Biodegradable Quercetin-Incorporated Poly(Lactic Acid)/Chitosan Functional Films: A Study of the Properties and Application in Enhancing Fish Preservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the PLA/Chitosan/Quercetin Film
2.3. Characterization
2.3.1. Mechanical Strength
2.3.2. Morphological and Structural Characterization
2.3.3. Water Contact Angle (WCA)
2.3.4. Water Vapor Permeability (WVP)
2.3.5. Oxygen Transmission Rate (OTR)
2.3.6. Antibacterial Activity
2.3.7. Biodegradability
2.4. Antioxidant Activity
2.5. Shelf Life Tests of Crucian During Refrigerated Storage
2.5.1. Pre-Treatment of Fresh Crucian Samples
2.5.2. pH
2.5.3. TBARS
2.5.4. TVB-N
2.5.5. TVC
2.6. Color Analysis of the PLA/Chitosan/Quercetin Film
2.7. Data Analysis
3. Results and Discussion
3.1. Characterization of the PLA/Chitosan/Quercetin Film
3.1.1. Mechanical Properties
3.1.2. Antioxidative Properties
3.1.3. FTIR Analysis
3.1.4. Morphology and Surface Properties
3.1.5. Barrier Properties
3.2. Antibacterial Activity Analysis
3.3. Application of the PLA/Chitosan/Quercetin Film
3.4. Biodegradability of the Composite Film
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fasano, E.; Bono-Blay, F.; Cirillo, T.; Montuori, P.; Lacorte, S. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control 2012, 27, 132–138. [Google Scholar] [CrossRef]
- Basu, A.; Kundu, S.; Sana, S.; Halder, A.; Abdullah, M.F.; Datta, S.; Mukherjee, A. Edible nano-bio-composite film cargo device for food packaging applications. Food Packag. Shelf Life 2017, 11, 98–105. [Google Scholar] [CrossRef]
- Azevedo, A.G.; Barros, C.; Miranda, S.; Machado, A.V.; Castro, O.; Silva, B.; Saraiva, M.; Silva, A.S.; Pastrana, L.; Carneiro, O.S.; et al. Active Flexible Films for Food Packaging: A Review. Polymers 2022, 14, 2442. [Google Scholar] [CrossRef] [PubMed]
- Byun, Y.; Whiteside, S.; Thomas, R.; Dharman, M.; Hughes, J.; Kim, Y.T. The effect of solvent mixture on the properties of solvent cast polylactic acid (PLA) film. J. Appl. Polym. Sci. 2012, 124, 3577–3582. [Google Scholar] [CrossRef]
- Jin, F.-L.; Hu, R.-R.; Park, S.-J. Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review. Compos. Part B Eng. 2019, 164, 287–296. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Li, J.; Liang, X.; Zhou, W.; Peng, S. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. Int. J. Biol. Macromol. 2022, 218, 115–134. [Google Scholar] [CrossRef]
- Ianniciello, D.; Montosa, A.P.; Barbosa, R.d.M.; Villen, F.G.; Salvia, R.; Scieuzo, C.; Viseras, C.; Falabella, P. Development of chitosan-clay nanocomposite films from Hermetia illucens: Analysis of chemical, physical, and mechanical properties. Int. J. Biol. Macromol. 2025, 311, 143496. [Google Scholar] [CrossRef]
- Aljawish, A.; Muniglia, L.; Klouj, A.; Jasniewski, J.; Scher, J.; Desobry, S. Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocoll. 2016, 60, 551–558. [Google Scholar] [CrossRef]
- Mutmainna, I.; Tahir, D.; Gareso, P.L.; Suryani, S. Development of PVA-chitosan based smart packaging with the addition of red cabbage (Brassica Oleracea Var. capitata F. rubra) anthocyanin extract and copper-based metal-organic material (Cu-Mof). Int. J. Biol. Macromol. 2025, 313, 144205. [Google Scholar] [CrossRef]
