The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks
Abstract
1. Introduction
Food Sample | Thermal Processing | Non-Thermal Processing | Reference | |
---|---|---|---|---|
Energy consuming | / | / | PEF: the natural gas savings were estimated at 100%, electricity savings can be up to 18%; HPP: specific energy input required for sterilization of cans can be reduced from 300 to 270 kJ/kg | [8] |
Phenolic compounds-anthocyanins | Aronia berry juice | 1.21 ± 0.01 mg/mL | 1.55 ± 0.02 mg/mL (HPP) | [9] |
Microbial inactivation-total aerobic plate counts | 3.86 ± 0.19 mg/mL | 3.50 ± 0.34 mg/mL (HPP) | [9] | |
Environment friendly | / | / | HPCD: utilization of greenhouse gas, CO2; HPP: the treatment process is waste-free | [8] |
Volatile compounds | Orange juice | 22.4% of ethyl butyrate was lost; hexanal and hexyl acetate were virtually lost | PEF: 5.1% of ethyl butyrate were lost; hexanal and hexyl acetate were lost by 7% and 8.4% | [10] |
Nutrient value | Lettuce juice | Vc: 1.25 ± 0.02 μg/100 g | Vc: 0.22 ± 0.01 μg/100 g | [5] |
Total chlorophyll: 51.91 ± 0.60 μg/mL | Total chlorophyll: 61.18 ± 1.61 μg/mL | [5] | ||
Sensory quality | Quince Juice | Higher color value | HPCD: Lower color value | [11] |
Lettuce juice | Browning index: 40.95 ± 7.67 | Browning index: 27.74 ± 3.12 | [5] | |
/ | Generation of acrylamide | / | [6] |
2. Microbial Inactivation Using High-Pressure Processing (HPP) Technology and Potential Hazardous Risks
2.1. Microbial Inactivation via HPP
2.2. Bactericidal Mechanisms of HPP
2.3. VBNC Induction via HPP and Its Mechanisms
3. Microbial Inactivation via Pulsed Electric Field (PEF) Technology and Potential Hazardous Risks
3.1. Microbial Inactivation via PEF
3.2. Bactericidal Mechanisms of PEF Pasteurization
3.3. VBNC State Induced via PEF
4. Microbial Inactivation of Cold Atmospheric Gas Plasma (CAP) Technology and Hazardous Risks
4.1. Microbial Inactivation via CAP
4.2. Bactericidal Mechanisms of CAP
4.3. VBNC State Induced by CAP and Formation Mechanisms
5. Microbial Inactivation via High-Pressure Carbon Dioxide (HPCD) Technology and Hazardous Risks
5.1. Microbial Inactivation via HPCD
5.2. Bactericidal Mechanisms of HPCD
5.3. VBNC State Induced via HPCD and Formation Mechanisms
6. Microbial Inactivation via Ultrasound (US) Technology and Hazardous Risks
6.1. Microbial Inactivation via US
6.2. Bactericidal Mechanisms of US
6.3. VBNC State Induced via US and Formation Mechanisms
7. Regulatory and Detection Challenges Associated with VBNC Cells
8. Integrative Comparison of Cells in a VBNC State Induced by Different Non-Thermal Technologies
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPP | High pressure processing |
PEF | Pulsed electric field |
CAP | Cold atmospheric plasma |
HPCD | High pressure carbon dioxide |
US | Ultrasound |
VBNC | Viable but nonculturable |
References
- Bharti, B.; Li, H.; Ren, Z.; Zhu, R.; Zhu, Z. Recent advances in sterilization and disinfection technology: A review. Chemosphere 2022, 308, 136404. [Google Scholar] [CrossRef] [PubMed]
- Wastensson, G.; Eriksson, K. Inorganic chloramines: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit. Rev. Toxicol. 2020, 50, 219–271. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Pintado, M.; Almeida, D.P.F. Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT-Food Sci Technol. 2012, 49, 202–207. [Google Scholar] [CrossRef]
- Isleroglu, H.; Kemerli, T.; Özdestan, Ö.; Uren, A.; Kaymak-Ertekin, F. Effect of oven cooking method on formation of heterocyclic amines and quality characteristics of chicken patties: Steam-assisted hybrid oven versus convection ovens. Poult. Sci. 2014, 93, 2296–2303. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, J.; Li, Z.; Weng, M.; Zhang, X.; Tang, X.; Pan, Y. Effects of ultra-high pressure, thermal pasteurization, and ultra-high temperature sterilization on color and nutritional components of freshly-squeezed lettuce juice. Food Chem. 2024, 435, 137524. [Google Scholar] [CrossRef]
- Wu, W.; Gao, P.; Jiang, Q.; Yang, F.; Yu, D.; Yu, P.; Xia, W.; Yu, D. Kinetics and mechanisms of thermal deterioration in silver carp (Hypophthalmichtys molitrix) surimi gel quality under high-temperature sterilization. J. Sci. Food Agric. 2024, 104, 9240–9254. [Google Scholar] [CrossRef]
- Van Impe, J.; Smet, C.; Tiwari, B.; Greiner, R.; Ojha, S.; Stulić, V.; Vukušić, T.; Jambrak, A.R. State of the art of nonthermal and thermal processing for inactivation of microorganisms. J. Appl. Microbiol. 2018, 125, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.N.; Vicente, A.A. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res. Int. 2010, 43, 1936–1943. [Google Scholar] [CrossRef]
- Yi, T.; Fang, W.; Xie, X.; Yuan, B.; Lu, M.; Xu, C. High pressure processing (HPP) improved safety and quality of emerging aronia berry juice: A pilot scale shelf-life study. J. Food Sci. Technol. 2022, 59, 755–767. [Google Scholar] [CrossRef]
- Ortega-Rivas, E.; Salmerón-Ochoa, I. Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages. Crit. Rev. Food Sci. Nutr. 2014, 54, 190–207. [Google Scholar] [CrossRef]
- Iqbal, A.; Murtaza, A.; Muhammad, Z.; Elkhedir, A.E.; Tao, M.; Xu, X. Inactivation, aggregation and conformational changes of polyphenol oxidase from quince (Cydonia oblonga miller) juice subjected to thermal and high-pressure carbon dioxide treatment. Molecules 2018, 23, 1743. [Google Scholar] [CrossRef]
- Schottroff, F.; Fröhling, A.; Zunabovic-Pichler, M.; Krottenthaler, A.; Schlüter, O.; Jäger, H. Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes. Front. Microbiol. 2018, 9, 2773. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Pan, H.; Yang, D.; Rao, L.; Zhao, L.; Wang, Y.; Liao, X. Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 149–183. [Google Scholar] [CrossRef]
- Oliver James, D. The viable but nonculturable state in bacteria. J. Microbiol. 2005, 43, 93–100. [Google Scholar]
- Zhao, X.; Zhong, J.; Wei, C.; Lin, C.W.; Ding, T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front. Microbiol. 2017, 8, 580. [Google Scholar] [CrossRef]
- Pinto, D.; Santos, M.A.; Chambel, L. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms. Crit. Rev. Microbiol. 2015, 41, 61–76. [Google Scholar] [CrossRef]
- Alleron, L.; Khemiri, A.; Koubar, M.; Lacombe, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Frere, J. VBNC Legionella pneumophila cells are still able to produce virulence proteins. Water Res. 2013, 47, 6606–6617. [Google Scholar] [CrossRef]
- Vora, G.J.; Meador, C.E.; Bird, M.M.; Bopp, C.A.; Andreadis, J.D.; Stenger, D.A. Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc. Natl. Acad. Sci. USA 2005, 102, 19109–19114. [Google Scholar] [CrossRef]
- Chaisowwong, W.; Kusumoto, A.; Hashimoto, M.; Harada, T.; Maklon, K.; Kawamoto, K. Physiological characterization of Campylobacter jejuni under cold stresses conditions: Its potential for public threat. J. Vet. Med. Sci. 2012, 74, 43–50. [Google Scholar] [CrossRef]
- Highmore, C.J.; Warner, J.C.; Rothwell, S.D.; Wilks, S.A.; Keevil, C.W.; Bailey, M.J. Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson induced by chlorine stress remain infectious. mBio 2018, 9, 00540-18. [Google Scholar] [CrossRef]
- Morata, A.; del Fresno, J.M.; Gavahian, M.; Guamis, B.; Palomero, F.; López, C. Effect of HHP and UHPH high-pressure techniques on the extraction and stability of grape and other fruit anthocyanins. Antioxidants 2023, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Huang, H.W.; Hsu, C.P.; Yang, B.B. Recent advances in food processing using high hydrostatic pressure technology. Appl. Environ. Microbiol. 2016, 56, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H.; Janositz, A.; Knorr, D. The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathol. Biol. 2010, 58, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Vannini, L.; Lanciotti, R.; Baldi, D.; Guerzoni, M.E. Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase. Int. J. Food Microbiol. 2004, 94, 123–135. [Google Scholar] [CrossRef]
- Renaud, C.; de Lamballerie, M.; Guyon, C.; Astruc, T.; Venien, A.; Pottier, L. Effects of high-pressure treatment on the muscle structure of salmon (Salmo salar). Food Chem. 2022, 367, 130721. [Google Scholar] [CrossRef]
- Sido, R.F.; Huang, R.; Liu, C.; Chen, H. High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa. Int. J. Food Microbiol. 2017, 242, 1–6. [Google Scholar] [CrossRef]
- Ye, M.; Li, X.; Kingsley, D.H.; Jiang, X.; Chen, H.; Griffiths, M.W. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure. Appl. Environ. Microbiol. 2014, 80, 2248–2253. [Google Scholar] [CrossRef]
- Lou, F.; Neetoo, H.; Chen, H.; Li, J. Inactivation of a human norovirus surrogate by high-pressure processing: Effectiveness, mechanism, and potential application in the fresh produce industry. Appl. Environ. Microbiol. 2011, 77, 1862–1871. [Google Scholar] [CrossRef]
- Quiroz-González, B.; Rodríguez-Martínez, V.; García-Mateos, M.d.R.; Torres, J.A.; Welti-Chanes, J. High hydrostatic pressure inactivation and recovery study of Listeria innocua and Saccharomyces cerevisiae in pitaya (Stenocereus pruinosus) juice. Innov. Food Sci. Emerg. Technol. 2018, 50, 169–173. [Google Scholar] [CrossRef]
- Wang, C.Y.; Huang, H.W.; Hsu, C.P.; Shyu, Y.T.; Yang, B.B. Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control. 2013, 32, 348–353. [Google Scholar] [CrossRef]
- Kural, A.; Shearer, A.; Kingsley, D.; Chen, H. Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. Int. J. Food Microbiol. 2008, 127, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Sokorai, K.; Ukuku, D.; Fan, X.; Juneja, V.; Sites, J.; Cassidy, J. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid. Int. J. Food Microbiol. 2016, 235, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Ha, J.H.; Kim, S.H.; Ha, S.D. Effects of high hydrostatic pressure on the inactivation of norovirus and quality of cabbage Kimchi. Food Control. 2017, 81, 40–45. [Google Scholar] [CrossRef]
- Tananuwong, K.; Chitsakun, T.; Tattiyakul, J. Effects of high-pressure processing on inactivation of Salmonella Typhimurium, eating quality, and microstructure of raw chicken breast fillets. J. Food Sci. 2012, 77, E321-7. [Google Scholar] [CrossRef]
- Teo, A.Y.L.; Ravishankar, S.; Sizer, C.E. Effect of low-temperature, high-pressure treatment on the survival of Escherichia coli O157:H7 and Salmonella in unpasteurized fruit juices. J. Food Prot. 2001, 64, 1122–1127. [Google Scholar] [CrossRef]
