Mathematical Modeling and Microparticle Size Control for Enhancing Heat Transfer Efficiency in High-Viscosity Food Suspensions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Sample Determination
2.2.1. Preparation of Stearic Acid Suspension
2.2.2. Particle Size and Size Distribution
2.3. Optical Characterization
2.4. Rheological Properties
2.5. Thermal Properties
2.5.1. Specific Heat Capacity
2.5.2. Thermal Conductivity
2.5.3. Volume Expansion Coefficient
2.6. Natural Convection Heat Transfer Coefficient
2.6.1. Natural Convective Heat Transfer Experimental System
2.6.2. Natural Convective Dimensionless Number
2.7. Statistical Analysis
3. Results and Discussion
3.1. Particle Size
3.2. Polarization Microscopy Images
3.3. Rheological Properties
3.4. Thermal Properties
3.4.1. Specific Heat Capacity
3.4.2. Thermal Conductivity
3.4.3. Volumetric Thermal Expansion Coefficient
3.5. Dimensionless Numbers for Natural Convection
3.5.1. Rayleigh Number
3.5.2. Nusselt Number
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
con | Continuous phase |
Nu | Nusselt number |
PDI | Polydispersity index |
Ra | Rayleigh number |
XPS | Extruded polystyrene |
References
- Wu, J.; Zhao, J. A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application. Prog. Nucl. Energy 2013, 66, 13–24. [Google Scholar] [CrossRef]
- Sui, J.; Zhao, P.; Cheng, Z.; Doi, M. Influence of particulate thermophoresis on convection heat and mass transfer in a slip flow of a viscoelasticity-based micropolar fluid. Int. J. Heat Mass Transf. 2018, 119, 40–51. [Google Scholar] [CrossRef]
- Sharifi, A.H.; Zahmatkesh, I.; Mozhdehi, A.M.; Morsali, A.; Bamoharram, F.E. Stability appraisement of the alumina-brine nanofluid in the presence of ionic and non-ionic dispersants on the alumina nanoparticles surface as heat transfer fluids: Quantum mechanical study and Taguchi-optimized experimental analysis. J. Mol. Liq. 2020, 319, 113898. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- Fotie, G.; Limbo, S.; Piergiovanni, L. Manufacturing of food packaging based on nanocellulose: Current advances and challenges. Nanomaterials 2020, 10, 1726. [Google Scholar] [CrossRef]
- Jafari, S.; Sazmernejad, F.; Dehnad, D. Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. J. Food Process Eng. 2018, 41, e12658. [Google Scholar] [CrossRef]
- Salari, S.; Jafari, S. Application of nanofluids for thermal processing of food products. Trends Food Sci. Technol. 2020, 98, 181–190. [Google Scholar] [CrossRef]
- El Itawi, H.; Fadlallah, S.; Allais, F. Microfluidics for polymer microparticles: Opinion on sustainability and scalability. Sustain. Chem. 2023, 4, 171–183. [Google Scholar] [CrossRef]
- Chaturvedi, D.; Bharti, D.; Dhal, S.; Sahu, D.; Behera, H.; Sahoo, M.; Kim, D.; Jarzębski, M.; Anis, A.; Mohanty, B.; et al. Role of stearic acid as the crystal habit modifier in candelilla wax–groundnut oil oleogels. ChemEngineering 2023, 7, 96. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, Y.; Cong, R.; Ran, F.; Fang, G. Improved thermal properties of stearic acid/high density polyethylene/carbon fiber composite heat storage materials. Sol. Energy Mater. Sol. Cells 2021, 219, 110782. [Google Scholar] [CrossRef]
- Shayoub, M.E.; Sami, M.A.; Ali, M.S.; Shadad, S.A.; Dawoud, A.H.; Abdella, M.S.; Ahmed, M.S.; Osman, H.M. Evaluation of guar gum as suspension agent in comparison with xanthan gum using metronidazole benzoate as model of drug to estimate the effects of temperatures and storage on its suspension ability. J. Glob. Biosci. 2015, 4, 2452–2458. [Google Scholar]
