Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review
Abstract
1. Introduction
2. Effect of pH Shifts on Proteins
3. Combination of pH Shifting and Physical Processing Techniques
3.1. Heat Treatment-Assisted pH Shifting
3.1.1. Effect of Heat Treatment-Assisted pH Shifting on Protein Structure
3.1.2. Effect of Heat Treatment-Assisted pH Shifting on Protein Functionality
3.2. Ultrasound-Assisted pH Shifting
3.2.1. Effect of Ultrasonication-Assisted pH Shifting on Protein Structure
3.2.2. Effect of Ultrasonication-Assisted pH Shifting on Functional Properties of Protein
3.3. High Pressure-Assisted pH Shifting
3.3.1. Effect of High Pressure-Assisted pH Shifting on Protein Structure
3.3.2. Effect of High Pressure-Assisted pH Shifting on Functional Properties of Protein
3.4. Other Physical Methods-Assisted pH Shift Treatments
3.4.1. Pulsed Electric Field-Assisted pH Shifting
3.4.2. Microwave-Assisted pH Shifting
3.5. Multiple Methods-Assisted pH Shifting
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gastaldello, A.; Giampieri, F.; De Giuseppe, R.; Grosso, G.; Baroni, L.; Battino, M. The Rise of Processed Meat Alternatives: A Narrative Review of the Manufacturing, Composition, Nutritional Profile and Health Effects of Newer Sources of Protein, and Their Place in Healthier Diets. Trends Food Sci. Technol. 2022, 127, 263–271. [Google Scholar] [CrossRef]
- Karabulut, G.; Subasi, B.; Ivanova, P.; Goksen, G.; Chalova, V.; Capanoglu, E. Towards Sustainable and Nutritional-Based Plant Protein Sources: A Review on the Role of Rapeseed. Food Res. Int. 2025, 202, 115553. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, L.; Chen, L.; Wang, Y.; Okonkwo, C.; Yagoub, A.; Wahia, H.; Zhou, C. Application of Ultrasound and Its Real-Time Monitoring of the Acoustic Field during Processing of Tofu: Parameter Optimization, Protein Modification, and Potential Mechanism. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2747–2772. [Google Scholar] [CrossRef]
- Mintah, B.K.; He, R.; Agyekum, A.A.; Dabbour, M.; Golly, M.K.; Ma, H. Edible Insect Protein for Food Applications: Extraction, Composition, and Functional Properties. J. Food Process Eng. 2020, 43, e13362. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Li, Y.; Dai, C.; Ding, Q.; Hong, C.; He, Y.; He, R.; Ma, H. Effect of Alkali Concentration on Digestibility and Absorption Characteristics of Rice Residue Protein Isolates and Lysinoalanine. Food Chem. 2019, 289, 609–615. [Google Scholar] [CrossRef]
- Gao, R.; Yu, Q.; Shen, Y.; Chu, Q.; Chen, G.; Fen, S.; Yang, M.; Yuan, L.; McClements, D.J.; Sun, Q. Production, Bioactive Properties, and Potential Applications of Fish Protein Hydrolysates: Developments and Challenges. Trends Food Sci. Technol. 2021, 110, 687–699. [Google Scholar] [CrossRef]
- Pan, J.; Xu, H.; Cheng, Y.; Mintah, B.K.; Dabbour, M.; Yang, F.; Chen, W.; Zhang, Z.; Dai, C.; He, R.; et al. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022, 11, 2931. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Duan, Y.; Zhang, H.; Ma, H. A Mini-Review on Brewer’s Spent Grain Protein: Isolation, Physicochemical Properties, Application of Protein, and Functional Properties of Hydrolysates. J. Food Sci. 2019, 84, 3330–3340. [Google Scholar] [CrossRef]
- Mintah, B.K.; He, R.; Dabbour, M.; Agyekum, A.A.; Xing, Z.; Golly, M.K.; Ma, H. Sonochemical Action and Reaction of Edible Insect Protein: Influence on Enzymolysis Reaction-Kinetics, Free-Gibbs, Structure, and Antioxidant Capacity. J. Food Biochem. 2019, 43, e12982. [Google Scholar] [CrossRef]