- Bulut, S.; Karatzas, K.A.G. Inactivation of Escherichia coli K12 in phosphate buffer saline and orange juice by high hydrostatic pressure processing combined with freezing. LWT 2021, 136, 110313. [Google Scholar] [CrossRef]
- Bulut, S. Inactivation of Escherichia coli in milk by high pressure processing at low and subzero temperatures. High Press. Res. 2014, 34, 439–446. [Google Scholar] [CrossRef]
- Bulut, S. The effects of high-pressure processing at low and subzero temperatures on inactivation of microorganisms in frozen and unfrozen beef mince inoculated with Escherichia coli strain ATCC 25922. Food Bioprocess Technol. 2014, 7, 3033–3044. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Bulut, S.; Karatzas, K.A.G.; Boziaris, I.S. Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102427. [Google Scholar] [CrossRef]
- Cap, M.; Paredes, P.F.; Fernández, D.; Mozgovoj, M.; Vaudagna, S.R.; Rodriguez, A. Effect of high hydrostatic pressure on Salmonella spp. inactivation and meat-quality of frozen chicken breast. LWT 2020, 118, 108873. [Google Scholar] [CrossRef]
- Chai, H.-E.; Sheen, S. Effect of high pressure processing, allyl isothiocyanate, and acetic acid stresses on Salmonella survivals, storage, and appearance color in raw ground chicken meat. Food Control 2021, 123, 107784. [Google Scholar] [CrossRef]
- Pokhrel, P.R.; Toniazzo, T.; Boulet, C.; Oner, M.E.; Sablani, S.S.; Tang, J.; Barbosa-Cánovas, G.V. Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innov. Food Sci. Emerg. Technol. 2019, 54, 93–102. [Google Scholar] [CrossRef]
- Ye, M.; Huang, Y.; Chen, H. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Food Microbiol. 2012, 32, 179–184. [Google Scholar] [CrossRef]
- Wang, L.; Pan, J.; Xie, H.; Yang, Y.; Lin, C. Inactivation of Staphylococcus aureus and Escherichia coli by the synergistic action of high hydrostatic pressure and dissolved CO2. Int. J. Food Microbiol. 2010, 144, 118–125. [Google Scholar] [CrossRef]
- Pina-Pérez, M.C.; Silva-Angulo, A.B.; Muguerza-Marquinez, B.; Aliaga, D.R.; López, A.M. Synergistic effect of high hydrostatic pressure and natural antimicrobials on inactivation kinetics of Bacillus cereus in a liquid whole egg and skim milk mixed beverage. Foodborne Pathog. Dis. 2009, 6, 649–656. [Google Scholar] [CrossRef]
- Bravo, D.; de Alba, M.; Medina, M. Combined treatments of high-pressure with the lactoperoxidase system or lactoferrin on the inactivation of Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in beef carpaccio. Food Microbiol. 2014, 41, 27–32. [Google Scholar] [CrossRef]
- Duong, T.; Balaban, M.; Perera, C.; Bi, X. Microbial and sensory effects of combined high hydrostatic pressure and dense phase carbon dioxide process on feijoa puree. J. Food Sci. 2015, 80, E2478. [Google Scholar] [CrossRef]
- Wemekamp-Kamphuis, H.H.K.; Andreas, K.; Wouters, J.A.; Abee, T. Enhanced levels of cold shock proteins in Listeria monocytogenes lo28 upon exposure to low temperature and high hydrostatic pressure. Appl. Environ. Microbiol. 2002, 68, 456–463. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Lin, C.-S.; Hsiao, Y.-T.; Huang, Y.-L.; Yen, F.-L.; Lee, Y.-C.; Tsai, Y.-H. Inactivation kinetics of foodborne pathogens in carrot juice by high-pressure processing. Biology 2023, 12, 1383. [Google Scholar] [CrossRef]
- Hsiao, Y.-T.; Chen, B.-Y.; Huang, H.-W.; Wang, C.-Y. Inactivation mechanism of Aspergillus flavus Conidia by high hydrostatic pressure. Foodborne Pathog. Dis. 2021, 18, 123–130. [Google Scholar] [CrossRef]
- Deng, H.; Cao, J.; Wang, D.; Zhu, J.; Ma, L. Effects of high hydrostatic pressure on inactivation, morphological damage, and enzyme activity of Escherichia coli O157:H7. J. Food Saf. 2022, 42, 12998. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Vogel, R.F. On-line Fluorescence Determination of Pressure Mediated Outer Membrane Damage in Escherichia coli. Syst. Appl. Microbiol. 2001, 24, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Kim, S.-H.; Park, S.-H. Effect of high hydrostatic pressure treatment on the inactivation and sublethal injury of foodborne pathogens and quality of apple puree at different pH. Food Microbiol. 2023, 114, 104302. [Google Scholar] [CrossRef] [PubMed]
- Pilavtepe-Celik, M.; Balaban, M.O.; Alpas, H.; Yousef, A.E. Image analysis based quantification of bacterial volume change with high hydrostatic pressure. J. Food Sci. 2008, 73, M423–M429. [Google Scholar] [CrossRef]
- Alpas, H.; Lee, J.; Bozoglu, F.; Kaletunç, G. Evaluation of high hydrostatic pressure sensitivity of Staphylococcus aureus and Escherichia coli O157:H7 by differential scanning calorimetry. Int. J. Food Microbiol. 2003, 87, 229–237. [Google Scholar] [CrossRef]
- Gordon, W.; Niven, C.A.M.; Bernard, M.M. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli. Microbiology 1999, 145, 419–425. [Google Scholar]
- Moussa, M.; Perrier-Cornet, J.-M.; Gervais, P. Damage in Escherichia coli cells treated with a combination of high hydrostatic pressure and subzero temperature. Appl. Environ. Microbiol. 2007, 73, 6508–6518. [Google Scholar] [CrossRef]
- Rivalain, N.; Roquain, J.; Demazeau, G. Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies. Biotechnol. Adv. 2010, 28, 659–672. [Google Scholar] [CrossRef]
- Wu, D.; Forghani, F.; Daliri, E.B.-M.; Li, J.; Liao, X.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Microbial response to some nonthermal physical technologies. Trends Food Sci. Technol. 2020, 95, 107–117. [Google Scholar] [CrossRef]
- Berlin, D.L.; Herson, D.S.; Hicks, D.T.; Hoover, D.G. Response of pathogenic Vibrio species to high hydrostatic pressure. Appl. Environ. Microbiol. 1999, 65, 2776–2780. [Google Scholar] [CrossRef]
- Ritz, M.; Pilet, M.F.; Jugiau, F.; Rama, F.; Federighi, M. Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high-pressure treatments: Destruction or sublethal stress? Lett. Appl. Microbiol. 2006, 42, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Karamova, N.S.; Zelenikhin, P.V.; Kiselev, V.D.; Lipatnikova, A.A.; Ilinskaya, O.N. The effect of high hydrostatic pressure on the viability and mutagenesis of Salmonella Typhimurium. Russ. J. Genet. Appl. Res. 2017, 7, 698–704. [Google Scholar] [CrossRef]
- Yang, D.; Jiang, Z.; Meng, Q.; Wang, S.; Pan, H.; Rao, L.; Liao, X. Analyzing the pressure resistant, sublethal injury and resuscitable viable but non-culturable state population of Escherichia coli, Staphylococcus aureus, Bacillus amyloliquefaciens and Lactiplantibacillus plantarum under high pressure processing. Food Res. Int. 2023, 173, 113336. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, Y.; Yang, D.; Zhao, L.; Rao, L.; Liao, X. High-pressure-induced viable but non-culturable lactic acid bacteria inhibit its post-acidification. Bioresour. Technol. 2025, 422, 132221. [Google Scholar] [CrossRef]
- Roobab, U.; Abida, A.; Chacha, J.S.; Athar, A.; Madni, G.M.; Ranjha, M.M.A.N.; Rusu, A.V.; Zeng, X.-A.; Aadil, R.M.; Trif, M. Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules 2022, 27, 4031. [Google Scholar] [CrossRef]
- Guionet, A.; Joubert-Durigneux, V.; Packan, D.; Cheype, C.; Garnier, J.P.; David, F.; Zaepffel, C.; Leroux, R.M.; Teissié, J.; Blanckaert, V. Effect of nanosecond pulsed electric field on Escherichia coli in water: Inactivation and impact on protein changes. J. Appl. Microbiol. 2014, 117, 721–728. [Google Scholar] [CrossRef]
- Kotnik, T.; Rems, L.; Tarek, M.; Miklavčič, D. Membrane electroporation and electropermeabilization: Mechanisms and models. Annu. Rev. Biophys. 2019, 48, 63–91. [Google Scholar] [CrossRef]
- Cserhalmi, Z.; Sass-Kiss, Á.; Tóth-Markus, M.; Lechner, N. Study of pulsed electric field treated citrus juices. Innov. Food Sci. Emerg. Technol. 2006, 7, 49–54. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Geveke, D.J. A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice. Int. J. Food Microbiol. 2010, 138, 50–55. [Google Scholar] [CrossRef]
- Li, L.; Yang, R.; Zhao, W. The effect of pulsed electric fields (PEF) combined with temperature and natural preservatives on the quality and microbiological shelf-life of cantaloupe juice. Foods 2021, 10, 2606. [Google Scholar] [CrossRef]
- Buckow, R.; Ng, S.; Toepfl, S. Pulsed electric field processing of orange juice: A review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr. Rev. Food Sci. Food Saf. 2013, 12, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Mosqueda-Melgar, J.; Raybaudi-Massilia, R.M.; Martín-Belloso, O. Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. Int. J. Food Microbiol. 2007, 117, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Mittal, G.S.; Griffiths, M.W. Inactivation of Salmonella Typhimurium in orange juice containing antimicrobial agents by pulsed electric field. J. Food Prot. 2002, 65, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Shin, G.Y.; Franco, B.G.; Tang, J.; Sablani, S.; Barbosa-Cánovas, G.V. Equivalent processing for pasteurization of a pineapple juice–coconut milk blend by selected nonthermal technologies. J. Food Sci. 2022, 88, 403–416. [Google Scholar] [CrossRef]
- Buitimea-Cantúa, G.V.; Rico-Alderete, I.A.; Rostro-Alanís, M.d.J.; Welti-Chanes, J.; Escobedo-Avellaneda, Z.J.; Soto-Caballero, M.C. Effect of high hydrostatic pressure and pulsed electric fields processes on microbial safety and quality of black/red raspberry juice. Foods 2022, 11, 2342. [Google Scholar] [CrossRef]
- Kantala, C.; Supasin, S.; Intra, P.; Rattanadecho, P. Evaluation of pulsed electric field and conventional thermal processing for microbial inactivation in thai orange juice. Foods 2022, 11, 1102. [Google Scholar] [CrossRef]
- Craven, H.M.; Swiergon, P.; Ng, S.; Midgely, J.; Versteeg, C.; Coventry, M.J.; Wan, J. Evaluation of pulsed electric field and minimal heat treatments for inactivation of pseudomonads and enhancement of milk shelf-life. Innov. Food Sci. Emerg. Technol. 2008, 9, 211–216. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Inactivation of Escherichia coli in a tropical fruit smoothie by a combination of heat and pulsed electric fields. J. Food Sci. 2008, 73, M395–M399. [Google Scholar] [CrossRef]