- Kwak, E.; Lee, J.; Jo, Y.-J.; Choi, M.-J. Effect of electrolytes in the water phase on the stability of W1/O/W2 double emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129471. [Google Scholar] [CrossRef]
- Choi, M.-J.; Choi, D.; Lee, J.; Jo, Y.-J. Encapsulation of a bioactive peptide in a formulation of W1/O/W2-type double emulsions: Formation and stability. Food Struct. 2020, 25, 100145. [Google Scholar] [CrossRef]
- Arendt, O.; Kulicke, W. Determination of the viscoelastic properties of a homologous series of the fermentation polymer xanthan gum. Angew. Makromol. Chem. 1998, 259, 61–67. [Google Scholar] [CrossRef]
- Sarge, S.M.; Hemminger, W.; Gmelin, E.; Höhne, G.W.H.; Cammenga, H.K.; Eysel, W. Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J. Therm. Anal. 1997, 49, 1125–1134. [Google Scholar] [CrossRef]
- Singleton, W.S.; Ward, T.L.; Dollear, F.G. Physical properties of fatty acids. I. Some dilatometric and thermal properties of stearic acid in two polymorphic forms. J. Am. Oil Chem. Soc. 1950, 27, 143–146. [Google Scholar] [CrossRef]
- Xu, J.; Gao, B.; Kang, F. A reconstruction of Maxwell model for effective thermal conductivity of composite materials. Appl. Therm. Eng. 2016, 102, 972–979. [Google Scholar] [CrossRef]
- Hagiwara, I.; Tokuhiro, A.; Oduor, P.G. Natural convection heat transfer of hydrophilic particle suspension: Implications on nuclear waste remediation. Int. J. Heat Mass Transf. 2014, 78, 636–647. [Google Scholar] [CrossRef]
- Paul, T.C.; Morshed, A.K.M.M.; Fox, E.B.; Khan, J.A. Experimental investigation of natural convection heat transfer of Al2O3 nanoparticle enhanced ionic liquids (NEILs). Int. J. Heat Mass Transf. 2015, 83, 753–761. [Google Scholar] [CrossRef]
- Sangwal, K. A new equation for the temperature dependence of density of saturated aqueous solutions of electrolytes. Cryst. Res. Technol. 1987, 22, 789–792. [Google Scholar] [CrossRef]
- Ahlers, G.; Grossmann, S.; Lohse, D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 2009, 81, 503–537. [Google Scholar] [CrossRef]
- Hassan, M.A.; Pathak, M.; Khan, M.K. Rayleigh-Benard convection in Herschel-Bulkley fluid. J. Non-Newton. Fluid. Mech. 2015, 226, 32–45. [Google Scholar] [CrossRef]
- Ahmadi, A.; Olleik, H.; Karimfazli, I. Rayleigh–Bénard convection of carbopol microgels: Are viscoplastic models adequate? J. Non-Newton. Fluid. Mech. 2022, 300, 104704. [Google Scholar] [CrossRef]
- Darbouli, M.; Métivier, C.; Leclerc, S.; Nouar, C.; Bouteera, M.; Stemmelen, D. Natural convection in shear-thinning fluids: Experimental investigations by MRI. Int. J. Heat Mass Transf. 2016, 95, 742–754. [Google Scholar] [CrossRef]
- Nakamura, H.; Igarashi, T. Variation of Nusselt number with flow regimes behind a circular cylinder for Reynolds numbers from 70 to 30000. Int. J. Heat Mass Transf. 2004, 47, 5169–5173. [Google Scholar] [CrossRef]
- Bandai, T.; Hamamoto, S.; Rau, G.C.; Komatsu, T.; Nishimura, T. The effect of particle size on thermal and solute dispersion in saturated porous media. Int. J. Therm. Sci. 2017, 122, 74–84. [Google Scholar] [CrossRef]
- Tanner, R.I. Review article: Aspects of non-colloidal suspension rheology. Phys. Fluids 2018, 30, 101301. [Google Scholar] [CrossRef]
- Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F.J.; Abbaspourrad, A.; Greiner, R. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Adv. 2017, 7, 28951–28964. [Google Scholar] [CrossRef]