- Gonciarz, W.; Balcerczak, E.; Brzezinski, M.; Jelen, A.; Pietrzyk-Brzezinska, A.J.; Narayanan, V.H.B.; Chmiela, M. Chitosan-based formulations for therapeutic applications. A recent overview. J. Biomed. Sci. 2025, 32, 62. [Google Scholar] [CrossRef]
- Rai, S.; Pokhrel, P.; Udash, P.; Chemjong, M.; Bhattarai, N.; Thuanthong, A.; Nalinanon, S.; Nirmal, N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit. Rev. Biotechnol. 2025, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, J.; Fortunati, E.; Vargas, M.; Chiralt, A.; Kenny, J.M. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J. Food Eng. 2013, 119, 236–243. [Google Scholar] [CrossRef]
- Azizi, S.; Ahmad, M.B.; Ibrahim, N.A.; Hussein, M.Z.; Namvar, F. Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly(vinyl alcohol)/Chitosan Blend Films: Fabrication, Characterization and Properties. Int. J. Mol. Sci. 2014, 15, 11040–11053. [Google Scholar] [CrossRef]
- Shafi, Z.; Singh, R.; Sidiqi, U.S.; Bashir, B.; Rasool, S.; Dash, K.K.; Zahoor, I.; Ahmed, I.; Nagaraja, S.K.; Dar, A.H. Quercetin infused starch matrix as a sustainable approach to smart packaging: A comprehensive review. Int. J. Biol. Macromol. 2025, 320, 145746. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, F.F.; Farias, D.d.P.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Han, W.; Ren, J.; Xuan, H.; Ge, L. Controllable degradation rates, antibacterial, free-standing and highly transparent films based on polylactic acid and chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 128–136. [Google Scholar] [CrossRef]
- Yang, C.; Wang, M.; Wang, W.; Liu, H.; Deng, H.; Du, Y.; Shi, X. Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydr. Polym. 2022, 292, 119678. [Google Scholar] [CrossRef]
- Zhang, D.; Bu, N.; Zhou, L.; Lin, L.; Wen, Y.; Chen, X.; Huang, L.; Lin, H.; Mu, R.; Wang, L.; et al. Quercetin-loaded melanin nanoparticle mediated konjac glucomannan/ polycaprolactone bilayer film with dual-mode synergistic bactericidal activity for food packaging. Int. J. Biol. Macromol. 2024, 276, 133982. [Google Scholar] [CrossRef] [PubMed]
- Gulzar, S.; Tagrida, M.; Prodpran, T.; Benjakul, S. Antimicrobial film based on polylactic acid coated with gelatin/chitosan nanofibers containing nisin extends the shelf life of Asian seabass slices. Food Packag. Shelf Life 2022, 34, 100941. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Yuan, M.; Wang, Y.; Wang, D.; Guo, Z.; Wang, Z. Film-forming mechanism of blueberry anthocyanin-added soybean isolate protein-based biodegradable packaging film and its application in edible mushroom preservation. Food Packag. Shelf Life 2025, 49, 101525. [Google Scholar] [CrossRef]
- GB/T 1038.1-2022; Plastics—Film and Sheeting—Detemination of Gas Transmisson Rate—Part 1: Differential-Pressure Methods. The Standards Press of China: Beijing, China, 2022.
- Gao, P.; Cha, R.; Luo, H.; Xu, Y.; Zhang, P.; Han, L.; Wang, X.; Zhang, Z.; Jiang, X. Development of antimicrobial oxidized cellulose film for active food packaging. Carbohydr. Polym. 2022, 278, 118922. [Google Scholar] [CrossRef]
- Liu, M.; Chen, H.; Pan, F.; Wu, X.; Zhang, Y.; Fang, X.; Li, X.; Tian, W.; Peng, W. Propolis ethanol extract functionalized chitosan/Tenebrio molitor larvae protein film for sustainable active food packaging. Carbohydr. Polym. 2024, 343, 122445. [Google Scholar] [CrossRef] [PubMed]
- HJ 962-2018; Soil—Determination of pH—Potentiometry. China Environmental Science Press: Beijing, China, 2018.