- McNamee, C.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J.; Scannell, A.G. PEF based hurdle strategy to control Pichia fermentans, Listeria innocua and Escherichia coli K12 in orange juice. Int. J. Food Microbiol. 2010, 138, 13–18. [Google Scholar] [CrossRef]
- Marsellés-Fontanet, À.R.; Puig, A.; Olmos, P.; Mínguez-Sanz, S.; Martín-Belloso, O. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields. Int. J. Food Microbiol. 2009, 130, 159–165. [Google Scholar] [CrossRef]
- Saldaña, G.; Puértolas, E.; Monfort, S.; Raso, J.; Álvarez, I. Defining treatment conditions for pulsed electric field pasteurization of apple juice. Int. J. Food Microbiol. 2011, 151, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.J.; Han, B.K.; Choi, H.J.; Kang, S.H.; Baick, S.C.; Lee, D.-U. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in low-fat milk by pulsed electric field treatment: A pilot-scale study. Korean J. Food Sci. Anim. Resour. 2015, 35, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Marıa, L. Calderon-Miranda, G.V.B.-C.; Barry, G. Swanson. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Int. J. Food Microbiol. 1999, 51, 7–17. [Google Scholar]
- Gallo, L.I.; Pilosof, A.M.R.; Jagus, R.J. Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J. Food Eng. 2007, 79, 188–193. [Google Scholar] [CrossRef]
- Lee, S.J.; Bang, I.H.; Choi, H.-J.; Min, S.C. Pasteurization of mixed mandarin and Hallabong tangor juice using pulsed electric field processing combined with heat. Food Sci. Biotechnol. 2018, 27, 669–675. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Ahmed, Z.; Ahmad, N.; Aadil, R.M.; Rahaman, A.; Roobab, U.; Rehman, A.; Siddique, R.; Zeng, X.; Siddeeg, A. Novel processing techniques and spinach juice: Quality and safety improvements. J. Food Sci. 2020, 85, 1018–1026. [Google Scholar] [CrossRef]
- Xin, Q.; Zhang, X.; Li, Z.; Lei, L. Sterilization of oil-field re-injection water using combination treatment of pulsed electric field and ultrasound. Ultrason. Sonochem. 2009, 16, 1–3. [Google Scholar] [CrossRef]
- Palgan, I.; Caminiti, I.M.; Muñoz, A. Noci, F.; Whyte, P.; Morgan, D.; Cronin, D.; Lyng, J. Combined effect of selected non-thermal technologies on Escherichia coli and Pichia fermentans inactivation in an apple and cranberry juice blend and on product shelf life. Int. J. Food Microbiol. 2011, 151, 1–6. [Google Scholar] [CrossRef]
- Pataro, G.; De lisi, M.; Donsì, G.; Ferrari, G. Microbial inactivation of Escherichia coli cells by a combined PEF–HPCD treatment in a continuous flow system. Innov. Food Sci. Emerg. Technol. 2014, 22, 102–109. [Google Scholar] [CrossRef]
- Pyatkovskyy, T.I.; Shynkaryk, M.V.; Mohamed, H.M.; Yousef, A.E.; Sastry, S.K. Effects of combined high pressure (HPP), pulsed electric field (PEF) and sonication treatments on inactivation of Listeria innocua. J. Food Eng. 2018, 233, 49–56. [Google Scholar] [CrossRef]
- Halpin, R.M.; Duffy, L.; Cregenzán-alberti, O.; Lyng, J.; Noci, F. The effect of non-thermal processing technologies on microbial inactivation: An investigation into sub-lethal injury of Escherichia coli and Pseudomonas fluorescens. Food Control 2014, 41, 106–115. [Google Scholar] [CrossRef]
- Walkling-ribeiro, M.; Noci, F.; Riener, J.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food Bioprocess Technol. 2009, 2, 422–430. [Google Scholar] [CrossRef]
- Teissie, J.; Tsong, T.Y. Electric Field Induced Transient Pores in Phospholipid Bilayer Vesicles. Biochemistry 1981, 20, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Saulis, G. Electroporation of cell membranes: The fundamental effects of pulsed electric fields in food processing. Food Eng. Rev. 2010, 2, 52–73. [Google Scholar] [CrossRef]
- Qin, B.L.; Pothakamury, U.R.; Barbosa-Cánovas, G.V.; Swanson, B.G.; Peleg, M. Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Crit. Rev. Food Sci. Nutr. 1996, 36, 603–627. [Google Scholar] [CrossRef]
- Brito, I.P.C.; Silva, E.K. Pulsed electric field technology in vegetable and fruit juice processing: A review. Food Res. Int. 2024, 184, 114207. [Google Scholar] [CrossRef]
- Tylewicz, U. How does pulsed electric field work? In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Academic Press: Cambridge, MA, USA, 2020; pp. 3–21. [Google Scholar]
- Wasson, E.M.; Alinezhadbalalami, N.; Brock, R.M.; Allen, I.C.; Verbridge, S.S.; Davalos, R.V. Understanding the role of calcium-mediated cell death in high-frequency irreversible electroporation. Bioelectrochemistry 2020, 131, 107369. [Google Scholar] [CrossRef]
- Loghavi, L.; Sastry, S.K.; Yousef, A.E. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnol. Prog. 2009, 25, 85–94. [Google Scholar] [CrossRef]
- Qian, J.Y.; Ma, L.J.; Wang, L.J.; Jiang, W. Effect of pulsed electric field on structural properties of protein in solid state. LWT 2016, 74, 331–337. [Google Scholar] [CrossRef]
- Wei, J.-N.; Zeng, X.-A.; Tang, T.; Jiang, Z.; Liu, Y.-Y. Unfolding and nanotube formation of ovalbumin induced by pulsed electric field. Innov. Food Sci. Emerg. Technol. 2018, 45, 249–254. [Google Scholar] [CrossRef]
- Rowan, N.J. Viable but non-culturable forms of food and waterborne bacteria: Quo Vadis? Trends Food Sci. Technol. 2004, 15, 462–467. [Google Scholar] [CrossRef]
- Yaqub, S.; Anderson, J.G.; MacGregor, S.J.; Rowan, N.J. Use of a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to high-intensity pulsed electric fields. Lett. Appl. Microbiol. 2004, 39, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, E.; Dubrovin, I.; Pogreb, R.; Pinhasi, G.A.; Cahan, R. Resuscitation of pulsed electric field-treated Staphylococcus aureus and Pseudomonas putida in a rich nutrient medium. Foods 2021, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Albala, L.; Ercan, U.K.; Joshi, S.G.; Eisenbrey, J.R.; Teraphongphom, N.; Wheatley, M.A. Preservation of imaging capability in sensitive ultrasound contrast agents after indirect plasma sterilization. Int. J. Pharm. 2015, 494, 146–151. [Google Scholar] [CrossRef]
- Heller, L.C.; Edelblute, C.M.; Mattson, A.M.; Hao, X.; Kolb, J.F. Inactivation of bacterial opportunistic skin pathogens by nonthermal DC-operated afterglow atmospheric plasma. Lett. Appl. Microbiol. 2012, 54, 126–132. [Google Scholar] [CrossRef]
- Huang, Y.M.; Chen, C.K.; Hsu, C.L. Non-thermal atmospheric gas plasma for decontamination of sliced cheese and changes in quality. Food Sci. Technol. Int. 2020, 26, 715–726. [Google Scholar] [CrossRef]
- Herianto, S.; Shih, M.-K.; Lin, C.-M.; Hung, Y.-C.; Hsieh, C.-W.; Wu, J.-S.; Chen, M.-H.; Chen, H.-L.; Hou, C.-Y. The effects of glazing with plasma-activated water generated by a piezoelectric direct discharge plasma system on whiteleg shrimp (Litopenaeus vannamei). LWT 2022, 154, 112547. [Google Scholar] [CrossRef]
- Niemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.G.; Kwon, J.; Bin Lee, S.; Jung, W.J.; Lee, Y.M.; Jo, S.J.; Giri, S.S.; Yoon, S.H.; Kim, S.H.; et al. Bactericidal efficacy of non-thermal plasma activation against Aeromonas hydrophila and immunological responses of koi (Cyprinus carpio haematopterus). Fish Shellfish. Immunol. 2022, 121, 197–204. [Google Scholar] [CrossRef]
- Ermolaeva, S.A.; Varfolomeev, A.F.; Chernukha, M.Y.; Yurov, D.S.; Vasiliev, M.M.; Kaminskaya, A.A.; Moisenovich, M.M.; Romanova, J.M.; Murashev, A.N.; Selezneva, I.I.; et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 2011, 60, 75–83. [Google Scholar] [CrossRef]
- Julák, J.; Vaňková, E.; Válková, M.; Kašparová, P.; Masák, J.; Scholtz, V. Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiol. 2020, 65, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Choi, H.S.; Lee, D.U.; Min, S.C. Effects of processing parameters on the inactivation of Bacillus cereus spores on red pepper (Capsicum annum L.) flakes by microwave-combined cold plasma treatment. BioMed Res. Int. 2017, 263, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Khun, J.; Machková, A.; Kašparová, P.; Klenivskyi, M.; Vaňková, E.; Galář, P.; Julák, J. Non-thermal plasma sources based on cometary and point-to-ring discharges. Molecules 2021, 27, 238. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Noriega, E.; Thompson, A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 2013, 33, 24–29. [Google Scholar] [CrossRef]
- Baier, M.; Janssen, T.; Wieler, L.H.; Ehlbeck, J.; Knorr, D.; Schlüter, O. Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma. J. Biosci. Bioeng. 2015, 120, 275–279. [Google Scholar] [CrossRef]
- Surowsky, B.; Fröhling, A.; Gottschalk, N.; Schlüter, O.; Knorr, D. Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. Int. J. Food Microbiol. 2014, 174, 63–71. [Google Scholar] [CrossRef]
- Burts, M.L.; Alexeff, I.; Meek, E.T.; McCullers, J.A. Use of atmospheric non-thermal plasma as a disinfectant for objects contaminated with methicillin-resistant Staphylococcus aureus. Am. J. Infect. Control 2009, 37, 729–733. [Google Scholar] [CrossRef]
- Butscher, D.; Van Loon, H.; Waskow, A.; von Rohr, P.R.; Schuppler, M. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int. J. Food Microbiol. 2016, 238, 222–232. [Google Scholar] [CrossRef]
- Niemira, B.A. Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J. Food Sci. 2012, 77, M171–M175. [Google Scholar] [CrossRef]
- Chen, D.; Peng, P.; Zhou, N.; Cheng, Y.; Min, M.; Ma, Y.; Mao, Q.; Chen, P.; Chen, C.; Ruan, R. Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chem. 2019, 290, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Dasan, B.G.; Yildirim, T.; Boyaci, I.H. Surface decontamination of eggshells by using non-thermal atmospheric plasma. Int. J. Food Microbiol. 2018, 266, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Ruan, R.; Mok, C.K.; Huang, G.; Lin, X.; Chen, P. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 2007, 72, M62–M66. [Google Scholar] [CrossRef] [PubMed]
- Niemira, B.A.; Sites, J. Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples. J. Food Prot. 2008, 71, 1357–1365. [Google Scholar] [CrossRef]
- Frías, E.; Iglesias, Y.; Alvarez-Ordóñez, A.; Prieto, M.; González-Raurich, M.; López, M. Evaluation of Cold Atmospheric Pressure Plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: Impact on microbiological, sensorial and functional quality attributes. Food Res. Int. 2020, 129, 108859. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, D.U.; Min, S.C. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 2014, 38, 128–136. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, W.; Liao, J.; Jiang, A.; Xiu, Z.; Gaowa, S.; Guan, Y.; Yang, X.; Feng, K.; Liu, C. Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. J. Sci. Food Agric. 2020, 100, 5586–5595. [Google Scholar] [CrossRef]
