2014, 56, 77–84. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Liu, W.; Chen, Y.; Wang, Y. Change rules of alcohols and esters during distillation and storage of Qingxiang Baijiu. Liquor.-Mak. Sci. Technol. 2024, 4, 54–59. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wei, J.; Wang, Y.; Sun, H.; Zhu, T.; Bai, L. Change rule of skeleton components in the distillation process of Niulanshan Erguotou. Liquor.-Mak. Sci. Technol. 2021, 40, 155–161. (In Chinese) [Google Scholar]
- Liu, Y.; Wang, Q. Change rules of flavoring compositions and sensory differences in different distillate during the distillation of Fen-flavor liquor. Liquor. Mak. 2022, 49, 82–86. (In Chinese) [Google Scholar]
- Hu, J.; Yu, J.; Liu, Y.; Li, W.; Zhang, M.; Li, Y.; Chen, S.; Li, N.; Han, X. Correlation between sensory quality and flavor composition of Qingxiang Baijiu of different distillates. Liquor.-Mak. Sci. Technol. 2020, 5, 32–37. (In Chinese) [Google Scholar]
- Li, L.; Fan, M.; Xu, Y.; Zhang, L.; Qian, Y.; Tang, Y.; Li, J.; Zhao, J.; Yuan, S.; Liu, J. Comparative analysis of volatile flavor compounds in strongly flavored Baijiu under two different pit cap sealing processes. Foods 2023, 12, 2579. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, L.; Xiang, D.; Huang, H.; Han, Y.; Zhen, P.; Shi, B.; Chen, S.; Xu, Y. Characterization of key aroma compounds in aged Qingxiangxing baijiu by comparative aroma extract dilution analysis, quantitative measurements, aroma recombination, and omission studies. Food Chem. 2023, 419, 136027. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, S.; Xu, Y. Solid-State Distillation of Chinese Liquor (Baijiu). In Science and Engineering of Chinese Liquor (Baijiu); Xu, Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Huang, Q.; Qiu, X.; Guan, T.; Yu, J.; Mao, Y.; Li, Y.; Rao, Y.; Shang, H.; Zhao, Y. The influence of different geographical origins and grades on the flavor of Qingxiangxing Baijiu: An integrated analysis using descriptive sensory evaluation, GC× GC–MS, E-nose, and ICP-MS. Food Chem. X 2025, 25, 102141. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhang, X.; Wang, J.; Wu, C.; Wang, W.; Yan, G.; Zhou, Y.; Zhang, K.; Duan, X. Characterization of volatile profiles in cherry fruits: Integration of E-nose and HS-SPME-GC–MS. Food Chem. X 2025, 28, 102632. [Google Scholar] [CrossRef]
- Ni, S.-g.; Luo, G.-j.; Zhu, M.-l.; Ke, F.; Shi, P.; Wan, Z.; Wu, X.; Yi, X.; Zhan, S.; Guan, Y.; et al. Characteristics of flavor substances in the different distllation fractions of strong-flavor Baiju brewed by modem technology. Food Ferment. Ind. 2023, 49, 85–92. (In Chinese) [Google Scholar]
- Ding, X.; Huang, J.; Wu, C.; Zhou, R. Effects of different distillation patterns on main compounds of Chinese Luzhou-flavour raw liquors. J. Inst. Brew. 2017, 123, 442–451. [Google Scholar] [CrossRef]
- Li, X.; Zhang, B.; Li, W.; Zhao, Y.; Lyu, X.; You, X.; Lin, L.; Zhang, C. Unraveling the chemosensory characteristics dependence of sauce-flavor baijiu on regionality using descriptive sensory analysis and quantitative targeted flavoromics. Food Chem. 2024, 441, 138274. [Google Scholar] [CrossRef]