- HJ 613-2011; Soil-Determination of Dry Matter and Water Content-Gravimetric Method. China Environmental Science Press: Beijing, China, 2011.
- Lin, L.; Peng, S.; Chen, X.; Li, C.; Cui, H. Silica nanoparticles loaded with caffeic acid to optimize the performance of cassava starch/sodium carboxymethyl cellulose film for meat packaging. Int. J. Biol. Macromol. 2023, 241, 124591. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tang, H.; Wang, Y.; Liu, Y.; Wang, J.; Shi, W.; Li, L. Development of PLA-PBSA based biodegradable active film and its application to salmon slices. Food Packag. Shelf Life 2019, 22, 100393. [Google Scholar] [CrossRef]
- GB/T 5009.228-2016; National Food Safety Standard—Determination of Volatile Basic Nitrogen in Food. The Standards Press of China: Beijing, China, 2016.
- Nogueira, G.F.; Meneghetti, B.B.; Soares, I.H.B.T.; Soares, C.T.; Bevilaqua, G.; Fakhouri, F.M.; Oliveira, R.A.d. Multipurpose arrowroot starch films with anthocyanin-rich grape pomace extract: Color migration for food simulants and monitoring the freshness of fish meat. Int. J. Biol. Macromol. 2024, 265, 130934. [Google Scholar] [CrossRef]
- Saberi, B.; Thakur, R.; Vuong, Q.V.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind. Crops Prod. 2016, 86, 342–352. [Google Scholar] [CrossRef]
- Singh, A.A.; Sharma, S.; Srivastava, M.; Majumdar, A. Modulating the properties of polylactic acid for packaging applications using biobased plasticizers and naturally obtained fillers. Int. J. Biol. Macromol. 2020, 153, 1165–1175. [Google Scholar] [CrossRef]
- Yang, B.; Tang, B.; Wang, Z.; Feng, F.; Wang, G.; Zhao, Z.; Xue, Z.; Li, J.; Chen, W. Solution blow spun bilayer chitosan/polylactic acid nanofibrous patch with antibacterial and anti-inflammatory properties for accelerating acne healing. Carbohydr. Polym. 2024, 326, 121618. [Google Scholar] [CrossRef]
- Yang, F.; Yu, M.; Wei, Z.; Chen, K.; Wang, J.; Chen, X.; Xue, W.; Yuan, Y.; Wu, H.; Zhu, J. Robust, water-resistant, and biodegradable active film from silver carp (Hypophthalmichthys molitrix) myofibrillar proteins: Integrating oxidized polyphenol crosslinking with cellulose nanocrystal nanocomposites. Food Hydrocoll. 2025, 164, 111175. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, X.; Yong, H.; Wang, X.; Liu, Y.; Liu, J. Development and characterization of antioxidant active packaging and intelligent Al3+-sensing films based on carboxymethyl chitosan and quercetin. Int. J. Biol. Macromol. 2019, 126, 1074–1084. [Google Scholar] [CrossRef]
- Fahlman, B.M.; Krol, E.S. UVA and UVB radiation-induced oxidation products of quercetin. J. Photoch. Photobio. B 2009, 97, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Olewnik-Kruszkowska, E.; Gierszewska, M.; Richert, A.; Grabska-Zielinska, S.; Rudawska, A.; Bouaziz, M. Antibacterial Films Based on Polylactide with the Addition of Quercetin and Poly(Ethylene Glycol). Materials 2021, 14, 1643. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wang, J.; Kang, J.; Zhao, Y.; Tian, H.; Jin, Y.; Kumar, R.; Wang, J. Bimodal structure in electrospun Zein/PLA-chitosan films with enhanced filtration efficiency and low pressure drop. Colloids Surf. A Physicochem. Eng. Asp. 2025, 711, 136380. [Google Scholar] [CrossRef]