- Kang, J.H.; Bai, J.; Min, S.C. Inactivation of indigenous microorganisms and Salmonella in korean rice cakes by in-package cold plasma treatment. Int. J. Environ. Res. Public Health 2021, 18, 3360. [Google Scholar] [CrossRef]
- Yadav, B.; Spinelli, A.C.; Misra, N.N.; Tsui, Y.Y.; McMullen, L.M.; Roopesh, M.S. Effect of in-package atmospheric cold plasma discharge on microbial safety and quality of ready-to-eat ham in modified atmospheric packaging during storage. J. Food Sci. 2020, 85, 1203–1212. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, H.; Ryu, S.; Eom, S.; Min, S.C. In-package cold plasma treatment for microbial inactivation in plastic-pouch packaged steamed rice cakes. Int. J. Food Microbiol. 2023, 389, 110108. [Google Scholar] [CrossRef]
- Liao, X.; Li, J.; Muhammad, A.I.; Suo, Y.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Application of a dielectric barrier discharge atmospheric cold plasma (DBD-ACP) for Eshcerichia coli inactivation in apple juice. J. Food Sci. 2018, 83, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Anderson, N.M.; Keller, S. Atmospheric pressure plasma treatment of black peppercorns inoculated with Salmonella and held under controlled storage. J. Food Sci. 2014, 79, E2441-6. [Google Scholar] [CrossRef] [PubMed]
- Moutiq, R.; Misra, N.N.; Mendonça, A.; Keener, K. In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Sci. 2020, 159, 107942. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Song, A.Y.; Min, S.C. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. Int. J. Food Microbiol. 2017, 249, 66–71. [Google Scholar] [CrossRef]
- Srey, S.; Park, S.Y.; Jahid, I.K.; Ha, S.-D. Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage. Food Res. Int. 2014, 62, 484–491. [Google Scholar] [CrossRef]
- Ziuzina, D.; Han, L.; Cullen, P.J.; Bourke, P. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. Int. J. Food Microbiol. 2015, 210, 53–61. [Google Scholar] [CrossRef]
- Jiang, H.B.; Choi, E.H.; Park, G.; Kim, K.M.; Mahnot, N.K.; Mahanta, C.L.; Keener, K.M.; Misra, N.N. Strategy to achieve a 5-log Salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma (HVACP). Sci. Rep. 2019, 284, 303–311. [Google Scholar]
- Wang, J.; Fu, T.; Sang, X.; Liu, Y. Effects of high voltage atmospheric cold plasma treatment on microbial diversity of tilapia (Oreochromis mossambicus) fillets treated during refrigeration. Int. J. Food Microbiol. 2022, 375, 109738. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X.; Niemira, B.A. Inactivation of Escherichia coli O157:H7 and aerobic microorganisms in romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma. J. Food Prot. 2017, 80, 35–43. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Fan, X.; Sokorai, K.; Jin, T.Z. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res. Int. 2018, 108, 378–386. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X. In-package inhibition of E. coli O157:H7 on bulk romaine lettuce using cold plasma. Food Microbiol. 2017, 65, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.I.; Kim, H.J.; Park, S.; Choe, W.; Oh, M.W.; Jo, C. Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Escherichia coli. Foodborne Pathog. Dis. 2014, 11, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, B.; Khoshtaghaza, M.H.; Ghomi, H.; Torshizi, M.A.K.; Mehdizadeh, S.A.; Pishkar, G.; Dunn, I.C. Cold atmospheric pressure air plasma jet disinfection of table eggs: Inactivation of Salmonella enterica, cuticle integrity and egg quality. Int. J. Food Microbiol. 2024, 410, 110474. [Google Scholar] [CrossRef]
- Jalilzadeh, A.; Hesari, J.; Peighambardoust, S.H.; Javidipour, I. The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese. J Dairy Sci. 2018, 101, 5809–5820. [Google Scholar] [CrossRef]
- Mehta, D.; Yadav, S.K. Impact of atmospheric non-thermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: A hurdle technology approach. Food Sci. Technol. Int. 2020, 26, 3–10. [Google Scholar] [CrossRef]
- Perinban, S.; Orsat, V.; Lyew, D.; Raghavan, V. Effect of plasma activated water on Escherichia coli disinfection and quality of kale and spinach. Food Chem. 2022, 397, 133793. [Google Scholar] [CrossRef]
- Guo, J.; Huang, K.; Wang, X.; Lyu, C.; Yang, N.; Li, Y.; Wang, J. Inactivation of yeast on grapes by plasma-activated water and its effects on quality attributes. J. Food Prot. 2017, 80, 225–230. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 2016, 197, 436–444. [Google Scholar] [CrossRef]
- Berardinelli, A.; Pasquali, F.; Cevoli, C.; Trevisani, M.; Ragni, L.; Mancusi, R.; Manfreda, G. Sanitisation of fresh-cut celery and radicchio by gas plasma treatments in water medium. Postharvest Biol. Technol. 2016, 111, 297–304. [Google Scholar] [CrossRef]
- Patange, A.; Lu, P.; Boehm, D.; Cullen, P.J.; Bourke, P. Efficacy of cold plasma function alised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiol. 2019, 84, 103226. [Google Scholar] [CrossRef]
- Liao, X.; Xiang, Q.; Cullen, P.J.; Su, Y.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT 2020, 117, 108649. [Google Scholar] [CrossRef]
- Guo, J.; Qin, D.; Li, W.; Wu, F.; Li, L.; Liu, X. Inactivation of Penicillium italicum on kumquat via plasma-activated water and its effects on quality attributes. Int. J. Food Microbiol. 2021, 343, 109090. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, M.; Meng, X.; Bai, Y.; Dong, X. Effect of plasma-activated water on Shewanella putrefaciens population growth and quality of yellow river carp (Cyprinus carpio) fillets. J. Food Prot. 2021, 84, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Park, H.W.; Kim, S.B.; Ryu, S.; Lim, J.; Hong, E.J.; Byeon, Y.S.; Chun, H.H. Sequential application of plasma-activated water and mild heating improves microbiological quality of ready-to-use shredded salted kimchi cabbage (Brassica pekinensis L.). Food Control 2019, 98, 501–509. [Google Scholar] [CrossRef]
- Xiang, Q.; Zhang, R.; Fan, L.; Ma, Y.; Wu, D.; Li, K.; Bai, Y. Microbial inactivation and quality of grapes treated by plasma-activated water combined with mild heat. LWT 2020, 126, 109336. [Google Scholar] [CrossRef]
- Esua, O.J.; Cheng, J.-H.; Sun, D.-W. Optimisation of treatment conditions for reducing Shewanella putrefaciens and Salmonella Typhimurium on grass carp treated by thermoultrasound-assisted plasma functionalized buffer. Ultrason. Sonochem. 2021, 76, 105609. [Google Scholar] [CrossRef]
- Wang, Y.; Sang, X.; Cai, Z.; Zeng, L.; Deng, W.; Zhang, J.; Jiang, Z.; Wang, J. Optimization of cold plasma combined treatment process and its effect on the quality of Asian sea bass (Lates calcarifer) during refrigerated storage. J. Sci. Food Agric. 2023, 104, 2750–2760. [Google Scholar] [CrossRef]
- Royintarat, T.; Choi, E.H.; Boonyawan, D.; Seesuriyachan, P.; Wattanutchariya, W. Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Kaavya, R.; Pandiselvam, R.; Gavahian, M.; Tamanna, R.; Jain, S.; Dakshayani, R.; Khanashyam, A.C.; Shrestha, P.; Kothakota, A.; Prasath, V.A. Cold plasma: A promising technology for improving the rheological characteristics of food. Crit. Rev. Food Sci. Nutr. 2023, 63, 11370–11384. [Google Scholar] [CrossRef]
- Sani, I.K.; Aminoleslami, L.; Mirtalebi, S.S.; Sani, M.A.; Mansouri, E.; Eghbaljoo, H.; Jalil, A.T.; Thanoon, R.D.; Khodaei, S.M.; Mohammadi, F. Cold plasma technology: Applications in improving edible films and food packaging. Food Packag. Shelf Life 2023, 37, 101087. [Google Scholar] [CrossRef]
- Lim, J.; Hong, E.J.; Kim, S.B.; Ryu, S. The effect of gap distance between a pin and water surface on the inactivation of Escherichia coli using a pin-to-water plasma. Int. J. Mol. Sci. 2022, 23, 5423. [Google Scholar] [CrossRef] [PubMed]
- De Backer, J.; Razzokov, J.; Hammerschmid, D.; Mensch, C.; Hafideddine, Z.; Kumar, N.; van Raemdonck, G.; Yusupov, M.; Van Doorslaer, S.; Johannessen, C.; et al. The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor. Redox Biol. 2018, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, Y.; Dai, C.; Lv, H.; Zhou, X.; Xu, Q. Effects of non-thermal atmospheric plasma on protein. J. Clin. Biochem. Nutr. 2022, 71, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Lackmann, J.W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L.I.O.; Benedikt, J.; Awakowicz, P.; et al. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds. J. Phys. D Appl. Phys. 2015, 48, 494003. [Google Scholar] [CrossRef]
- Krewing, M.; Schubert, B.; Bandow, J.E. A dielectric barrier discharge plasma degrades proteins to peptides by cleaving the peptide bond. Plasma Chem. Plasma Process. 2019, 40, 685–696. [Google Scholar] [CrossRef]
- Laroussi, M.; Leipold, F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 2004, 233, 81–86. [Google Scholar] [CrossRef]
- Lunov, O.; Zablotskii, V.; Churpita, O.; Jäger, A.; Polívka, L.; Syková, E.; Dejneka, A.; Kubinová, Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 2016, 82, 71–83. [Google Scholar] [CrossRef]
- Ercan, U.K.; Smith, J.; Ji, H.F.; Brooks, A.D.; Joshi, S.G. Chemical changes in nonthermal plasma-treated n-acetylcysteine (nac) solution and their contribution to bacterial inactivation. Sci. Rep. 2016, 6, 20365. [Google Scholar] [CrossRef]
- Chandana, L.; Sangeetha, C.J.; Shashidhar, T.; Subrahmanyam, C. Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium. Sci. Total. Environ. 2018, 640–641, 493–500. [Google Scholar] [CrossRef]
- Joshi, I.; Salvi, D.; Schaffner, D.W.; Karwe, M.V. Characterization of microbial inactivation using plasma-activated water and plasma-activated acidified buffer. J. Food Prot. 2018, 81, 1472–1480. [Google Scholar] [CrossRef]
- Laroussi, M.; Mendis, D.A.; Rosenberg, M. Plasma interaction with microbes. New J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
- Mendis, D.; Rosenberg, M.; Azam, F. A note on the possible electrostatic disruption of bacteria. IEEE Trans. Plasma Sci. 2000, 28, 1304–1306. [Google Scholar] [CrossRef]
- Schneider, S.; Lackmann, J.W.; Ellerweg, D.; Denis, B.; Narberhaus, F.; Bandow, J.E.; Benedikt, J. The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet. Plasma Process. Polym. 2011, 9, 561–568. [Google Scholar] [CrossRef]