- Xu, Y.; Pu, X.; Lang, Z.; Zhang, X.; Wang, S.; Shen, C.; Lu, Z.; Xu, Z. Changes of volatile compounds of base liquor of Luzhou-flavor Baijiu during distillation. China Brew. 2019, 38, 25–29. (In Chinese) [Google Scholar]
- Wang, Z.; Hao, W.; Wang, J.; Wang, Y.; Zeng, X.; Huang, M.; Wu, J.; Sun, B. Using GC-O-MS, GC-IMS, and chemometrics to investigate flavor component succession regularity in the Niulanshan Erguotou Baijiu brewing process. Food Chem. X 2024, 22, 101353. [Google Scholar] [CrossRef]
- He, F.; Xiao, P.; Yang, S.; Li, H.; Li, Y.; Li, H.; Zeng, X.; Gao, W.; Sun, J.; Wang, B.; et al. Separation and characterization of sweet compounds in Baijiu by molecular distillation combined with molecular sensory science. Food Chem. 2025, 465, 142124. [Google Scholar] [CrossRef]
- Jia, W.; Ma, R.; Hu, L.; Mo, H. Synergy of physicochemical reactions occurred during aging for harmonizing and improving flavor. Food Chem. X. 2023, 17, 100554. [Google Scholar] [CrossRef]
- Cheng, W.; Chen, X.; Zhou, D.; Xiong, F. Applications and prospects of the automation of compound flavor baijiu production by solid-state fermentation. Int. J. Food Eng. 2022, 18, 737–749. [Google Scholar] [CrossRef]
- Hong, J.; Wang, J.; Zhang, C.; Zhao, Z.; Tian, W.; Wu, Y.; Chen, H.; Zhao, D.; Sun, J. Unraveling variation on the profile aroma compounds of strong aroma type of Baijiu in different regions by molecular matrix analysis and olfactory analysis. RSC Adv. 2021, 11, 33511–33521. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Q.; Luo, S.; Zhang, J.; Huang, M.; Chen, F.; Zheng, F.; Sun, X.; Li, H. Characterization of key aroma compounds in Meilanchun sesame flavor style baijiu by application of aroma extract dilution analysis, quantitative measurements, aroma recombination, and omission/addition experiments. RSC Adv. 2018, 8, 23757–23767. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Zheng, L.; Meng, L.; Liu, G.; Yang, T.; Lu, Z.; Chai, L.; Wang, S.; Shi, J.; et al. Machine learning based age-authentication assisted by chemo-kinetics: Case study of strong-flavor Chinese Baijiu. Food Res. Int. 2023, 167, 112594. [Google Scholar] [CrossRef]
- Luo, Y.; Kong, L.; Xue, R.; Wang, W.; Xia, X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci. Technol. 2020, 96, 222–232. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, K.; Wang, J.; He, Z.; Zhao, D.; Yang, Y.; Zheng, J. Variation of flavor components in the distillation process of strong aroma type liquor analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Food Ferment. Ind. 2025, 51, 338–344. (In Chinese) [Google Scholar]
- Huang, Q.; Liu, Y.; Tian, L.; Xiong, F.; He, Z.; Zhao, Y.; Xiang, S.; Qiu, X.; Yu, J.; Guan, T. Effects of storage time on flavor characteristics of bran-free fermented Baijiu by using electronic sensory, descriptive sensory analysis, GC× GC–MS, and ICP-MS. Food Chem. X 2024, 23, 101667. [Google Scholar] [CrossRef]