- Pan, J.; Xu, H.; Dabbour, M.; Mintah, B.K.; Chen, W.; Yang, F.; Zhang, Z.; Cheng, Y.; Dai, C.; He, R.; et al. Effect of Alkaline pH-Shifting Process on Extraction Rate, Structural, and Functional Properties of Black Soldier Fly (Hermetia Illucens) Larvae Protein. LWT-Food Sci. Technol. 2023, 185, 115180. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Xu, L.; Ma, H. An Efficient Ultrasound-Assisted Extraction Method of Pea Protein and Its Effect on Protein Functional Properties and Biological Activities. LWT-Food Sci. Technol. 2020, 127, 109348. [Google Scholar] [CrossRef]
- Xu, H.; Pan, J.; Dabbour, M.; Mintah, B.K.; Chen, W.; Yang, F.; Zhang, Z.; Cheng, Y.; Dai, C.; He, R.; et al. Synergistic Effects of pH Shift and Heat Treatment on Solubility, Physicochemical and Structural Properties, and Lysinoalanine Formation in Silkworm Pupa Protein Isolates. Food Res. Int. 2023, 165, 112554. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Wu, J.; Zhang, X.; Ma, F.; Cheng, Y. Improving the Solubility and Digestibility of Potato Protein with an Online Ultrasound-Assisted PH Shifting Treatment at Medium Temperature. Foods 2020, 9, 1908. [Google Scholar] [CrossRef]
- Yang, J.; Peng, D.; Jin, W.; Geng, F.; Cheng, C.; Wang, L.; Zhang, H.; Duan, Y.; Deng, Q. Redesign of Air/Oil-Water Interface via Physical Fields Coupled with pH Shifting to Improve the Emulsification, Foaming, and Digestion Properties of Plant Proteins. Crit. Rev. Food Sci. Nutr. 2023, 65, 1093–1108. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Miao, S. Structure, Gelation Mechanism of Plant Proteins versus Dairy Proteins and Evolving Modification Strategies. Trends Food Sci. Technol. 2024, 147, 104464. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, C.; Bao, Y.; Liu, F.; Wang, H.; Wang, Y. Oat: Current State and Challenges in Plant-Based Food Applications. Trends Food Sci. Technol. 2023, 134, 56–71. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Ren, W.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Hou, Y.; He, R.; Cheng, Y.; Ma, H. Inhibition Effect of Ultrasound on the Formation of Lysinoalanine in Rapeseed Protein Isolates during pH Shift Treatment. J. Agric. Food Chem. 2021, 69, 8536–8545. [Google Scholar] [CrossRef]
- Igartúa, D.E.; Dichano, M.C.; Ferrari, S.B.; Palazolo, G.G.; Cabezas, D.M. Combination of pH-Shifting, Ultrasound, and Heat Treatments to Enhance Solubility and Emulsifying Stability of Rice Protein Isolate. Food Chem. 2024, 433, 137319. [Google Scholar] [CrossRef]
- Dabbour, M.; He, R.; Mintah, B.; Ma, H. Antioxidant Activities of Sunflower Protein Hydrolysates Treated with Dual-Frequency Ultrasonic: Optimization Study. J. Food Process Eng. 2019, 42, e13084. [Google Scholar] [CrossRef]
- Golly, M.K.; Ma, H.; Duan, Y.; Liu, D.; Quaisie, J.; Tuli, J.A.; Mintah, B.K.; Dzah, C.S.; Agordoh, P.D. Effect of Multi-Frequency Countercurrent Ultrasound Treatment on Extraction Optimization, Functional and Structural Properties of Protein Isolates from Walnut (Juglans Regia L.) Meal. J. Food Biochem. 2020, 44, e13210. [Google Scholar] [CrossRef]