- Ermolaeva, S.A.; Sysolyatina, E.V.; Kolkova, N.I.; Bortsov, P.; Tuhvatulin, A.I.; Vasiliev, M.M.; Mukhachev, A.Y.; Petrov, O.F.; Tetsuji, S.; Naroditsky, B.S.; et al. Non-thermal argon plasma is bactericidal for the intracellular bacterial pathogen Chlamydia trachomatis. J. Med. Microbiol. 2012, 61, 793–799. [Google Scholar] [CrossRef]
- Abramzon, N.; Joaquin, J.C.; Bray, J.; Brelles-Marino, G. Biofilm destruction by rf high-pressure cold plasma jet. IEEE Trans. Plasma Sci. 2006, 34, 1304–1309. [Google Scholar] [CrossRef]
- Joaquin, J.C.; Kwan, C.; Abramzon, N.; Vandervoort, K. Brelles-Mariño, G. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation? Microbiology 2009, 155, 724–732. [Google Scholar] [CrossRef]
- Dolezalova, E.; Lukes, P. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry 2015, 103, 7–14. [Google Scholar] [CrossRef]
- Carré, G.; Charpentier, E.; Audonnet, S.; Terryn, C.; Boudifa, M.; Doliwa, C.; Belgacem, Z.B.; Gangloff, S.C.; Gelle, M.P. Contribution of fluorescence techniques in determining the efficiency of the non-thermal plasma treatment. Front. Microbiol. 2018, 9, 2171. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, C.; Shen, J.; Lan, Y.; Hu, S.; Han, W.; Chu, P.K. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 2018, 121, 125–134. [Google Scholar] [CrossRef]
- Alessandria, V.; Rantsiou, K.; Cavallero, M.C.; Cocolin, L.S. Effect of atmospheric pressure plasma on Listeria monocytogenes attached to abiotic surfaces. J. Food Prot. 2019, 82, 233–237. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, R.; Liao, X.; Shen, M.; Chen, X.; Feng, J.; Ding, T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr. Res. Food Sci. 2024, 8, 100764. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Liu, D.; Ding, T.; Björkroth, J. Nonthermal plasma induces the viable-but-nonculturable state in Staphylococcus aureus via metabolic suppression and the oxidative stress response. Appl. Environ. Microbiol. 2020, 86, E02216-19. [Google Scholar] [CrossRef] [PubMed]
- Borkar, S.B.; Negi, M.; Jaiswal, A.; Raj Acharya, T.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Plasma-generated nitric oxide water: A promising strategy to combat bacterial dormancy (VBNC state) in environmental contaminant Micrococcus luteus. J. Hazard. Mater. 2024, 461, 132634. [Google Scholar] [CrossRef] [PubMed]
- Nosho, K.; Fukushima, H.; Asai, T.; Nishio, M.; Takamaru, R.; Kobayashi-Kirschvink, K.J.; Ogawa, T.; Hidaka, M.; Masaki, H. cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli. Microbiology 2018, 164, 410–419. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, L.; Geeraerd, A.H.; Spilimbergo, S.; Elst, K.; Van Ginneken, L.; Debevere, J.; Van Impe, J.F.; Devlieghere, F. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int. J. Food Microbiol. 2007, 117, 1–28. [Google Scholar] [CrossRef]
- Zhou, L.; Bi, X.; Xu, Z.; Yang, Y.; Liao, X. Effects of high-pressure CO2 processing on flavor, texture, and color of foods. Crit. Rev. Food Sci. Nutr. 2015, 55, 750–768. [Google Scholar] [CrossRef]
- Liossi, L.L.; Heckler, C.; Sant’Ana, A.S. High-pressure carbon dioxide (HPCD): Impact on the quality of fruit juices and inactivation of spores and enzymes. Food Res. Int. 2024, 198, 115316. [Google Scholar] [CrossRef]
- Rao, L.; Bi, X.; Zhao, F.; Wu, J.; Hu, X.; Liao, X. Effect of high-pressure CO2 processing on bacterial spores. Crit. Rev. Food Sci. Nutr. 2016, 56, 1808–1825. [Google Scholar] [CrossRef]
- Kamihira, M.; Taniguchi, M.; Kobayashi, T. Sterilization of microorganisms with supercritical CO2. J. Agric. Food Chem. 1987, 51, 407–412. [Google Scholar]
- Lin, H.M.; Yang, Z.; Chen, L.F. Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide. Biotechnol. Adv. 1992, 8, 458–461. [Google Scholar]
- Nakamura, K.; Enomoto, A.; Fukushima, H.; Nagai, K.; Hakoda, M. Disruption of microbial cells by the flash discharge of high-pressure carbon dioxide. Biosci. Biotechnol. Biochem. 1994, 58, 1297–1301. [Google Scholar] [CrossRef]
- Ishikawa, H.; Shimoda, M.; Shiratsuchi, H.; Osajima, Y. Sterilization of microorganisms by the supercritical carbon dioxide micro-bubble method. Biosci. Biotechnol. Biochem. 1995, 59, 1949–1950. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Hata, C.; Nakamura, K. CO2 sorption by microbial cells and sterilization by high-pressure CO2. Biosci. Biotechnol. Biochem. 2014, 61, 931–935. [Google Scholar] [CrossRef]
- Shimoda, M.; Yamamoto, Y.; Cocunubo-Castellanos, J.; Tonoike, H.; Kawano, T.; Ishikawa, H.; Osajima, Y. Antimicrobial effects of pressured carbon dioxide in a continuous flow system. J. Food Sci. 1998, 63, 709–712. [Google Scholar] [CrossRef]
- Dillow, A.K.; Dehghani, F.; Hrkach, J.S.; Foster, N.R.; Langer, R. Bacterial inactivation by using near- and supercritical CO2. Proc. Natl. Acad. Sci. USA 1999, 96, 10344–10348. [Google Scholar] [CrossRef]
- Kincal, D.; Hill, W.S.; Balaban, M.O.; Portier, K.M.; Wei, C.I.; Marshall, M.R. A continuous high pressure carbon dioxide system for microbial reduction in orange juice. J. Food Sci. 2005, 70, M249–M254. [Google Scholar] [CrossRef]
- Haas, G.J.; Prescott, H.E.; Dudley, E.; Dik, R.; Hintlian, C.; Keane, L. Inactivation of microorganisms by carbon dioxide under pressure. J. Food Saf. 1989, 9, 253–265. [Google Scholar] [CrossRef]
- Ballestra, P.; Da Silva, A.A.; Cuq, J.L. Inactivation of Escherichia coli by carbon dioxide under pressure. J. Food Sci. 1996, 61, 829–831. [Google Scholar] [CrossRef]
- Damar, S.; Balaban, M.O. Review of dense phase CO2 technology: Microbial and enzyme inactivation, and effects on food quality. J. Food Sci. 2006, 71, R1–R11. [Google Scholar] [CrossRef]
- Zhong, Q.; Black, D.G.; Davidson, P.M.; Golden, D.A. Nonthermal inactivation of Escherichia coli K-12 on spinach leaves, using dense phase carbon dioxide. J. Food Prot. 2008, 71, 1015–1017. [Google Scholar] [CrossRef]
- Jung, W.Y.; Choi, Y.M.; Rhee, M.S. Potential use of supercritical carbon dioxide to decontaminate Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium in alfalfa sprouted seeds. Int. J. Food Microbiol. 2009, 136, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Erkmen, O. Antimicrobial effect of pressurized carbon dioxide on Staphylococcus aureus broth and milk. LWT-Food Sci. Technol. 1997, 30, 826–829. [Google Scholar] [CrossRef]
- Wei, C.I.; Balaban, M.O.; Fernando, S.Y.; Peplow, A.J. Bacterial effect of high pressure CO2 treatment on foods spiked with Listeria or Salmonella. J. Food Prot. 1991, 54, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Erkmen, O. Antimicrobial effects of pressurized carbon dioxide on Brochothrix thermosphacta in broth and foods. J. Sci. Food Agric. 2000, 80, 1365–1370. [Google Scholar] [CrossRef]
- Spilimbergo, S.; Elvassore, N.; Bertucco, A. Microbial inactivation by high-pressure. J. Supercrit. Fluids 2002, 22, 55–63. [Google Scholar] [CrossRef]
- Rao, L.; Xu, Z.; Wang, Y.; Zhao, F.; Hu, X.; Liao, X. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature. Int. J. Food Microbiol. 2015, 205, 73–80. [Google Scholar] [CrossRef]
- Rao, L.; Wang, Y.; Chen, F.; Liao, X. The synergistic effect of high pressure CO2 and nisin on inactivation of Bacillus subtilis spores in aqueous solutions. Front. Microbiol. 2016, 07, 1507. [Google Scholar] [CrossRef]
- Ho-mu, L.; Zhiying, Y.; Li, F.C. Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure. Chem. Eng. J. 1993, 52, B29–B34. [Google Scholar] [CrossRef]
- Seokin, H.; Wansoo, P.; Yuryang, P.; Hong, S.I.; Park, W.S.; Pyun, Y.R. Non-thermal inactivation of Lactobacillus plantarum as influenced by pressure and temperature of pressurized carbon dioxide. Int. J. Food Sci. Technol. 1999, 34, 125–130. [Google Scholar]
- Hong, S.-I.; Pyun, Y.-R. Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. Int. J. Food Microbiol. 2001, 63, 19–28. [Google Scholar] [CrossRef]
- Erkmen, O. Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. Int. J. Food Microbiol. 2001, 65, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Zhang, L.; Hu, X.; Liao, X. Effect of high pressure CO2 and mild heat processing on natural microorganisms in apple juice. Int. J. Food Microbiol. 2010, 137, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Lian, Z.; Yang, D.; Wang, Y.; Zhao, L.; Rao, L.; Liao, X. Investigating the microbial inactivation effect of low temperature high pressure carbon dioxide and its application in frozen prawn (Penaeus vannamei). Food Control 2023, 145, 109401. [Google Scholar] [CrossRef]
- Hong, S.I.; Pyun, Y.R. Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. J. Food Sci. 1999, 64, 728–733. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, F.; Liao, X.; Hu, X.; Chen, Y.; Deng, L. Analysis of Escherichia coli cell damage induced by HPCD using microscopies and fluorescent staining. Int. J. Food Microbiol. 2010, 144, 169–176. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, L.; Geeraerd, A.H.; Mast, J.; Briers, Y.; Elst, K.; Van Ginneken, L.; Van Impe, J.F.; Devlieghere, F. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiol. 2010, 27, 541–549. [Google Scholar] [CrossRef]
- Bertoloni, G.; Bertucco, A.; De Cian, V.; Parton, T. A study on the inactivation of micro-organisms and enzymes by high pressure CO2. Biotechnol. Bioeng. 2006, 95, 155–160. [Google Scholar] [CrossRef]
- Werner, B.G.; Hotchkiss, J.H. Continuous flow nonthermal CO2 processing: The lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk. J. Dairy Sci. 2006, 89, 872–881. [Google Scholar] [CrossRef]
- Dixon, N.M.; Kell, D.B. The inhibition by CO2 of the growth and metabolism of microorganisms. J. Appl. Bacteriol. 1988, 67, 109–136. [Google Scholar] [CrossRef]
- Zhao, F.; Bi, X.; Hao, Y.; Liao, X. Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics. PLoS ONE 2013, 8, e62388. [Google Scholar] [CrossRef]
- Signoretto, C.; Lleò, M.M.; Tafi, M.C.; Canepari, P. Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl. Environ. Microbiol. 2000, 66, 1953–1959. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, Y.; An, H.; Hao, Y.; Hu, X.; Liao, X. New insights into the formation of viable but nonculturable Escherichia coli O157:H7 induced by high-pressure CO2. mBio 2016, 7, E00961-16. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, Y.; Zhao, L.; Rao, L.; Liao, X. Extracellular pH decline introduced by high pressure carbon dioxide is a main factor inducing bacteria to enter viable but non-culturable state. Food Res. Int. 2022, 151, 110895. [Google Scholar] [CrossRef]