- Si, B.; Yuan, W.; Gu, H.H.; Jia, M.W.; Lu, Y.L.; Lyu, L.S. Simultaneous determination of reactive carbonyl species in Chinese Baijiu and its processing by HPLC. Food Ferment. Ind. 2021, 47, 240–245. (In Chinese) [Google Scholar]
- Xu, H. Study on relativity between furfural content and fragrance style of Chinese liquor. Liquor. Mak. 2002, 5, 37–39. (In Chinese) [Google Scholar]
- Martins, F.C.; Alcantara, G.M.; Silva, A.F.S.; Melchert, W.R.; Rocha, F.R. The role of 5-hydroxymethylfurfural in food and recent advances in analytical methods. Food Chem. 2022, 395, 133539. [Google Scholar] [CrossRef]
- Zheng, X.; Han, B. Baijiu (白酒), Chinese liquor: History, classification and manufacture. J. Ethn. Foods 2016, 3, 19–25. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, J.; Wang, R.; Zhang, N.; Zheng, F. A review on flavor of Baijiu and other world-renowned distilled liquors. Food Chem. X 2023, 20, 100870. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, H.; Huang, H.; Chen, F.; Hong, J.; Zhao, D.; Zhang, C.; Zhao, Z.; Wang, S.; Ao, R.; et al. Revelation for the influence mechanism of long-chain fatty acid ethyl esters on the Baijiu quality by multicomponent chemometrics combined with modern flavor sensomics. Foods 2023, 12, 1267. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Deng, M.; Chen, S.; Yang, R.; Li, J.; Zhao, X.; Ji, S.; Wu, L.; Ni, L.; Zhang, E.; et al. Application of pectin hydrolyzing bacteria in tobacco to improve flue-cured tobacco quality. Front. Bioeng. Biotechnol. 2024, 12, 1340160. [Google Scholar] [CrossRef]
- Han, X.; Wang, D.; Zhang, W.; Jia, S. The production of the Chinese baijiu from sorghum and other cereals. J. Inst. Brew. 2017, 123, 600–604. [Google Scholar] [CrossRef]
- Deng, S. The study on reducing the content of ethyl lactate in Luzhou-flavor liquors. Modern Food 2019, 18, 84–85. (In Chinese) [Google Scholar]
- Du, P.; Jiao, G.; Zhang, Z.; Wang, J.; Li, P.; Dong, J.; Wang, R. Relationship between representative trace components and health functions of Chinese Baijiu: A review. Fermentation 2023, 9, 658. [Google Scholar] [CrossRef]
- Qu, J.; Chen, X.; Wang, X.; He, S.; Tao, Y.; Jin, G. Esters and higher alcohols regulation to enhance wine fruity aroma based on oxidation-reduction potential. LWT 2024, 200, 116165. [Google Scholar] [CrossRef]
- He, G.; Xie, F.; Ren, X.; Yin, B.; Du, L.; Wei, Y.; Zhou, J. Revealing the functional microbiota for acetic acid formation in Daqu starter for Chinese Nong-Xiang Baijiu fermentation. Food Biosci. 2023, 53, 102782. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhu, L.; Huang, W.; Yi, B.; Zhang, L.; Shen, C.; Zhang, S.; Xu, D. Variations of flavor substances in distillation process of Chinese Luzhou-flavor liquor. J. Food Process. Eng. 2012, 35, 314–334. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Huang, Z.; Luo, G.; Yang, B.; Zhao, J. Change rule of flavor components in different distillates during the distillation of Xiaoqu light-flavor Baijiu. China Brew. 2021, 40, 60–65. (In Chinese) [Google Scholar]