- Gram, A.; Silfwerbrand, J.; Lagerblad, B. Particle motion in fluid: Analytical and numerical study. Appl. Rheol. 2016, 26, 23326. [Google Scholar] [CrossRef]
- Caggioni, M.; Trappe, V.; Spicer, P.T. Variations of the Herschel–Bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials. J. Rheol. 2020, 64, 413–422. [Google Scholar] [CrossRef]
- Leighton, D.; Acrivos, A. The shear-induced migration of particles in concentrated suspensions. J. Fluid. Mech. 1987, 181, 415–439. [Google Scholar] [CrossRef]
- Otsubo, Y. Effect of adsorption affinity of polymers on the viscosity behavior of suspensions. J. Colloid. Interface Sci. 1998, 204, 214–216. [Google Scholar] [CrossRef]
- Buitrago-Rincon, D.L.; Sadtler, V.; Mercado, R.A.; Roques-Carmes, T.; Benyahia, L.; Durand, A.; Ferji, K.; Marchal, P.; Pedraza-Avella, J.A.; Lemaitre, C. Effect of silica nanoparticles in xanthan gum solutions: Evolution of viscosity over time. Nanomaterials 2022, 12, 1906. [Google Scholar] [CrossRef]
- Muthamizhi, K.; Kalaichelvi, P.; Arunagiri, A.; Rudhra, A. Measurement and model validation of specific heat of xanthan gum using Joules calorimeter method. Int. J. Res. Eng. Technol. 2013, 2, 35–39. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Smith, D.S.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 2010, 21, 215703. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhou, L.P.; Peng, X.F. Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 2006, 27, 132–142. [Google Scholar] [CrossRef]
- Carrillo-Berdugo, I.; Grau-Crespo, R.; Zorrilla, D.; Navas, J. Interfacial molecular layering enhances specific heat of nanofluids: Evidence from molecular dynamics. J. Mol. Liq. 2021, 325, 115217. [Google Scholar] [CrossRef]
- Mathur, P.; Gupta, A.K.; Panwar, D.; Sharma, T.K. Soft computing approaches for prediction of specific heat capacity of hybrid nanofluids. Expert. Syst. 2023, 41, e13471. [Google Scholar] [CrossRef]
- Zhou, L.P.; Wang, B.X.; Peng, X.F.; Du, X.Z.; Yang, Y.P. On the specific heat capacity of CuO nanofluid. Adv. Mech. Eng. 2010, 2, 172085. [Google Scholar] [CrossRef]
- Tiznobaik, H.; Shin, D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. Int. J. Heat Mass Transf. 2013, 57, 542–548. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A. Mechanisms of heat flow in suspensions of nanosized particles (nanofluids). Int. J. Heat Mass Transf. 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Kanti, P.; Sharma, K.V.; Sekhar, Y.R. Influence of particle size on thermal conductivity and dynamic viscosity of water-based Indian coal fly ash nanofluid. Heat. Transf. 2022, 51, 413–433. [Google Scholar] [CrossRef]
- Cherkasova, A.S. Thermal Conductivity Enhancement in Micro- and Nano-Particle Suspensions. Ph.D. Dissertation, Rutgers University, New Brunswick, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Hasselman, D.P.H.; Donaldson, K.Y.; Geiger, A.L. Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J. Am. Ceram. Soc. 1992, 75, 3137–3140. [Google Scholar] [CrossRef]
- Lenin, R.; Dadwal, A.; Joy, P.A. Thermal conductivity studies on magnetite nanofluids coated with short-chain and long-chain fatty acid surfactants. Bull. Mater. Sci. 2018, 41, 120. [Google Scholar] [CrossRef]
- Ravisankar, B.; Chand, V.T. Influence of nanoparticle volume fraction, particle size and temperature on thermal conductivity and viscosity of nanofluids: A review. Int. J. Automot. Mech. Eng. 2013, 8, 1316–1338. [Google Scholar] [CrossRef]