- Pan, H.; Yang, D.; Wang, Y.; Rao, L.; Liao, X. Acid shock protein Asr induces protein aggregation to promote Escherichia coli O157:H7 entering viable but non-culturable state under high pressure carbon dioxide stress. Food Microbiol. 2023, 109, 104136. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhao, L.; Rao, L.; Liao, X. Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538. Food Res. Int. 2023, 167, 112710. [Google Scholar] [CrossRef]
- Pan, H.; Dong, K.; Rao, L.; Zhao, L.; Wang, Y.; Liao, X. The association of cell division regulated by dicc with the formation of viable but non-culturable Escherichia coli O157:H7. Front. Microbiol. 2019, 10, 2850. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Zhao, L.; Rao, L.; Liao, X. Resuscitation of viable but nonculturable bacteria promoted by ATP-mediated NAD+ synthesis. J. Adv. Res. 2024, 60, 27–39. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Li, L.; Guo, Y.; Xie, Y.; Cheng, Y.; Yao, W. Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends Food Sci. Technol. 2020, 96, 91–101. [Google Scholar] [CrossRef]
- Alvarez, I.; Astráin-Redín, L.; Cebrián, G.; Raso, J.; Condón, S.; Ciudad-Hidalgo, S. Application of high-power ultrasound in the food industry. In Sonochemical Reactions; IntechOpen: London, UK, 2019. [Google Scholar]
- Dolas, R.; Saravanan, C.; Kaur, B.P. Emergence and era of ultrasonic’s in fruit juice preservation: A review. Ultrason. Sonochem. 2019, 58, 104609. [Google Scholar] [CrossRef]
- Rastogi, N.K. Opportunities and challenges in application of ultrasound in food processing. Crit. Rev. Food Sci. Nutr. 2011, 51, 705–722. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Zou, M.; Jiang, P.; Hu, W.; Li, J.; Zhi, Z.; Chen, J.; Li, S.; Ding, T.; et al. Effects of ultrasound on spoilage microorganisms, quality, and antioxidant capacity of postharvest cherry tomatoes. J. Food Sci. 2015, 80, C2117–C2126. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulou, S.; Terzakis, S.; Fountoulakis, M.S.; Mantzavinos, D.; Manios, T. Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrason. Sonochem. 2009, 16, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Shamila-Syuhada, A.K.; Chuah, L.-O.; Wan-Nadiah, W.A.; Cheng, L.H.; Alkarkhi, A.F.M.; Effarizah, M.E.; Rusul, G. Inactivation of microbiota and selected spoilage and pathogenic bacteria in milk by combinations of ultrasound, hydrogen peroxide, and active lactoperoxidase system. Int. Dairy J. 2016, 61, 120–125. [Google Scholar] [CrossRef]
- Režek Jambrak, A.; Šimunek, M.; Evačić, S.; Markov, K.; Smoljanić, G.; Frece, J. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics 2018, 83, 3–17. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Two nonthermal technologies for food safety and quality-ultrasound and high pressure homogenization: Effects on microorganisms, advances, and possibilities: A review. J. Food Prot. 2019, 82, 2049–2064. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication. Innov. Food Sci. Emerg. Technol. 2008, 9, 176–185. [Google Scholar] [CrossRef]
- Birmpa, A.; Sfika, V.; Vantarakis, A. Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Int. J. Food Microbiol. 2013, 167, 96–102. [Google Scholar] [CrossRef]
- Chen, C.W.; Lee, H.M.; Chen, S.H.; Chen, H.L.; Chang, M.B. Ultrasound-assisted plasma: A novel technique for inactivation of aquatic microorganisms. Environ. Sci. Technol. 2009, 43, 4493–4497. [Google Scholar] [CrossRef]
- D’amico, D.J.; Silk, T.M.; Wu, J.; Guo, M. Inactivation of microorganisms in milk and apple cider treated with ultrasound. J. Food Prot. 2006, 69, 556–563. [Google Scholar] [CrossRef]
- Mortazavi, N.; Aliakbarlu, J. Antibacterial effects of ultrasound, cinnamon essential oil, and their combination against Listeria monocytogenes and Salmonella Typhimurium in milk. J. Food Sci. 2019, 84, 3700–3706. [Google Scholar] [CrossRef]
- Mudgil, P.; Alkaabi, A.; Maqsood, S. Ultrasonication as a novel processing alternative to pasteurization for camel milk: Effects on microbial load, protein profile, and bioactive properties. J. Dairy Sci. 2022, 105, 6548–6562. [Google Scholar] [CrossRef] [PubMed]
- Takundwa, B.A.; Bhagwat, P.; Pillai, S.; Ijabadeniyi, O.A. Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. LWT 2021, 139, 110522. [Google Scholar] [CrossRef]
- Pokhrel, P.R.; Bermúdez-Aguirre, D.; Martínez-Flores, H.E.; Garnica-Romo, M.G.; Sablani, S. Combined effect of ultrasound and mild temperatures on the inactivation of Escherichia coli in fresh carrot juice and changes on its physicochemical characteristics. J. Food Sci. 2017, 82, 2343–2350. [Google Scholar] [CrossRef] [PubMed]
- Vivek, K.; Subbarao, K.V.; Srivastava, B. Optimization of postharvest ultrasonic treatment of kiwifruit using RSM. Ultrason. Sonochem. 2016, 32, 328–335. [Google Scholar] [CrossRef]
- Ma, J.; Meng, L.; Wang, S.; Li, J.; Mao, X. Inactivation of Vibrio parahaemolyticus and retardation of quality loss in oyster (Crassostrea gigas) by ultrasound processing during storage. Food Res. Int. 2023, 168, 112722. [Google Scholar] [CrossRef]
- Monteiro, S.; Silva, E.K.; Alvarenga, V.O.; Moraes, J.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.L.; Sant’Ana, A.S.; Meireles, M.A.A.; Cruz, A.G. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage. Ultrason. Sonochem. 2018, 42, 1–10. [Google Scholar] [CrossRef]
- Millan-Sango, D.; Sammut, E.; Van Impe, J.F.; Valdramidis, V.P. Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. LWT 2017, 78, 90–96. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Wang, H. Combination of ultrasound-peracetic acid washing and ultrasound-assisted aerosolized ascorbic acid: A novel rinsing-free disinfection method that improves the antibacterial and antioxidant activities in cherry tomato. Ultrason. Sonochem. 2022, 86, 106001. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Cadwallader, K.R.; Feng, H.; Martin, S.E. Sonication in combination with heat and low pressure as an alternative pasteurization treatment–Effect on Escherichia coli K12 inactivation and quality of apple cider. Ultrason. Sonochem. 2013, 20, 1131–1138. [Google Scholar] [CrossRef]
- Salve, A.R.; Pegu, K.; Arya, S.S. Comparative assessment of high-intensity ultrasound and hydrodynamic cavitation processing on physico-chemical properties and microbial inactivation of peanut milk. Ultrason. Sonochem. 2019, 59, 104728. [Google Scholar] [CrossRef]
- Wang, S.Z.; Chen, J.Y.; Chen, D.Z.; Deng, S.G.; Xu, B.; Techathuvanan, C.; D’Souza, D.H. High intensity ultrasound for Salmonella Enteritidis inactivation in culture and liquid whole eggs. J. Sci. Food Agric. 2018, 83, 1733–1739. [Google Scholar]
- Zhu, X.; Yan, H.; Cui, Z.; Li, H.; Zhou, W.; Liu, Z.; Zhang, H.; Manoli, T.; Mo, H.; Hu, L. Ultrasound-assisted blue light killing Vibrio parahaemolyticus to improve salmon preservation. Ultrason. Sonochem. 2023, 95, 106389. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; McMaster, L.D.; Britz, T.J. Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrason. Sonochem. 2008, 15, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Unal Turhan, E.; Koca, M.; Buyukkurt, O.K. Combined effect of thermosonication and organic acids against Escherichia coli biofilms on spinach leaves. LWT 2025, 218, 117498. [Google Scholar] [CrossRef]
- Unal Turhan, E.; Koca, E.E. Predictive modeling for inactivation of Escherichia coli biofilm with combined treatment of thermosonication and organic acid on polystyrene surface. Foods 2024, 13, 4002. [Google Scholar] [CrossRef]
- Scherba, G.; Weigel, R.M.; O’Brien, W.D., Jr. Quantitative assessment of the germicidal efficacy of ultrasonic energy. Appl. Environ. Microbiol. 1991, 57, 2079–2084. [Google Scholar] [CrossRef]
- Raso, J.; Mañas, P.; Pagán, R.; Sala, F.J. Influence of different factors on the output power transferred into medium by ultrasound. Ultrason. Sonochem. 1999, 5, 157–162. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Xu, B. Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. Ultrason. Sonochem. 2020, 69, 105261. [Google Scholar] [CrossRef]
- Fan, K.; Wu, J.; Chen, L. Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. Ultrason. Sonochem. 2021, 80, 105838. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Li, C.; Cui, H. Inactivation mechanism of Escherichia coli O157:H7 under ultrasonic sterilization. Ultrason. Sonochem. 2019, 59, 104751. [Google Scholar] [CrossRef]
- Ueda, H.; Mutoh, M.; Seki, T.; Kobayashi, D.; Morimoto, Y. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol. Pharm. Bull. 2009, 32, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, S.; Wang, Z.; Peng, N.; Yu, J. Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm. J. Antimicrob. Chemother. 2013, 68, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Bjarnsholt, T.; Ciofu, O.; Molin, S.; Givskov, M.; Høiby, N. Applying insights from biofilm biology to drug development-can a new approach be developed? Nat. Rev. Drug Discov. 2013, 12, 791–808. [Google Scholar] [CrossRef]
- Declerck, P.; Vanysacker, L.; Hulsmans, A.; Lambert, N.; Liers, S.; Ollevier, F. Evaluation of power ultrasound for disinfection of both Legionella pneumophila and its environmental host Acanthamoeba castellanii. Water Res. 2010, 44, 703–710. [Google Scholar] [CrossRef]
- Steinert, M.; Emödy, L.; Amann, R.; Hacker, J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 1997, 63, 2047–2053. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.; Liao, X.; Chen, S.; Ye, X.; Liu, D. Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason. Sonochem. 2017, 38, 711–719. [Google Scholar] [CrossRef]
- Qi, Z.; Liu, C. Ultrasound treatment reducing the production of VBNC bacteria in the process of chlorine disinfection: Efficiency and mechanisms. Chem. Res. Chin. Univ. 2023, 39, 425–433. [Google Scholar] [CrossRef]
- Wideman, N.E.; Oliver, J.D.; Crandall, P.G.; Jarvis, N.A. Detection and potential virulence of viable but nonculturable (VBNC) Listeria monocytogenes: A review. Microorganisms 2021, 9, 194. [Google Scholar] [CrossRef]
Treatment | Food Sample | Microorganism | Inactivation (logN0/N) | Condition | Reference |
---|---|---|---|---|---|
HPP | Green onions and salsa | Human Norovirus | >3 | 600 MPa/1 °C/2 min | [26] |
Oysters and clams | Human Norovirus | >4 | 450 MPa/1 °C/5 min | [27] | |