- Zhang, Q.; Shen, C.; Sun, X.; Ao, Z.; Ao, L.; Guo, K.; Yang, J. Variation regularity of volatile substances in Luzhou flavor liquor during distillation process. Mod. Food Sci. Technol. 2018, 34, 244–254. (In Chinese) [Google Scholar]
- Vara-Ubol, S.; Chambers, E.; Chambers, D.H. Sensory characteristics of chemical compounds potentially associated with beany aroma in foods. J. Sens. Stud. 2004, 19, 15–26. [Google Scholar] [CrossRef]
- Ni, D.; Mao, S.; Yang, Y.; Tian, J.; Chen, C.; Tu, H.; Ye, X.; Yang, F. Phenolic metabolites changes during baijiu fermentation through non-targeted metabonomic. Food Chem. X 2024, 23, 101531. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wu, Y.; Chen, H.; Hou, Y.; Wang, J.; Hong, J.; Zhao, D.; Sun, J.; Huang, M.; Sun, B. Identification of regionalmarkers based on the flavor molecular matrix analysis of sauce-aroma style baijiu. J. Sci. Food Agric. 2023, 103, 7434–7444. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Qian, Q.; Xiong, Y.; Xie, Q.; Yue, X.; Liu, J.; Wei, S.; Yang, Q. Characterization of the key aroma compounds in aged Chinese Xiaoqu Baijiu by means of the sensomics approach. Food Chem. 2022, 384, 132452. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Yang, Y.; Ai, L.; Mu, Z.; Liu, H.; Yan, X.; Ni, L.; Zhang, H.; Xia, Y. Flavor compounds with high odor activity values (OAV > 1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chem. 2022, 383, 132370. [Google Scholar] [CrossRef]
- Fan, S.-S.; Guan, G.-K.; Su, Y.-Z.; Wan, Z.-R.; Liu, M.-K.; Wang, T.; Guo, Y.-M.; Xu, Y.; Fan, W.-L.; Chen, S. Characterization of the aroma-active components in Lanling Meijiu based on GC-O-MS and OAV. Food Ferment. Ind. 2021, 47, 243–249. [Google Scholar]
- Mi, Y.; Wang, Z.; Guan, L.; Zhang, M.; Li, S.; Ye, G.; Ren, X.; Liang, S. Analysis of volatile compounds in rice porridge of different japonica rice varieties in Northeast China. J. Cereal Sci. 2023, 113, 103749. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Li, S.; Zhang, A.; Zhang, Y.; Liu, S. Determination of volatile compounds in foxtail millet sake using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Chem. 2015, 2015, 239016. [Google Scholar] [CrossRef]
- Gemert, V. Compilations of Flavour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2003. [Google Scholar]
- Fan, H.; Fan, W.; Xu, Y. Characterization of Key Odorants in Chinese Chixiang Aroma-Type Liquor by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2015, 63, 3660–3668. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Comparison of potent odorants in traditional and modern types of chinese xiaoqu liquor (baijiu) based on odor activity values and multivariate analyses. Foods 2021, 10, 2392. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, J.; Liu, X.; Zhang, C.; Zhao, Z.; Li, X.; Sun, B. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Zhu, T.; Wang, J.; Huang, M.; Wei, J.; Ye, H.; Wu, J.; Zhang, J.; Meng, N. Characterization of the key odorants and their content variation in Niulanshan Baijiu with different storage years using flavor sensory omics analysis. Food Chem. 2022, 376, 131851. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, J.; Zhou, R.; Zhang, S.; Qin, H.; Dong, Y.; Wang, C.; Wang, X.; Pan, Q.; Tang, H. Comprehensive analysis for the bioturbation effect of space mutation and biofortification on strong-flavor Daqu by high-throughput sequencing, volatile analysis and metabolomics. Food Chem. 2023, 403, 134440. [Google Scholar] [CrossRef]