- Nithya, M.; Balaji, R.; Sundarajan, T.; Sivalingam, V. Novel PLA/chitosan blends with bio-released Ag-NPs nanocomposites for eco-friendly food packaging. Environ. Sci. Pollut. Res. Int. 2025, 32, 15604–15613. [Google Scholar] [CrossRef]
- Najafi, P.; Zabihi, M.; Faghihi, M. Significant Adsorption of Ionic Dye by Modified Magnetic chitosan/polyacrylamide@alumina Nanocomposite. Water Air Soil Pollut. 2025, 236, 640. [Google Scholar] [CrossRef]
- Zhou, Q.; Lan, W.; Xie, J. Chitosan grafted gallic acid /polyvinyl alcohol-based hydrogel, developed through the freeze-thaw method, holds promise for use as a fresh-water absorbent pad. Int. J. Biol. Macromol. 2025, 320, 146078. [Google Scholar] [CrossRef]
- Yan, L.; Wang, R.; Wang, H.; Sheng, K.; Liu, C.; Qu, H.; Ma, A.; Zheng, L. Formulation and characterization of chitosan hydrochloride and carboxymethyl chitosan encapsulated quercetin nanoparticles for controlled applications in foods system and simulated gastrointestinal condition. Food Hydrocoll. 2018, 84, 450–457. [Google Scholar] [CrossRef]
- Souza, M.P.; Vaz, A.F.M.; Silva, H.D.; Cerqueira, M.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Development and Characterization of an Active Chitosan-Based Film Containing Quercetin. Food Bioprocess Technol. 2015, 8, 2183–2191. [Google Scholar] [CrossRef]
- Zeng, Y.; Zeng, Y.; Zhu, X.; Chen, L.; Guo, X.; Kang, T. Synthesis of novel chalcone/lipoic acid derivatives and cross-linked chitosan for preparation of multi-functional packaging film. Int. J. Biol. Macromol. 2025, 295, 138983. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W. Fabrication of Quercetin-Loaded Biopolymer Films as Functional Packaging Materials. ACS Appl. Polym. Mater. 2021, 3, 2131–2137. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Fabrication of chitosan-based functional nanocomposite films: Effect of quercetin-loaded chitosan nanoparticles. Food Hydrocoll. 2021, 121, 107065. [Google Scholar] [CrossRef]
- Giteru, S.G.; Coorey, R.; Bertolatti, D.; Watkin, E.; Johnson, S.; Fang, Z. Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films. Food Chem. 2015, 168, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, M.; Sani, M.A.; Khezerlou, A.; Ehsani, A.; McClements, D.J. Multifunctional nanocomposite active packaging materials: Immobilization of quercetin, lactoferrin, and chitosan nanofiber particles in gelatin films. Food Hydrocoll. 2021, 118, 106747. [Google Scholar] [CrossRef]
- Huang, T.; Lin, J.; Fang, Z.; Yu, W.; Li, Z.; Xu, D.; Yang, W.; Zhang, J. Preparation and characterization of irradiated kafirin-quercetin film for packaging cod (Gadus morhua) during cold storage at 4 °C. Food Bioprocess Technol. 2020, 13, 522–532. [Google Scholar] [CrossRef]
- Lou, D.; Tong, L.; Kang, X.; Yu, Y.; Zhang, J.; Lou, Q.; Huang, T. Preparation and characterization of kafirin-quercetin film for packaging cod during cold storage. J. Texture Stud. 2021, 52, 71–80. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, J.; Chen, L.; Yang, H. Effect of vacuum impregnated fish gelatin and grape seed extract on metabolite profiles of tilapia (Oreochromis niloticus) fillets during storage. Food Chem. 2019, 293, 418–428. [Google Scholar] [CrossRef]