- Dhiaa, A. The temperature effect of the viscosity and density of xanthan gum solution. Kufa J. Eng. 2014, 3, 17–30. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Guo, Z. Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers. Int. J. Heat Mass Transf. 2017, 113, 217–228. [Google Scholar] [CrossRef]
- Li, C.; Magnin, A.; Métivier, C. Natural convection in shear-thinning yield stress fluids in a square enclosure. AIChE J. 2015, 62, 1347–1355. [Google Scholar] [CrossRef]
- Benyahia, B.A.; Messouadene, N.A. Rayleigh–Bénard convection study in a cavity for a shear thinning fluid. J. Fundam. Appl. Sci. 2021, 13, 1361–1379. [Google Scholar] [CrossRef]
- Masuda, H.; Iyota, H.; Ohta, M. Representative velocity scale of Rayleigh–Bénard convection with shear thinning fluids. Can. J. Chem. Eng. 2023, 102, 1007–1016. [Google Scholar] [CrossRef]
- Ng, C.S.; Ooi, A.; Lohse, D.; Chung, D. Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection. J. Fluid. Mech. 2017, 825, 550–572. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Chung, B.-J. Time-dependent Rayleigh–Bénard convection: Cell formation and Nusselt number. Nucl. Eng. Des. 2014, 274, 146–153. [Google Scholar] [CrossRef]
Treatments 1 | Condition 2 | D[4,3] (μm) | Span |
---|---|---|---|
120 | 0.6–30 | 120.25 ± 0.45 | 1.14 ± 0.35 |
31 | 1–1780 | 31.35 ± 1.32 | 1.15 ± 0.08 |
10 | 3–7120 | 10.48 ± 0.30 | 1.63 ± 0.02 |
Z-Average (nm) | PDI | ||
0.75 | 3–28,620 | 754.80 ± 55.12 | 0.45 ± 0.12 |
Treatments 1 | 120 | 31 | 10 | 0.75 |
---|---|---|---|---|
Polarization microscopy images |
Treatments 1 | τ0 (Pa) | K (Pa∙sn) | n | R2 |
---|---|---|---|---|
Control | 1.93 ± 0.25 b | 0.56 ± 0.08 d | 0.63 ± 0.02 a | 0.997 |
120 | 1.96 ± 0.26 b | 0.62 ± 0.09 d | 0.60 ± 0.02 a | 0.996 |
31 | 1.97 ± 0.27 b | 0.66 ± 0.11 c | 0.58 ± 0.02 b | 0.995 |
10 | 1.98 ± 0.28 b | 0.73 ± 0.12 b | 0.53 ± 0.03 bc | 0.993 |
0.75 | 2.07 ± 0.29 a | 0.75 ± 0.14 a | 0.50 ± 0.03 d | 0.992 |
Treatments 1 | Thermal Conductivity (w/m·K) | |||
---|---|---|---|---|
Temperature (°C) | ||||
25 | 30 | 35 | 40 | |
Control | 0.598 ± 0.015 b | 0.628 ± 0.011 b | 0.657 ± 0.018 b | 0.684 ± 0.008 a |
120 | 0.586 ± 0.013 a | 0.611 ± 0.012 a | 0.639 ± 0.008 a | 0.663 ± 0.009 a |
31 | 0.590 ± 0.015 b | 0.615 ± 0.012 b | 0.645 ± 0.014 b | 0.671 ± 0.011 ab |
10 | 0.592 ± 0.009 b | 0.619 ± 0.014 b | 0.648 ± 0.009 b | 0.675 ± 0.010 ab |
0.75 | 0.595 ± 0.010 b | 0.624 ± 0.012 b | 0.652 ± 0.012 b | 0.679 ± 0.008 ab |
MG 2 | 0.590 ± 0.014 b | 0.619 ± 0.016 b | 0.646 ± 0.017 b | 0.672 ± 0.008 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Choi, M.-J.; Lee, J. Mathematical Modeling and Microparticle Size Control for Enhancing Heat Transfer Efficiency in High-Viscosity Food Suspensions. Foods 2025, 14, 2625. https://doi.org/10.3390/foods14152625
Lee H, Choi M-J, Lee J. Mathematical Modeling and Microparticle Size Control for Enhancing Heat Transfer Efficiency in High-Viscosity Food Suspensions. Foods. 2025; 14(15):2625. https://doi.org/10.3390/foods14152625
Chicago/Turabian StyleLee, Hyeonbo, Mi-Jung Choi, and Jiseon Lee. 2025. "Mathematical Modeling and Microparticle Size Control for Enhancing Heat Transfer Efficiency in High-Viscosity Food Suspensions" Foods 14, no. 15: 2625. https://doi.org/10.3390/foods14152625
APA StyleLee, H., Choi, M.-J., & Lee, J. (2025). Mathematical Modeling and Microparticle Size Control for Enhancing Heat Transfer Efficiency in High-Viscosity Food Suspensions. Foods, 14(15), 2625. https://doi.org/10.3390/foods14152625