- Hou, F.; Ding, W.; Qu, W.; Oladejo, A.O.; Xiong, F.; Zhang, W.; He, R.; Ma, H. Alkali Solution Extraction of Rice Residue Protein Isolates: Influence of Alkali Concentration on Protein Functional, Structural Properties and Lysinoalanine Formation. Food Chem. 2017, 218, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Ma, H.; Wang, W.; Luo, M.; Wang, B.; Qu, W.; He, R.; Owusu, J.; Li, Y. Effects and Mechanism of Ultrasound Pretreatment on Rapeseed Protein Enzymolysis. J. Sci. Food Agric. 2016, 96, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, Z.; Mintah, B.K.; Xu, H.; Dabbour, M.; Cheng, Y.; Dai, C.; He, R.; Ma, H. Effects of Nonthermal Physical Processing Technologies on Functional, Structural Properties and Digestibility of Food Protein: A Review. J. Food Process Eng. 2022, 45, e14010. [Google Scholar] [CrossRef]
- Momen, S.; Alavi, F.; Aider, M. Alkali-Mediated Treatments for Extraction and Functional Modification of Proteins: Critical and Application Review. Trends Food Sci. Technol. 2021, 110, 778–797. [Google Scholar] [CrossRef]
- Lou, K.; Zheng, Y.; Wang, L.; Zhou, C.; Wang, J.; Pan, D.; Wu, Z.; Cao, J.; Zhang, H.; Xia, Q. Molten Globule-State Protein Structure: Perspectives from Food Processing Applications. Food Res. Int. 2024, 198, 115318. [Google Scholar] [CrossRef]
- Sultan, Z.; Ashfaq, A.; Jahan, K.; Qadri, O.S.; Younis, K.; Yousuf, O. pH Shift Extraction Technique for Plant Proteins: A Promising Technique for Sustainable Development. Energy Nexus 2024, 16, 100329. [Google Scholar] [CrossRef]
- Chen, Q.; Ji, H.; Wang, Z.; Wang, Y.; Wang, X.; Chen, Z. Effects of Different Charged Polysaccharides on the Gelation Properties and in Vitro Digestibility of Potato Protein Gel: Insight into Underlying Mechanisms. Food Hydrocoll. 2025, 164, 111187. [Google Scholar] [CrossRef]
- Zhao, R.; Fu, W.; Li, D.; Dong, C.; Bao, Z.; Wang, C. Structure and Functionality of Whey Protein, Pea Protein, and Mixed Whey and Pea Proteins Treated by pH Shift or High-Intensity Ultrasound. J. Dairy Sci. 2024, 107, 726–741. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Ma, Z.; Cheng, T.; Guo, Z.; Zhou, L.; Wang, Z. Impacts of Industrial Modification on the Structure and Gel Features of Soy Protein Isolate and Its Composite Gel with Myofibrillar Protein. Foods 2023, 12, 1982. [Google Scholar] [CrossRef]
- Dumetz, A.C.; Chockla, A.M.; Kaler, E.W.; Lenhoff, A.M. Effects of pH on Protein–Protein Interactions and Implications for Protein Phase Behavior. Biochim. Biophys. Acta BBA—Proteins Proteom. 2008, 1784, 600–610. [Google Scholar] [CrossRef]
- Han, Q.; Veríssimo, N.V.P.; Bryant, S.J.; Martin, A.V.; Huang, Y.; Pereira, J.F.B.; Santos-Ebinuma, V.C.; Zhai, J.; Bryant, G.; Drummond, C.J.; et al. Scattering Approaches to Unravel Protein Solution Behaviors in Ionic Liquids and Deep Eutectic Solvents: From Basic Principles to Recent Developments. Adv. Colloid Interface Sci. 2024, 331, 103242. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Q.; Xiong, Y.L. A pH Shift Approach to the Improvement of Interfacial Properties of Plant Seed Proteins. Curr. Opin. Food Sci. 2018, 19, 50–56. [Google Scholar] [CrossRef]
- Pezeshk, S.; Rezaei, M.; Hosseini, H.; Abdollahi, M. Impact of pH-Shift Processing Combined with Ultrasonication on Structural and Functional Properties of Proteins Isolated from Rainbow Trout by-Products. Food Hydrocoll. 2021, 118, 106768. [Google Scholar] [CrossRef]
- Lu, X.; Qian, S.; Wu, X.; Lan, T.; Zhang, H.; Liu, J. Research Progress of Protein Complex Systems and Their Application in Food: A Review. Int. J. Biol. Macromol. 2024, 265, 130987. [Google Scholar] [CrossRef]
- Yu, Y.; Guan, Y.; Wen, H.; Zhang, Y.; Liu, J.; Zhang, T. Mild Heating Assisted Alkaline pH Shifting Modify the Egg White Protein: The Mechanism and the Enhancement of Emulsifying Properties. LWT 2021, 151, 112094. [Google Scholar] [CrossRef]