- Song, Y.; Liu, L.; Shen, H.; You, J.; Luo, Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 2011, 22, 608–615. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Wang, Z.; Liu, Y.; Guo, J.; Zhu, Y.; Shao, J.; Li, J.; Wang, L.; Wang, K. Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloid Surf. B 2022, 209, 112175. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocoll. 2020, 102, 105629. [Google Scholar] [CrossRef]
- Kalita, N.K.; Nagar, M.K.; Mudenur, C.; Kalamdhad, A.; Katiyar, V. Biodegradation of modified Poly(lactic acid) based biocomposite films under thermophilic composting conditions. Polym. Test. 2019, 76, 522–536. [Google Scholar] [CrossRef]
- Boonluksiri, Y.; Prapagdee, B.; Sombatsompop, N. Promotion of polylactic acid biodegradation by a combined addition of PLA-degrading bacterium and nitrogen source under submerged and soil burial conditions. Polym. Degrad. Stab. 2021, 188, 109562. [Google Scholar] [CrossRef]
Day | L* | a* | b* | △E | YI |
---|---|---|---|---|---|
0 | 53.40 ± 1.14 b | 2.20 ± 0.45 g | 53.80 ± 0.84 a | 143.97 ± 3.05 ab | |
1 | 61.00 ± 1.00 a | 5.40 ± 0.55 f | 55.60 ± 0.89 a | 11.01 ± 0.89 f | 130.23 ± 2.52 c |
2 | 50.80 ± 0.84 c | 10.40 ± 0.89 e | 51.00 ± 1.00 b | 13.25 ± 1.33 e | 143.45 ± 3.70 ab |
3 | 42.40 ± 1.14 d | 11.60 ± 0.89 d | 39.40 ± 1.14 d | 22.81 ± 1.43 d | 132.76 ± 2.26 c |
4 | 38.40 ± 0.89 e | 12.00 ± 0.71 d | 39.80 ± 1.48 cd | 25.03 ± 1.70 c | 148.20 ± 8.09 a |
5 | 44.00 ± 1.58 d | 13.00 ± 1.00 c | 41.60 ± 1.14 c | 21.74 ± 1.34 d | 135.26 ± 7.14 bc |
6 | 36.00 ± 1.58 f | 13.80 ± 1.10 bc | 34.20 ± 2.77 e | 30.84 ± 1.30 a | 136.05 ± 13.76 bc |
7 | 38.20 ± 2.17 e | 14.20 ± 0.84 b | 36.20 ± 1.92 e | 28.52 ± 2.66 b | 135.49 ± 5.74 bc |
8 | 38.20 ± 2.17 e | 15.40 ± 0.55 a | 35.60 ± 1.52 e | 29.59 ± 2.48 ab | 133.36 ± 6.78 c |
9 | 34.80 ± 2.59 f | 16.20 ± 0.45 a | 36.00 ± 1.22 e | 31.69 ± 1.35 a | 148.20 ± 7.61 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, S.; Feng, T.; Wu, S.; Xu, W.; Wang, Q.; Wang, Y.; Hu, N.; Shi, X. Biodegradable Quercetin-Incorporated Poly(Lactic Acid)/Chitosan Functional Films: A Study of the Properties and Application in Enhancing Fish Preservation. Foods 2025, 14, 2771. https://doi.org/10.3390/foods14162771
Li X, Wu S, Feng T, Wu S, Xu W, Wang Q, Wang Y, Hu N, Shi X. Biodegradable Quercetin-Incorporated Poly(Lactic Acid)/Chitosan Functional Films: A Study of the Properties and Application in Enhancing Fish Preservation. Foods. 2025; 14(16):2771. https://doi.org/10.3390/foods14162771
Chicago/Turabian StyleLi, Xiaolu, Si Wu, Tao Feng, Shijing Wu, Weiwen Xu, Qingmiao Wang, Yu Wang, Ning Hu, and Xiaowen Shi. 2025. "Biodegradable Quercetin-Incorporated Poly(Lactic Acid)/Chitosan Functional Films: A Study of the Properties and Application in Enhancing Fish Preservation" Foods 14, no. 16: 2771. https://doi.org/10.3390/foods14162771
APA StyleLi, X., Wu, S., Feng, T., Wu, S., Xu, W., Wang, Q., Wang, Y., Hu, N., & Shi, X. (2025). Biodegradable Quercetin-Incorporated Poly(Lactic Acid)/Chitosan Functional Films: A Study of the Properties and Application in Enhancing Fish Preservation. Foods, 14(16), 2771. https://doi.org/10.3390/foods14162771