- Jin, X.; Wang, H.; Tian, H.; Hu, Y.; Peng, N.; Zhao, S. Caproiciproducens converts lactic acid into caproic acid during Chinese strong-flavor Baijiu brewing. Int. J. Food Microbiol. 2025, 426, 110931. [Google Scholar] [CrossRef]
- Pang, X.; Chen, C.; Huang, X.; Yan, Y.; Chen, J.; Han, B. Influence of indigenous lactic acid bacteria on the volatile flavor profile of light-flavor Baijiu. LWT 2021, 147, 111540. [Google Scholar] [CrossRef]
No. | Sensor Name | Sensor Characteristics |
---|---|---|
1 | W1C | Aromatic |
2 | W5S | Nitrogen oxides |
3 | W3C | Ammonia |
4 | W6S | Hydrogen |
5 | W5C | Alkane |
6 | W1S | Methane |
7 | W1W | Sulfur |
8 | W2S | Alcohol and aromatic |
9 | W2W | Aromatic and sulfur organic |
10 | W3S | Long-chain alkanes |
Compound Name | RI | CAS | Concentration (μg/L) | ||
---|---|---|---|---|---|
Head | Heart | Tail | |||
Alcohols | |||||
Butanol | 1157 | 71-36-3 | 2049.67 ± 129.44 | 1803.81 ± 40.46 | 2337.96 ± 49.12 |
1-Dodecanol | 1457 | 112-53-8 | 20,034.05 ± 1038.91 | 10,259.83 ± 449.5 | 8081.75 ± 356.05 |
1-Heptatriacotanol | —— | 105794-58-9 | 222.81 ± 15.75 | ND | 406.55 ± 18.72 |
1-Hexadecanol | 2363 | 36653-82-4 | 4266.68 ± 289.23 | ND | 5030.21 ± 208.72 |
1-Hexanol | 1355 | 111-27-3 | 1131.6 ± 47.71 | 1450.31 ± 77.14 | 1512.58 ± 99.25 |
1-Pentanol | 1304 | 71-41-0 | 212,531.03 ± 7448.53 | 205,893.75 ± 7651.94 | 152.13 ± 9.7 |
1-Propanol | 1030 | 71-23-8 | 1371.69 ± 46.86 | 208,957.01 ± 12,108.89 | 7244.49 ± 448.32 |
Isobutanol | 1069 | 78-83-1 | 81,870.28 ± 1031.78 | 78,017.26 ± 4364.74 | 80,113.47 ± 5455.88 |
2,3-Butanediol | 32,612 | 513-85-9 | 3544.6 ± 64.25 | 4615.15 ± 147.51 | 4445.95 ± 246.4 |
2-Butanol | 1012 | 78-92-2 | 845.43 ± 54.95 | ND | 1219.48 ± 75.55 |
6-Methyl-2-heptanol | 1380 | 4730-22-7 | 150,899.61 ± 7727.97 | ND | ND |
2-Hexadecanol | 1967 | 14852-31-4 | 957.56 ± 54.99 | ND | ND |
2-Nonanol | 1563 | 628-99-9 | 855.58 ± 58.12 | ND | 185.57 ± 13.44 |
2-Tridecanol | 1491 | 1653-31-2 | 12,280.25 ± 481.12 | ND | ND |
7-Octen-2-ol | 1063 | 39546-75-3 | 57,637.36 ± 2366.94 | ND | ND |
Ethanol | 463 | 64-17-5 | 93,343.55 ± 4423.99 | 113,856.41 ± 4444.18 | 77,354.99 ± 5196.55 |
Phenylethyl alcohol | 28,900 | 60-12-8 | 17,285.48 ± 455.85 | 18,516.54 ± 672.9 | 19,646.42 ± 1253.51 |
Isoamylol | 891 | 123-51-3 | ND | 64,194.54 ± 3818.44 | 212,773.54 ± 6106.35 |
1-Docosanol | 1897 | 661-19-8 | ND | 323.45 ± 22.45 | ND |
2-Methyl-1-hexadecanol | 1519 | 2490-48-4 | ND | ND | 469.61 ± 28.51 |
3-Methyl-2-butanol | 1345 | 598-75-4 | ND | ND | 577.35 ± 38.13 |
1-Pentadecanol | 1755 | 629-76-5 | ND | ND | 612.2 ± 42.75 |
Esters | |||||
Butyl octyl phthalate | 2317 | 84-78-6 | 382.54 ± 22.14 | ND | ND |
2,3-Epoxypropyl acetate | —— | 6387-89-9 | 3135.17 ± 77.49 | ND | ND |