- Chang, L.; Chen, B.; Rao, J. Synergistic Effect of pH-Shift and Controlled Heating on Improving Foaming Properties of Pea Vicilin and Its Adsorption Behavior at the Air-Water Interface. Food Hydrocoll. 2023, 145, 109022. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Q.; Zhao, Y.; Zhao, D.; Zhao, X.; Jiang, L.; Zhang, Y.; Wu, F.; Sui, X. Improving Gel Properties of Soy Protein Isolate through Alkaline pH-Shifting, Mild Heat Treatment, and TGase Cross-Linking. Food Hydrocoll. 2023, 144, 108924. [Google Scholar] [CrossRef]
- Dabbour, M.; Jiang, H.; Mintah, B.; Wahia, H.; He, R. Ultrasonic-Assisted Protein Extraction from Sunflower Meal: Kinetic Modeling, Functional, and Structural Traits. Innov. Food Sci. Emerg. Technol. 2021, 74, 102824. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Shen, X.; McClements, D.J.; Liu, X.; Liu, F. Effects of Combined Hot Alkaline and pH-Shift Treatments on Structure and Functionality of Legume Protein-EGCG Conjugates: Soybean-, Pea-, and Chickpea Protein-EGCG Systems. Food Hydrocoll. 2025, 158, 110424. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Shen, J.; Zou, B.; Zhang, L.; Xu, X.; Wu, C. Disulfide Bond Cleavage Combined with Critical pH Induced Unfolding and Assembly of Soy Protein and Its Encapsulation Effect on Curcumin. Food Hydrocoll. 2024, 157, 110358. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Sun, Y.; Zhang, H.; Guo, S. Alkaline-Heat Induced the Conformationally Flexible Regions of Soy Protein and Their Effect on Subunit Aggregation. Food Chem. 2025, 477, 143535. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Li, C.; Wang, Y.; Mao, Y.; Yang, C.; Li, Y. Preparation of Pumpkin Seed Protein Isolate Nanoparticles by Heat-Assisted pH-Shifting: Enhanced Emulsification Performance and Dispersibility. J. Food Eng. 2024, 377, 112087. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Wu, M.; Li, J.; Bai, Y.; Xu, W.; Qiu, S. Synergistic Effect of pH Shifting and Mild Heating in Improving Heat Induced Gel Properties of Peanut Protein Isolate. LWT 2020, 131, 109812. [Google Scholar] [CrossRef]
- Yang, L.; Dong, H.; Wang, J.; Dadmohammadi, Y.; Zhou, Y.; Lin, T.; Khongkomolsakul, W.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Fabrication and Characterization of Whey Protein Isolate-Tryptophan Nanoparticles by pH-Shifting Combined with Heat Treatment. Food Res. Int. 2024, 196, 115031. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, Y.; Sun, Y.; Fang, L.; Wang, Q.; Qi, B.; Li, Y. Soy Lipophilic Protein Self-Assembled by pH-Shift Combined with Heat Treatment: Structure, Hydrophobic Resveratrol Encapsulation, Emulsification, and Digestion. Food Chem. 2022, 394, 133514. [Google Scholar] [CrossRef]
- Nisov, A.; Nikinmaa, M.; Nordlund, E.; Sozer, N. Effect of pH and Temperature on Fibrous Structure Formation of Plant Proteins during High-Moisture Extrusion Processing. Food Res. Int. 2022, 156, 111089. [Google Scholar] [CrossRef]
- Zhu, P.; Du, X.; Liu, C.; Zhao, G.; Wang, M. Effects of pH during Dry-Heat Preparation on the Physicochemical and Emulsifying Properties of Rice Starch and Whey Protein Isolate Mixtures. Food Hydrocoll. 2023, 140, 108614. [Google Scholar] [CrossRef]