Strawberries | Murine norovirus (MNV-1) | 5.8 | 450 MPa/pH 4.0/4 °C | [28] | |
Strawberry puree | 4.7 | ||||
Pitaya juice | Listeria innocua Saccharomyces cerevisiae | >5 | 550 MPa/16 min 600 MPa/12 min | [29] | |
Tryptic soy broth supplemented with 2.5% NaCl | Vibrio parahaemolyticus | 9 | 300 MPa/10 min | [30] | |
Oysters | Vibrio parahaemolyticus | 5 | ≥350 MPa/1 °C–35 °C/2 min ≥300 MPa/40 °C/2 min | [31] | |
Cantaloupe puree | Salmonella enterica Listeria monocytogenes | >6.7 | 500 MPa/8 °C/5 min | [32] | |
Cabbage kimchi | Norovirus | 0.1–1.5 | 100–400 MPa | [33] | |
Raw chicken breast filets | Salmonella Typhimurium DMST 28913 | 4 | 400 MPa/30 °C/1 min | [34] | |
Carrot and grapefruit juices | Escherichia coli O157:H7 | 6.4–8.34 | 615 MPa/15 °C/2 min | [35] | |
HPP + freezing | Orange juice | Escherichia coli K12 | 4.88 | 250 MPa/−80 °C/pH 3.2/15 min | [36] |
HPP + freezing | Milk | Escherichia coli ATCC 25922 | 3.8 | 300 MPa/−3 °C/30 s | [37] |
HPP + freezing | Frozen beef mince | Escherichia coli ATCC 25922 | 3 | 300 MPa/5 min | [38] |
HPP + liquid smoke + freezing | Raw and hot smoked trout filets | Listeria monocytogenes | 5 | 200 MPa/15 min | [39] |
HPP + freezing | Frozen chicken breast | Salmonella | >3 | 400 MPa/5 min 500 MPa/1 min | [40] |
HPP + food-grade antimicrobials | Raw ground chicken meat | Salmonella | 5 | 350 MPa/0.05% AITC/4 min | [41] |
Salmonella | >7 | 350 MPa/0.075% AITC/0.1% AA/12 min | |||
HPP + nisin + mild thermal | Carrot juice | Listeria innocua Escherichia coli | 7 | 500 MPa/20 °C/2 min | [42] |
HPP + mild heat | Oysters | Vibrio parahaemolyticus | >3.52 | 200 MPa/21 °C/2 min and 45 °C/10 min 200 MPa/21 °C/2 min and 50 °C/2 min 250 MPa/21 °C/2 min and 40 °C/10 min 250 MPa/21 °C/2 min and 45 °C/5 min 300 MPa/21 °C/2 min and 50 °C/5 min | [43] |
Vibrio vulnificus | >3.52 | 200 MPa/21 °C/2 min and 40 °C/10 min 200 MPa/21 °C/2 min and 45 °C/5 min 200 MPa/21 °C/2 min and 50 °C/2 min 250 MPa/21 °C/2 min and 50 °C/10 min | |||
HPP + CO2 | Luria–Bertani | Escherichia coli | >8 | 300 MPa/1.2 NL/L CO2 250 MPa/3.2 NL/L CO2 | [44] |
Staphylococcus aureus | >7 | 350 MPa/3.8 NL/L CO2 | |||
HPP + CocoanOX | Liquid Whole Egg and Skim Milk Mixed Beverage | Bacillus cereus | 3.860 | 200 MPa/15 min | [45] |
HPP + lactoperoxidase system | Beef carpaccio | Salmonella Enteritidis | 5.4 | 50 MPa/5 min | [46] |
Escherichia coli O157:H7 | 4.7 | ||||
HPP + dense phase carbon dioxide | Feijoa Puree | Escherichia coli | 4.3 | 400 MPa/4 min | [47] |
Treatment | Food Sample | Microorganism | Inactivation (logN0/N) | Condition | Reference |
---|---|---|---|---|---|
PEF | Melon juices | Salmonella Enteritidis | 3.71 ± 0.17 | 217 Hz/35 kV/cm/4 μs puls/1440 μs | [72] |
Escherichia coli | 3.7 ± 0.3 | ||||
Listeria monocytogenes | 3.56 ± 0.26 | ||||
Watermelon juices | Salmonella Enteritidis | 3.56 ± 0.12 | 188 Hz/35 kV/cm/4 μs puls/1727 μs | ||
Escherichia coli | 3.6 ± 0.4 | ||||
Listeria monocytogenes | 3.41 ± 0.13 | ||||
Freshly squeezed orange juice | Salmonella Typhimurium | 5.9 | 90 kV/cm/50 μs puls/55 °C | [73] | |
Pineapple juice–coconut milk | Escherichia coli | 5 | 235–588 Hz/10–21 kV/cm | [74] | |
Listeria innocua | 3.9 | ||||
Raspberry juice | Molds | 0.92–2.12 | 11.3–23.3 kV/cm/10–500 Hz | [75] | |
Yeasts | 1.38–3.19 | ||||
Orange juice | Staphylococcus aureus | 5.89–5.924 | 1 Hz/20–40 kV/cm/100–500 µs | [76] | |
Escherichia coli | 5.876–5.949 | ||||
Milk | Pseudomonads | >5 | 31 kV/cm/55 °C | [77] | |
Tropical Fruit Smoothie | Escherichia coli | 4.2 | 34 kV/cm | [78] | |
Orange juice | Pichia fermentans | 4.8 | 40 kV/cm/100 μs | [79] | |
Listeria innocua | 3.7 | ||||
Escherichia coli K12 | 6.3 | ||||
Citrate–phosphate buffer | Bacterial viable counts | 2.8 | 20 kV/cm/pH 4.0/200 µs | [70] | |
Grape juice | Kloeckera apiculata | 2.24–3.94 | 35 kV/cm/1 µs | [80] | |
Saccharomyces cerevisiae | |||||
Lactobacillus plantarum | |||||
Lactobacillus hilgardii | |||||
Gluconobacter oxydans | |||||
Apple juice | Escherichia coli O157:H7 | 0.4–3.6 | 20–30 kV/cm/5–125 μs | [81] | |
Low-fat Milk | Escherichia coli | 4.5 | 200 kJ/L | [82] | |
Saccharomyces cerevisiae | 6.0 | ||||
Lactobacillus brevis | 4.4 | ||||
Water with salt | Escherichia coli | 1 | 107 Vm−1/60 × 10−9 s | [66] | |
Liquid whole egg | Listeria innocua | 3.5 | 3.5 Hz/50 kV/cm/32 pulses | [83] | |
PEF + nisin | Liquid whole egg | Listeria innocua | 4.1 | 3.5 Hz/50 kV/cm/32 pulses/10 IU nisin/ml | |
5.5 | 3.5 Hz/50 kV/cm/32 pulses/100 IU nisin/ml | ||||
Whey | Listeria innocua | 4.5 | 12 kV/cm/50 IU/mL nisin/12 ms | [84] | |
PEF + heat | Mixed mandarin and Hallabong tangor juice | Aerobe | 3.9 | 16 kV/cm/100 kJ/L/70 °C | [85] |
Yeast/mold | 4.3 | ||||
Coliform | 0.8 | ||||
Tropical Fruit Smoothie | Escherichia coli | 6.9 | 34 kV/cm/55 °C | [78] | |
5.1 | 34 kV/cm/45 °C | ||||
PEF + UV-light | Apple juice | Escherichia coli K12 | 4 | 20 kHz/15 kV/cm/170 µs/25 °C | [69] |
PEF + nisin | Orange juice | Listeria innocua | 5.6 | 40 kV/cm/2.5 ppm/100 µs | [79] |
Escherichia coli K12 | 7.9 | ||||
PEF + lactic acid | Listeria innocua | 6.1 | 40 kV/cm/500 ppm/100 µs | ||
Pichia fermentans | 7.8 | ||||
PEF + temperature | Cantaloupe Juice | Saccharomyces cerevisiae | >5.0 | 20 kV/cm/200 µs/55 °C/5 min | [70] |
PEF + ethyl lauroyl arginate | Apple juice | Escherichia coli O157:H7 | 0.9–6.7 | 20–30 kV/50 ppm/5–125 µs | [81] |
PEF + US | Spinach juice | Escherichia coli/coliform | 1.15 | 9 kV/cm/1 kHz/335 µs + 200 W/40 kHz/30 ± 2 °C | [86] |
Yeast and mold | 2.01 | ||||
PEF + US | Oil-field re-injection water | Saprophytic bacteria | 1.82 | 2.7 kV/cm/40 kHz/30 min | [87] |
Iron bacteria | 2.54 | 2.7 kV/cm/40 kHz/12 min | |||
Sulfate reducing bacteria | 1.95 | 2.7 kV/cm/40 kHz/16 min | |||
PEF + UV | Apple and cranberry juice | Escherichia coli and Pichia fermentans | 6 | 34 kV/cm/18 Hz/93 µs + 5.3 J/cm2 | [88] |
PEF + HPCD | McIlvaine buffer solution | Escherichia coli | 5.74 | 12 kV/cm/40 J/mL/25 °C + 8.0 MPa/11 min | [89] |
PEF + HPP | Water | Listeria innocua | >3 | 30 kV/10−3 s + 400 Mpa/100 s | [90] |
PEF + TS | Ringer’s solution | Pseudomonas fluorescens | 48% | 29 kV/cm + 18.6 mm | [91] |
Escherichia coli | 64.8% | 32 kV/cm + 18.6 mm | |||
71.5% | 32 kV/cm + 27.9 mm | ||||
PEF + TS | Beer | Staphylococcus aureus | 6.8 | 40 kV/cm/150 µs + 55 °C/10 min | [92] |
Treatment | Food Sample | Microorganism | Inactivation (logN0/N) | Condition | Reference |
---|---|---|---|---|---|
CAP | Lettuce | Salmonella enterica serovar Typhimurium | 2.72 | 12L/min/<35 °C/15 min | [115] |
Strawberry | 1.76 | ||||
Potato | 0.94 | ||||
Corn salad leaves | Escherichia coli O104:H4 | 3.3 ± 1.1 | 17 mm/2 min | [116] | |
Apple juice | Citrobacter freundii | 5 | Argon and 0.1% oxygen/480 s | [117] | |
Tryptic soy agar plates | Methicillin-resistant Staphylococcus aureus | 4–5 | 10 min | [118] | |
Cress seeds | Escherichia coli | 3.4 | 10 kHz/8 kV/500 ns/10 min | [119] | |
Almonds | Escherichia coli O157:H7 C9490 | 1.34 | 6 cm/20 s | [120] | |
Non-fat dry milk | Cronobacter sakazakii | 1.17–3.27 | 20–120 s | [121] | |
Eggshells | Salmonella enterica | >5 | 655 W/120 s | [122] | |
Almonds | Escherichia coli 12955 | 5 | 30 kV/2 kHz/30 s | [123] | |
Golden delicious apples | Salmonella stanley | 2.96–3.72 | 40L/min/3 min | [124] | |
Escherichia coli O157:H7 | 3.4–3.6 | ||||
Tofu | Salmonella enterica serovar Typhimurium | 0.2–0.6 | 15 min | [125] | |
Escherichia coli O157:H7 | |||||
Red pepper powder | Aspergillus flavus | 2.5 ± 0.3 | 900 W/667 Pa/20 min | [126] | |
Cheese | Escherichia coli | 4.75 ± 0.02 | 50 W/10 min | [107] | |
Listeria innocua | 0.72 ± 0.01 | ||||
Blueberries | Total aerobic bacteria | 0.34–1.24 | 12 kV/5 kHz/60 s | [127] | |
Mold populations | 0.57–0.87 | ||||
Korean rice cakes | Salmonella | 3.9 ± 0.3 | 26 kV/3 min | [128] | |
Yeast and molds | 1.7 ± 0.3 | ||||
Mesophilic aerobic bacteria | 2.0 ± 0.2 | ||||
Ready-to-eat ham in modified atmospheric packaging | Listeria monocytogenes | 4 | 30 kV/3.5 kHz/10 min | [129] | |
Korean steamed rice cakes packaged in plastic pouches | Escherichia coli O157:H7 | 2.2 ± 0.2 | 30 W/4 min | [130] | |
Bacillus cereus spores | 1.4 ± 0.2 | ||||
Penicillium chrysogenum | 2.2 ± 0.3 | ||||
Indigenous aerobic bacteria | 1.1 ± 0.2 | ||||
Yeast and molds | 1.0 ± 0.1 | ||||
Apple juice | Escherichia coli | 3.98–4.34 | 30–50 W/<40 s | [131] | |
Black peppercorns | Salmonella | 4.5–5.5 | 60–80 s | [132] | |
Chicken breast | Natural microflora of chicken | 2 | 100 kV/5 min | [133] | |
Radish sprouts | Salmonella | 2.6 ± 0.4 | 900 W/667 Pa/20 min | [134] | |
Lettuce | Listeria monocytogenes biofilm | 3.85 ± 0.12 | 750 mJ/cm2 | [135] | |
Cabbage | 4.09 ± 0.12 | ||||
Lettuce | Salmonella biofilms | 4.0 ± 1.3 | 80 kVRMS/300 s | [136] | |
Listeria monocytogenes biofilms | 3.5 ± 0.8 | ||||
Escherichia coli biofilms | 3.0 ± 2.0 | ||||
HVACP | Coconut water | Salmonella enterica serovar Typhimurium LT2 | 1.30 | 90 kV/120 s | [137] |
HVACP | Tilapia filets | Total viable bacteria | 7.15 | 70 kV/5 min | [138] |
Pseudomonas | 6.99 | ||||
Enterobacteriaceae | 4.23 | ||||
DACP | Romaine lettuce packaged | Escherichia coli O157:H7 | 1 | 34.8 kV/1.1 kHz/5 min | [139] |
DACP | Tomatoes | Salmonella | 3.3 ± 0.5 | 35 kV/1.1 A/3 min | [140] |
DACP | Bulk romaine lettuce | Escherichia coli O157:H7 | 0.4–0.8 | 42.6 kV/10 min | [141] |
APPJ | Raw chicken breasts | Escherichia coli | 1.85 ± 0.051 | 20 mm/10 min | [142] |
APPJ | Table eggs | Salmonella enterica | 7 | 800 W/20 mm/120 s | [143] |
US + CAP | Deionized water | Escherichia coli and yeast | 6 | AC (13 kV/60 Hz) US (140 W/47 kHz) | [144] |
Hydrothermal treatment + CAP | Strawberry juice | Total bacterial count | 2 | 60 kV/10 min | [145] |
PAW | Kale | Escherichia coli | 3.48 | 10 kV/20 kHz/30 min | [146] |
PAW | Grapes | Saccharomyces cerevisiae | 0.38 ± 0.17 | 8.2 kV/1.1–1.3 mA/30 min | [147] |
0.53 ± 0.07 | 8.2 kV/1.1–1.3 mA/60 min | ||||
PAW | Button mushrooms, Agaricus bisporus | Bacteria | 1.5 | 10 min | [148] |
Fungi | 0.5 | ||||
PAW | Celery | Listeria monocytogenes | 0.57 | DBD19.15 V/60 min | [149] |
0.35 | DBD19.15 V/30 min | ||||
Escherichia coli | 0.57 | DBD19.15 V/60 min | |||
Radicchio | Listeria monocytogenes | 2.2 | DBD19.15 V/60 min | ||
1.8 | DBD19.15 V/30 min | ||||
Escherichia coli | 1.3 | DBD19.15 V/30 min | |||