Isoamyl acetate | 500 | 123-92-2 | 71,850.94 ± 1577.75 | ND | 68,046.6 ± 2623.86 |
2-Methylbutyl octanoate | 1677 | 67121-39-5 | 944.82 ± 8.74 | ND | ND |
Ethyl linoleate | 2521 | 7619-08-1 | 10,415.94 ± 659.37 | ND | 7277.39 ± 494.38 |
Phenethyl acetate | 1814 | 103-45-7 | 18,563.79 ± 982.97 | 16,387.6 ± 688.89 | ND |
Diethyl succinate | 1654 | 123-25-1 | 5301.89 ± 304.37 | 5438.28 ± 289.71 | 6325.1 ± 240.7 |
Ethyl butanoate | 785 | 105-54-4 | 7546.14 ± 317.91 | 6727.59 ± 280.66 | 7435.59 ± 246.73 |
Ethyl caprate | 1122 | 110-38-3 | 59,921.26 ± 3887.13 | 50,383.81 ± 762.17 | 65,323.57 ± 2263.44 |
Ethyl laurate | 640 | 106-33-2 | 22,828.21 ± 646.9 | 25,324.32 ± 426.79 | 29,034.04 ± 2156.05 |
Ethyl acetate | 870 | 141-78-6 | 140,339.3 ± 5054.45 | 127,374.79 ± 4402.54 | 135,458.73 ± 4765.65 |
Ethyl oleate | 2483 | 111-62-6 | 18,898.89 ± 1213.96 | 25,330.64 ± 760.86 | 13,912.74 ± 596.04 |
Octyl formate | 1175 | 112-32-3 | 2044.48 ± 77.57 | ND | 893.48 ± 25.73 |
Ethyl palmitate | 2265 | 628-97-7 | 88,693.79 ± 3251.69 | 128,573.29 ± 7047.21 | 85,615.13 ± 3015.28 |
Ethyl hexanoate | 1234 | 123-66-0 | 20,062.22 ± 901.76 | 15,398.24 ± 911.38 | 17,253.17 ± 1170.31 |
Ethyl caprylate | 1430 | 106-32-1 | 65,264.5 ± 2000.95 | 58,036.86 ± 1829.72 | 59,036.5 ± 3783.13 |
Ethyl pentadecanoate | 2140 | 41114-00-5 | 420.79 ± 15.82 | 946.6 ± 39.27 | 708.1 ± 22.32 |
Ethyl DL-leucate | 1082 | 10348-47-7 | 1043.18 ± 55.45 | 1285.5 ± 85.26 | 1355.61 ± 45.8 |
Ethyl tetradecanoate | 2010 | 124-06-1 | 4993.16 ± 350.48 | 8011.68 ± 244.67 | 7319.21 ± 212.97 |
Isobutyl acetate | 721 | 110-19-0 | ND | 3398.14 ± 220.66 | 2739.43 ± 125.94 |
Ethyl linoleate (JAN) | 2521 | 544-35-4 | ND | 13,617.77 ± 682.48 | 455.53 ± 8.85 |
Ethyl lactate | 1329 | 97-64-3 | ND | 40,069.6 ± 1963.73 | ND |
Diisobutyl phthalate | 2548 | 84-69-5 | ND | ND | 521.18 ± 21.34 |
2-Ethylhexyl salicylate | 1806 | 118-60-5 | ND | ND | 570.93 ± 36.73 |
Ethyl linolenate | 2591 | 1191-41-9 | ND | ND | 194.68 ± 8.68 |
Phenethyl acetate | 1814 | 103-45-7 | ND | ND | 21,906.64 ± 757.36 |
Nonyl acetate | 1573 | 143-13-5 | ND | ND | 314.51 ± 18.53 |
Pentyl acetate | 1167 | 628-63-7 | ND | ND | 198.47 ± 12.14 |
Ethyl 3-phenylpropanoate | 1865 | 2021-28-5 | ND | ND | 211.65 ± 8.61 |
Ethyl isopentyl succinate | 2219 | 28024-16-0 | ND | ND | 272.15 ± 6.25 |
Amyl butyrate | 1321 | 540-18-1 | ND | ND | 123.98 ± 3.78 |
Butyl caprylate | 1601 | 589-75-3 | ND | ND | 444.94 ± 23 |
Ethyl heptanoate | 1311 | 106-30-9 | ND | ND | 56.37 ± 1.95 |
Ethyl nonadecanoate | 2219 | 18281-04-4 | ND | ND | 132.51 ± 8.36 |
Ethyl nonanoate | 1547 | 123-29-5 | ND | ND | 229.75 ± 11.97 |
Isopentyl octylate | 1417 | 2035-99-6 | ND | ND | 1194.9 ± 69.79 |
Isoamyl decanoate | 1864 | 2306-91-4 | ND | ND | 795.01 ± 50.45 |
Aldehydes | |||||
5-Hydroxymethylfurfural | 2512 | 67-47-0 | 123.65 ± 5.23 | ND | ND |
Acetaldehyde ethyl amyl acetal | 1104 | 13442-89-2 | 5638.64 ± 335.23 | ND | ND |
L-glyceraldehyde | —— | 497-09-6 | 263.03 ± 13.25 | ND | ND |
Phenols | |||||
2,4-Di-tert-butylphenol | 1555 | 96-76-4 | 286.6 ± 5.92 | ND | 74.23 ± 2.89 |