- Ravindran, N.; Kumar Singh, S.; Singha, P. A Comprehensive Review on the Recent Trends in Extractions, Pretreatments and Modifications of Plant-Based Proteins. Food Res. Int. 2024, 190, 114575. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Qi, Q.; Mao, Y.; Yan, X.; Li, X.; Mu, Y.; Zhang, H.; Zhao, C.; Liu, J. Structural, Physicochemical and Digestive Properties of Non-Covalent and Covalent Complexes of Ultrasound Treated Soybean Protein Isolate with Soybean Isoflavone. Food Res. Int. 2024, 189, 114571. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Cavaco-Paulo, A. Effect of Ultrasound on Protein Functionality. Ultrason. Sonochem. 2021, 76, 105653. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Guo, Y.; Liu, C.; Liu, J.; Tan, B.; Guo, Z.; Wang, Z.; Jiang, L. Effects of Ultrasound on the Structural and Emulsifying Properties and Interfacial Properties of Oxidized Soybean Protein Aggregates. Ultrason. Sonochem. 2022, 87, 106046. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-Assisted Extraction and Modification of Plant-Based Proteins: Impact on Physicochemical, Functional, and Nutritional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Hadidi, M.; Aghababaei, F.; McClements, D.J. Enhanced Alkaline Extraction Techniques for Isolating and Modifying Plant-Based Proteins. Food Hydrocoll. 2023, 145, 109132. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Huang, M.; Hayat, K.; Kurtz, N.C.; Wu, X.; Ahmad, M.; Zheng, F. Ultrasound-Assisted Alkaline Proteinase Extraction Enhances the Yield of Pecan Protein and Modifies Its Functional Properties. Ultrason. Sonochem. 2021, 80, 105789. [Google Scholar] [CrossRef]
- Li, W.; Yang, H.; Coldea, T.E.; Zhao, H. Modification of Structural and Functional Characteristics of Brewer’s Spent Grain Protein by Ultrasound Assisted Extraction. LWT 2021, 139, 110582. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Shi, W. Ultrasound-Assisted Processing: Changes in Gel Properties, Water-Holding Capacity, and Protein Aggregation of Low-Salt Hypophthalmichthys Molitrix Surimi by Soy Protein Isolate. Ultrason. Sonochem. 2023, 92, 106258. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Q.; Wang, T.; Huang, Y.; Guo, Y.; Meng, X. Utilizing Ultrasound Combined with Quinoa Protein to Improve the Texture and Rheological Properties of Chinese Style Reduced-Salt Pork Meatballs (Lion’s Head). Ultrason. Sonochem. 2024, 109, 106997. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, X.; Wang, W.; Wang, L.; Jiang, L.; Liu, T.; Yu, D. Effect of High Intensity Ultrasound on the Structure and Solubility of Soy Protein Isolate-Pectin Complex. Ultrason. Sonochem. 2021, 80, 105808. [Google Scholar] [CrossRef]
- Zheng, X.; Zou, B.; Zhang, J.; Cai, W.; Na, X.; Du, M.; Zhu, B.; Wu, C. Recent Advances of Ultrasound-Assisted Technology on Aquatic Protein Processing: Extraction, Modification, and Freezing/Thawing-Induced Oxidation. Trends Food Sci. Technol. 2024, 144, 104309. [Google Scholar] [CrossRef]
- Dabbour, M.; Hamoda, A.; Xu, H.; Mintah, B.K.; Wahia, H.; Betchem, G.; Yolandani; He, R.; Ma, H.; Fikry, M. pH-Shifting and Sonication Synergistically Altered Cottonseed Protein: Correlating the Conformational and Functional Characteristics. Ind. Crops Prod. 2024, 222, 120043. [Google Scholar] [CrossRef]
- Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.M.; Almajwal, A.; Abulmeaty, M.M.; Feng, H. Modifying the Physicochemical Properties of Pea Protein by pH-Shifting and Ultrasound Combined Treatments. Ultrason. Sonochem. 2017, 38, 835–842. [Google Scholar] [CrossRef]