PAW | Iceberg lettuce | Listeria innocua | 2.4 | 20 kV/5 min | [150] |
PAW | Beef | Fungi and yeast | 1.76 | APPJ 600 W | [151] |
PAW | Kumquat | Penicillium italicum | 0.75 | 30 min | [152] |
1.3 | 45 min | ||||
3.3 | 60 min | ||||
PAW | Yellow River Carp (Cyprinus carpio) Filets | Shewanella putrefaciens | 1.03 | 6 min | [153] |
PAW | Ready-to-use shredded salted kimchi cabbage | Mesophilic aerobic bacteria | 2.0 | 120 s | [154] |
Lactic acid bacteria | 2.2 | ||||
Yeast and molds | 1.8 | ||||
Mild heating + PAW | Coliforms | 0.9 | 60 °C/120 s | ||
Listeria monocytogenes | 3.4 | ||||
Staphylococcus aureus | 3.7 | ||||
Mild heating + PAW | Grapes | Saccharomyces cerevisiae | 5.85 | 55 °C/30 min | [155] |
Thermo-U + plasma + PAW | Grass carp | Shewanella putrefaciens | 4.40 | 66 V/60 °C/14.90 min | [156] |
Salmonella Typhimurium | 3.97 | ||||
DBD + PAW | Lates calcarifer | Total viable count | 1.68 | PAW 150 s/DBD 160 kV/180 s | [157] |
US + PAW | Chicken meat and skin | Escherichia coli K12 | 1.33 | Sample thickness of 4 mm/40 °C/60 min | [158] |
Staphylococcus aureus | 0.83 |
Treatment | Sample | Microorganism | Inactivation (logN0/N) | Condition (MPa/℃/min) | Reference |
---|---|---|---|---|---|
HPCD | Physiological saline | Saccharomyces cerevisiae | 7.5 | 20/35/120 | [189] |
Growth medium | 7 | 6.9/35/15 | [190] | ||
Sterile water | 8 | 4/40/>180 | [191] | ||
Physiological saline | 6 | 25/35/30 | [192] | ||
Sterile water | 8 | 15/40/60 | [193] | ||
Growth medium | 9 | 6/35/15 | [194] | ||
TSB w/polymers | 9 | 20.5/40/240 | [195] | ||
Orange juice | 12 | 15/25/<10 | [196] | ||
HPCD | Physiological saline | Escherichia coli | 6.5 | 20/35/120 | [189] |
Nutrient broth | 2 | 6.21/RT/120 | [197] | ||
Physiological saline | 6 | 5/35/20 | [198] | ||
Growth medium | 9 | 6/35/15 | [194] | ||
TSB w/polymers | 8 | 20.5/34/30 | [195] | ||
Sterile water | 8.7 | 7.5/24/5.2 | [199] | ||
Orange juice | >6 | 15/24/4.9 | [196] | ||
Spinach leaves | 5 | 10/40/40 | [200] | ||
HPCD | Orange juice | Escherichia coli O157:H7 | 5 | 10.7/25/10 | [196] |
Apple juice | 5.7 | 20.6/25/12 | |||
HPCD | Peptone water | Escherichia coli O157:H7 | >7 | 20/45/15 | [201] |
HPCD | Physiological saline | Staphylococcus aureus | 5 | 20/35/120 | [192] |
Nutrient broth | 2 | 6.21/RT/120 | |||
BHIB | 7 | 8/25/60 | [202] | ||
HPCD | Distilled water | Listeria monocytogenes | 9 | 6.18/35/12 | [203] |
Physiological saline with broth | 6.98 | 6/35/75 | [204] | ||
Orange juice | 6 | 38/25/10 | [196] | ||
Peptone water | >7 | 20/45/15 | [201] | ||
HPCD | TSB w/polymers | Listeria innocua | 9 | 20.5/34/36 | [195] |
HPCD | Physiological saline | Aspergillus niger | 5 | 20/35/120 | [189] |
HPCD | TSB w/polymers | Bacillus cereus | 8 | 20.5/60/240 | [195] |
HPCD | Physiological saline | Bacillus subtilis | 7 | 7.4/38/2.5 | [205] |
HPCD | Aqueous solution | Bacillus subtilis spores | 7 | 10–15/86/60 6.5–15/91/60 | [206] |
Aqueous solution with 0.02% nisin | 4.1 | 20/84–86/30 | [207] | ||
HPCD | Pysiological saline | Brocothirix thermosphacta | 5.5 | 6.05/35/100 | [204] |
Skinned meat | 5 | 6.05/35/150 | |||
HPCD | Physiological saline | Enterococcus faecalis | 8 | 6.05/35/18 | [204] |
HPCD | Growth medium | Leuconostoc dextranicum | >8 | 6.9–20.7/35/15–20 | [208] |
HPCD | Physiological saline | Lactobacillus brevis | 6 | 25/35/30 | [192] |
HPCD | Growth medium | Lactobacillus brevis | 9 | 6/35/15 | [194] |
HPCD | MRS broth | Lactic acid bacteria | 5 | 6.9/30/200 | [209] |
HPCD | TSB w/polymers | Legionella dunnii | 4 | 20.5/40/90 | [195] |
HPCD | Growth medium | Lactobacillus plantarum | >6 | 13.8/30/30 | [209] |
HPCD | MRS broth | Lactobacillus plantarum | >8 | 7/30/100 | [210] |
HPCD | Orange juice | Lactobacillus plantarum | >8 | 7.5/35/<10 | [196] |
Leuconostoc mesenteroids | >6 | 15/25/<10 | |||
HPCD | TSB w/polymers | Pseudomonas aeruginosa | 8 | 20.5/40/240 | [195] |
HPCD | TSB w/polymers | Proteus vulgaris | 8 | 20.5/34/36 | [195] |
HPCD | Nutrient broth | Salmonella seftenberg | 2 | 6.21/RT/120 | [189] |
HPCD | Orange juice | Salmonella Thyphimurium | 6 | 38/25/10 | [196] |
HPCD | Physiological saline | 7 | 6/35/15 | [211] | |
HPCD | Peptone water | >7 | 20/45/15 | [201] | |
HPCD | TSB w/polymers | Salmonella Salford | 9 | 20.5/40/240 | [195] |
HPCD | Growth medium | Torulopsis versatilis | 9 | 6/35/15 | [194] |
HPCD | Apple juice | Aerobic bacteria | >3.5 | 20/52/30 | [212] |
Yeasts and molds | 3.9 | 20/57/30 | |||
HPCD | Physiological saline | Escherichia coli | 99.45% | 6.5/10/15 | [213] |
Staphylococcus aureus | 94.6% | ||||
DMEM medium | SARS-CoV-2 spike pseudovirus | >99% | |||
Human coronavirus 229E | >1-log virus tilter reduction |
Treatment | Food Sample | Microorganism | Inactivation (logN0/N) | Condition | Reference |
---|---|---|---|---|---|
US | Lettuce | Escherichia coli | >2 | 37 kHz/30 W/L | [238] |
Salmonella Enteritidis | |||||
Strawberry | Escherichia coli | 3.04 | |||
Listeria innocua | 6.12 | ||||
Salmonella Enteritidis | 5.52 | ||||
Staphylococcus aureus | 2.41 | ||||
US | Saline solution and ultrahigh-temperature milk | Escherichia coli | >99% | 20 kHz/750 W | [239] |
Saccharomyces cerevisiae | |||||
US | Saline solution | Lactobacillus acidophilus | 72% | [240] | |
UHT milk | 84% | ||||
US | Iranian ultrafiltered feta-type cheese | Escherichia coli O157:H7 | 4.28 | 60 kHz | [241] |
Staphylococcus aureus | 1.95 | ||||
Penicillium chrysogenum | 1.11 | ||||
Clostridium sporogenes | 2.17 | ||||
US | Oyster (Crassostrea gigas) | Vibrio parahaemolyticus | 3.13 | 7.5 W/mL/12.5 min | [242] |
US | Camel milk | Total bacterial concentration | 4.2 | 160 W | [243] |
US | Cabbage | Listeria monocytogenes biofilm | 4.09 ± 0.12 | 37 kHz/1550 W | [135] |
Lettuce | 3.85 ± 0.12 | ||||
HIUS | Chocolate milk | Aerobic mesophilic microorganisms | 3.56 ± 0.02 | 3.0 kJ/cm3 | [244] |
HIUS | Liquid Whole Eggs | Salmonella Enteritidis | 1.4 | 20 khz/5 or 10 min | [239] |
HIUS | Peanut milk | Yeast and mold | 0.9 | 400 W | [245] |
US + plasma | D.I. water | Escherichia coli | 6 | AC (13 kV/60 Hz) US (140 W/47 kHz) | [144] |
Yeast | |||||
US + mild heat | Ultrahigh-temperature milk | Listeria monocytogenes | 5 | 20 kHz/150 W/118 W/cm2/57 °C | [246] |
Pasteurized apple cider | Escherichia coli O157:H7 | 6 | [247] | ||
US + mild Temperatures | Fresh Carrot Juice | Escherichia coli | >5 | 24 KHz/37.87 W/cm2/58 °C/2 min | [248] |
US + mild Temperatures | Apple cider | Escherichia coli K12 | 5 | 3W/mL/59 °C/3.8 min | [249] |
US + cinnamon essential oil | Low-fat milk | Listeria monocytogenes | 4.3 | 24 kHz/400 W/15 min | [250] |
Salmonella Typhimurium | 2.7 | ||||
High-fat milk | Listeria monocytogenes | 4.5 | [251] | ||
Salmonella Typhimurium | 3.8 | ||||
US + nisin + oregano | Lettuce | Escherichia coli O157:H7 | 3.43 | 771.2 IU/g nisin/0.185% v/v oregano/14.65 min | [252] |
Listeria monocytogenes | 9.20 | ||||
US + aqueous chlorine dioxide | Alfalfa | Salmonella Enteritidis | 1.94 ± 0.42 | 26 kHz/90 mm/200 W | [253] |
Escherchia coli | 2.62 ± 0.02 | ||||
Mung bean sprouts | Salmonella Enteritidis | 2.06 ± 0.23 | |||
Escherchia coli | 2.08 ± 0.02 | ||||
Low-frequency US + peracetic acid + ascorbic acid | Cherry tomato | Escherichia coli O157:H7 | 0.7–0.9 | 25 kHz US/1% AA/80 ppm PAA | [238] |
Salmonella Typhimurium | 0.6–0.8 | ||||
Aerobic mesophilic microorganisms | 0.7–1.0 | ||||
Molds and yeasts | 0.5–1.0 | ||||
US + sodium hypochlorite | Kiwifruit | Aerobic mesophilic microorganisms | 3.48 | 368 W/cm2/25 °C/30 ppm NaOCl/8 min | [254] |
Molds and yeasts | 2.32 | ||||
US + blue light | Salmon | Vibrio parahaemolyticus | 98.81% | 216 J/cm2/15 min | [240] |
US + lactic acid, acetic acid | Spinach leaves | Escherichia coli biofilm | 2.86–6.03 | 35 kHz/380 W/100% power | [255] |
Polystyrene surfaces | 6.21 | 40 kHz/360 W/50 °C/5 min | [256] |
Non-Thermal Technologies | Advantages | Disadvantages | VBNC Formation Potential |
---|---|---|---|
HPP | Good pasteurization effect on various microorganisms; pasteurized with packaged products; has been commercially applied; minimal changes to physicochemical properties of food | High equipment and maintenance costs | VBNC bacteria were formed, which could resuscitate during subsequent storage; bacterial pressure resistance was positively correlated with resuscitable VBNC populations. |
PEF | Good pasteurization effect on various microorganisms; short processing time; has been commercially applied; minimal changes to physicochemical properties of food | Limited antimicrobial effect in solid foods | Research results are inconsistent on VBNC formation induced by PEFs. |
CAP | Good pasteurization effect on various microorganisms; good effect for surface disinfection; PAW enhances treatment uniformity | Highly limited in the pasteurization effect while working with thick, large, and rough materials; expensive and complicated equipment; generation of ROS and RNS may affect food qualities | VBNC state was formed and VBNCs would resuscitate. VBNC pathogens still maintained pathogenicity. |
HPCD | Good pasteurization effect on various microorganisms | The utilization of CO2 may cause acidification of products. | VBNC state was formed and VBNCs would resuscitate. VBNC pathogens retained reduced pathogenicity. |
US | Good pasteurization effect on various microorganisms | Localized extreme temperatures generate free radicals, and affect food qualities; generates significant operational noise | VBNC state was formed and VBNC pathogens remained virulent. US combined with other pasteurization methods can reduce VBNC population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, X.; Ma, X.; Ren, Q.; Sun, Z.; Pan, H. The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks. Foods 2025, 14, 2374. https://doi.org/10.3390/foods14132374
Wu Y, Li X, Ma X, Ren Q, Sun Z, Pan H. The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks. Foods. 2025; 14(13):2374. https://doi.org/10.3390/foods14132374
Chicago/Turabian StyleWu, Yanan, Xinxin Li, Xinyu Ma, Qing Ren, Zhanbin Sun, and Hanxu Pan. 2025. "The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks" Foods 14, no. 13: 2374. https://doi.org/10.3390/foods14132374
APA StyleWu, Y., Li, X., Ma, X., Ren, Q., Sun, Z., & Pan, H. (2025). The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks. Foods, 14(13), 2374. https://doi.org/10.3390/foods14132374