Phenol | 901 | 108-95-2 | 1005.17 ± 28.77 | 905.15 ± 68.51 | 1927.33 ± 88.06 |
4-Tert-octylphenol | 1631 | 78721-87-6 | ND | ND | 2040.04 ± 110.49 |
o-Hydroxybiphenyl | 1515 | 90-43-7 | ND | ND | 709.24 ± 34.17 |
Guaiacol | 1862 | 90-05-1 | ND | ND | 184.66 ± 13.22 |
Acids | |||||
Linoleic acid | 3168 | 60-33-3 | 1229.72 ± 87 | ND | ND |
Acetic acid | 1450 | 64-19-7 | 23,028.81 ± 1757.85 | 27463.5 ± 1774.88 | 30,029.38 ± 2214.89 |
1,2-Benzenedicarboxylic acid | 2037 | 84-74-2 | 1178.9 ± 69.47 | ND | ND |
Hexanoic acid | 1843 | 142-62-1 | 949.87 ± 51.71 | ND | ND |
Octanoic acid | 1173 | 124-07-2 | 697.68 ± 8.28 | ND | ND |
Formic acid | 1987 | 64-18-6 | ND | ND | 26.25 ± 1.7 |
Oleic acid | 3172 | 112-80-1 | ND | ND | 545.65 ± 16.47 |
Oxalic acid | 1509 | 144-62-7 | ND | ND | 851.95 ± 62.33 |
Ketones | |||||
2-Nonanone | 1052 | 821-55-6 | 1029.15 ± 36.28 | 739.15 ± 50.76 | 544.75 ± 23.88 |
2-Octanone | 952 | 111-13-7 | 12,602.28 ± 827.61 | 9661.06 ± 201.98 | 6909.69 ± 199.85 |
Acetoin | 717 | 513-86-0 | ND | 822.37 ± 49.81 | 982.89 ± 53.78 |
Others | |||||
1-Pentadecene | 1502 | 13360-61-7 | 12,527.8 ± 891.86 | 11,636.2 ± 621.84 | 9912.03 ± 594.14 |
3-Ethoxy-1-propanol | 1371 | 111-35-3 | 244.5 ± 16.04 | ND | ND |
(Z)-6-Dodecene | 1240 | 7206-29-3 | 5958.58 ± 198.3 | ND | ND |
7-Tetradecene | 1322 | 10374-74-0 | 953.38 ± 42.6 | ND | ND |
Anethole | 1817 | 104-46-1 | 2570.05 ± 201.92 | ND | ND |
(1,3-Dimethylbutyl) benzene | 1162 | 19219-84-2 | 774.72 ± 48.87 | ND | ND |
(2,2-Diethoxyethyl)-Benzene | 1690 | 6314-97-2 | 2661.61 ± 85.72 | ND | ND |
1,2,4-Trimethylbenzene | 1288 | 95-63-6 | 1571.12 ± 37.16 | ND | 1794.35 ± 114.42 |
1-Methyl-2-(1-ethylpropyl) benzene | 993 | 54410-74-1 | 264 ± 16.8 | ND | ND |
Hexylbenzene | 1291 | 1077-16-3 | 1920.58 ± 118.13 | ND | 1165.61 ± 75.5 |
Trans-caryophyllene | 1494 | 87-44-5 | 2303.22 ± 91.6 | 1992.93 ± 133.14 | 1670.32 ± 74.7 |
Cyclododecane | 1439 | 294-62-2 | 337.13 ± 25.16 | 9107.21 ± 424.34 | 5592.45 ± 352.82 |
Trans-cyclododecene | 1558 | 1486-75-5 | 630.18 ± 26.05 | ND | ND |
Cyclopentadecane | 1536 | 295-48-7 | 14,653.25 ± 680.77 | 16,304.5 ± 981.7 | 9856.15 ± 397.16 |
Dodecane | 1214 | 112-40-3 | 13,943.3 ± 894.04 | 15,466.33 ± 985.91 | 13,187.69 ± 604.86 |
1,1-Diethoxyethane | 894 | 105-57-7 | 390,729.32 ± 27,895.13 | 353,718.47 ± 16,050.45 | 386,197.22 ± 28,771.85 |
Formamide | 1791 | 75-12-7 | 37,292.59 ± 2552.99 | ND | ND |
2-Amylfuran | 1040 | 3777-69-3 | 406.89 ± 21.29 | ND | ND |
Hexadecane | 1612 | 544-76-3 | 2487.03 ± 61.15 | ND | ND |
Nonadecane | 1910 | 629-92-5 | 2055.86 ± 61.3 | 4041.77 ± 207.29 | 3536.6 ± 249.44 |
1,1,3-Triethoxypropane | 1201 | 7789-92-6 | 1182.08 ± 73.16 | ND | ND |
Styrene | 1254 | 100-42-5 | 305.33 ± 11.63 | ND | ND |
Tetradecane | 1413 | 629-59-4 | 3927.22 ± 97.45 | 7684.87 ± 518.41 | 6129.58 ± 170.05 |
2,6,10-Trimethyltetradecane | 1539 | 14905-56-7 | 1373.86 ± 44.86 | ND | ND |
Tridecane | 1313 | 629-50-5 | 93,510.88 ± 6521.28 | 86,483.63 ± 5892.13 | 62,884.01 ± 4039.01 |
Cis-3-dodecene | 1254 | 7239-23-8 | ND | 12,487.76 ± 587.62 | ND |
Acetic anhydride | 1236 | 108-24-7 | ND | ND | 222.24 ± 9.56 |
Coumaran | 2389 | 496-16-2 | ND | ND | 86.57 ± 2.35 |
Eicosane | 2000 | 112-95-8 | ND | ND | ND |
Furfuryl ethyl ether | 1272 | 6270-56-0 | ND | ND | 48.88 ± 2.74 |
Heptadecane | 1711 | 629-78-7 | ND | ND | 1211.61 ± 88.41 |
Naphthalene | 1745 | 91-20-3 | ND | ND | 59.17 ± 2.74 |
NO. | Aroma Compounds | Odor Thresholds (μg/L) | Descriptor | ROAV | ||
---|---|---|---|---|---|---|
Head | Heart | Tail | ||||
1 | Ethyl butanoate | 82 [50] | Pineapple, fruity | 92.03 | 82.04 | 90.68 |
2 | 2-Nonanone | 483 [51] | — | 2.13 | 1.53 | 1.13 |
3 | 1-Dodecanol | 1000 [52] | Fatty, waxy odor | 20.03 | 10.26 | 8.08 |
4 | 2-Nonanol | 58 [53] | Fatty | 14.75 | — | 3.2 |
5 | Ethanol | 8800 [54] | Strong alcoholic | 10.61 | 12.94 | 8.79 |
6 | Phenethyl acetate | 407 [55] | Rose | — | — | 53.82 |
7 | 1-Pentanol | 37,400 [56] | Fruity | 5.68 | 5.51 | — |
8 | Isoamyl acetate | 500 [48] | Banana, sweet | 143.7 | — | 136.09 |
9 | Ethyl caprate | 1120 [26] | Fresh, fruity | 53.5 | 44.99 | 58.32 |
10 | Ethyl laurate | 500 [57] | Sweet, waxy, floral | 45.66 | 50.65 | 58.07 |
11 | Ethyl acetate | 32,600 [26] | Pineapple | 4.3 | 3.91 | 4.16 |
12 | Ethyl palmitate | 4500 [58] | Fruity, creamy | 19.71 | 28.57 | 19.03 |
13 | Ethyl hexanoate | 200 [48] | Fruity, sweet | 100.31 | 76.99 | 86.27 |
14 | Ethyl caprylate | 13 [26] | Fruity, grape | 5020.35 | 4464.37 | 4541.27 |
15 | Isobutyl acetate | 922 [48] | Fruity, rum | — | 3.69 | 2.97 |
16 | Pentyl acetate | 70 [56] | Banana | — | — | 2.84 |
17 | Ethyl 3-phenylpropanoate | 125 [59] | — | — | — | 1.69 |
18 | Guaiacol | 9.5 [50] | Guaiacol | — | — | 19.44 |
19 | 1-Pentanol | 37,400 [56] | Fruity | 5.68 | 5.51 | — |
20 | 2-Octanone | 230 [51] | — | 54.79 | 42 | 30.04 |
21 | Acetoin | 259 [58] | Sweet, cream | — | 3.18 | 3.79 |
22 | 1,1-Diethoxyethane | 2090 [48] | Fruity | 186.95 | 169.24 | 184.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Xu, P.; Qin, J.; Hou, G.; Huang, Q.; Liu, Y.; Li, Y.; Guan, T. Insights into the Flavor Profiles and Key Aroma-Active Compounds of Sichuan Xiaoqu Qingxiangxing Baijiu Across Distilling Stages. Foods 2025, 14, 2814. https://doi.org/10.3390/foods14162814
Tian L, Xu P, Qin J, Hou G, Huang Q, Liu Y, Li Y, Guan T. Insights into the Flavor Profiles and Key Aroma-Active Compounds of Sichuan Xiaoqu Qingxiangxing Baijiu Across Distilling Stages. Foods. 2025; 14(16):2814. https://doi.org/10.3390/foods14162814
Chicago/Turabian StyleTian, Lei, Pei Xu, Ji Qin, Guojun Hou, Qiao Huang, Ying Liu, Yu Li, and Tongwei Guan. 2025. "Insights into the Flavor Profiles and Key Aroma-Active Compounds of Sichuan Xiaoqu Qingxiangxing Baijiu Across Distilling Stages" Foods 14, no. 16: 2814. https://doi.org/10.3390/foods14162814
APA StyleTian, L., Xu, P., Qin, J., Hou, G., Huang, Q., Liu, Y., Li, Y., & Guan, T. (2025). Insights into the Flavor Profiles and Key Aroma-Active Compounds of Sichuan Xiaoqu Qingxiangxing Baijiu Across Distilling Stages. Foods, 14(16), 2814. https://doi.org/10.3390/foods14162814