- Sai-Ut, S.; Watchasit, S.; Pongsetkul, J.; Kingwascharapong, P.; Suriyarak, S.; Grossmann, L.; Zhang, W.; Rawdkuen, S. Enhancing Protein Extraction from Pleurotus Ostreatus Using Synergistic pH-Shifting and Ultrasonic Technology: Optimization via RSM and 1H NMR-Based Metabolomic Profiling. LWT 2024, 211, 116895. [Google Scholar] [CrossRef]
- Pezeshk, S.; Rezaei, M.; Hosseini, H.; Abdollahi, M. Ultrasound-Assisted Alkaline pH-Shift Process Effects on Structural and Interfacial Properties of Proteins Isolated from Shrimp by-Products. Food Struct. 2022, 32, 100273. [Google Scholar] [CrossRef]
- Song, H.; Zhong, M.; Sun, Y.; Yue, Q.; Qi, B. Ultrasound-Assisted Alkali Removal of Proteins from Wastewater Generated during Oil Bodies Extraction. Ultrason. Sonochem. 2023, 96, 106436. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, L.; Wang, H.; Zhou, B.; Jiang, L.; Zhu, X. Effect of pH-Shifting and Ultrasound on Soy/Potato Protein Structure and Gelation. Food Hydrocoll. 2025, 159, 110672. [Google Scholar] [CrossRef]
- Yang, J.; Duan, Y.; Geng, F.; Cheng, C.; Wang, L.; Ye, J.; Zhang, H.; Peng, D.; Deng, Q. Ultrasonic-Assisted pH Shift-Induced Interfacial Remodeling for Enhancing the Emulsifying and Foaming Properties of Perilla Protein Isolate. Ultrason. Sonochem. 2022, 89, 106108. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Zhao, X.; Wan, W.; Du, X.; Kong, B.; Xia, X. Effects of Different Ultrasound Powers on the Structure and Stability of Protein from Sea Cucumber Gonad. LWT 2021, 137, 110403. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, D.; Qiu, W.; Chen, S.; Hu, Y.; Jin, J.; Udenigwe, C.C. Effects of Ultrasound Combined with pH Shift Modification on Functional and Structural Properties of Peanut Proteins. Int. J. Biol. Macromol. 2024, 283, 137874. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wan, Q.; Song, J.; Hao, T.; Xia, S.; Shen, S.; Li, K.; Xue, C.; Jiang, X. Ultrasound-Assisted pH Shift-Induced Interfacial Remodeling for Enhancing Soluble Yeast Protein Content: Effects on Structure and Interfacial Properties of Proteins under Different Treatment Conditions. Food Hydrocoll. 2024, 149, 109521. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, S.; Kong, Y.; Wu, Z.; Li, Y.; Liu, T.; Xie, F. Modification of Soybean Protein Isolate by pH-Shifting Combined with Ultrasonic Treatment: Structural, Viscosity, and Functional Properties. Food Struct. 2024, 42, 100383. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Liu, Q.; Chen, Q.; Liu, H.; Kong, B. High Internal Phase Emulsions Stabilized by Pea Protein Isolate Modified by Ultrasound and pH-Shifting: Effect of Chitosan Self-Assembled Particles. Food Hydrocoll. 2023, 141, 108715. [Google Scholar] [CrossRef]
- Yang, J.; Duan, Y.; Zhang, H.; Huang, F.; Wan, C.; Cheng, C.; Wang, L.; Peng, D.; Deng, Q. Ultrasound Coupled with Weak Alkali Cycling-Induced Exchange of Free Sulfhydryl-Disulfide Bond for Remodeling Interfacial Flexibility of Flaxseed Protein Isolates. Food Hydrocoll. 2023, 140, 108597. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H.; Sun, J. Improved Gelling and Emulsifying Properties of Chicken Wooden Breast Myofibrillar Protein by High-Intensity Ultrasound Combination with pH-Shifting. Poult. Sci. 2023, 102, 103063. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Wang, W.; Zhang, L.; Zhao, Y. Functionalization of Pine Kernel Protein by pH-Shifting Combined with Ultrasound Treatments: Further Improvement with Increasing Acidity. Int. J. Biol. Macromol. 2023, 248, 125884. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Li, R.; Wang, Y.; Xiang, Q.; Li, K.; Bai, Y. Effects of Combined Treatment with Ultrasound and pH Shifting on Foaming Properties of Chickpea Protein Isolate. Food Hydrocoll. 2022, 124, 107351. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, H.; Chen, W.; Zhong, Q.; Shen, Y.; Zhang, M. Effect of Ultrasound on pH-Shift to Improve Thermal Stability of Coconut Milk by Modifying Physicochemical Properties of Coconut Milk Protein. LWT 2022, 167, 113861. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, Y.; Li, J.; Wang, K.; Ma, C.; Sun, D.; Hussain, M.A.; Qayum, A.; Hou, J. Consecutive pH-Shift and Ultrasound Treatment Modify the Physicochemical Properties of Whey Protein Isolate. Int. Dairy J. 2022, 127, 105211. [Google Scholar] [CrossRef]
- Figueroa-González, J.J.; Lobato-Calleros, C.; Vernon-Carter, E.J.; Aguirre-Mandujano, E.; Alvarez-Ramirez, J.; Martínez-Velasco, A. Modifying the Structure, Physicochemical Properties, and Foaming Ability of Amaranth Protein by Dual pH-Shifting and Ultrasound Treatments. LWT 2022, 153, 112561. [Google Scholar] [CrossRef]
- Alavi, F.; Chen, L.; Emam-Djomeh, Z. Effect of Ultrasound-Assisted Alkaline Treatment on Functional Property Modifications of Faba Bean Protein. Food Chem. 2021, 354, 129494. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, P.; Sozer, N. Impact of Ultrasound Treatment and pH-Shifting on Physicochemical Properties of Protein-Enriched Barley Fraction and Barley Protein Isolate. Foods 2020, 9, 1055. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.; Li, L.; Xie, T.; Teng, F. Co-Encapsulation of Vitamin E and Quercetin by Soybean Lipophilic Proteins Based on pH-Shifting and Ultrasonication: Focus on Interaction Mechanisms, Structural and Physicochemical Properties. Food Chem. 2024, 460, 140608. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Cai, X.; Wu, J.; Zhang, L.; Fang, Y.; Wang, S. Effect of Simultaneous Treatment Combining Ultrasonication and pH-Shifting on SPI in the Formation of Nanoparticles and Encapsulating Resveratrol. Food Hydrocoll. 2021, 111, 106250. [Google Scholar] [CrossRef]
- Baldelli, A.; Shi, J.; Singh, A.; Guo, Y.; Fathordoobady, F.; Amiri, A.; Pratap-Singh, A. Effect of High-Pressure on Protein Structure, Refolding, and Crystallization. Food Chem. Adv. 2024, 5, 100741. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, T.; Li, L.; Chi, H.; Teng, F. Modification of Soybean Lipophilic Protein Based on pH-Shifting and High-Pressure Homogenization: Focus on Structure, Physicochemical Properties and Delivery Vehicle. Food Chem. 2025, 463, 141001. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Luo, S.; Zhong, C.; Ye, J.; Liu, C. The Impact of pH Shifting Combined High-Pressure Homogenization on Structural and Functional Properties of Rice Dreg Protein. Innov. Food Sci. Emerg. Technol. 2024, 91, 103520. [Google Scholar] [CrossRef]
- Yildiz, G. Effects of High-Intensity Ultrasound, High-Pressure Processing, and Their Combination with pH-Shifting on the Techno-Functionality and Digestibility of Melon Seed Protein Isolate. Food Res. Int. 2025, 208, 116219. [Google Scholar] [CrossRef]
- Parlak, M.E.; Sarıcaoglu, F.T.; Yilmaz, M.T. Application of High-Pressure Homogenization-Assisted pH-Shift to Enhance Techno-Functional and Interfacial Properties of Lentil Protein Isolate. Food Hydrocoll. 2024, 157, 110425. [Google Scholar] [CrossRef]
- Mune Mune, M.A.; Stănciuc, N.; Grigore-Gurgu, L.; Aprodu, I.; Borda, D. Structural Changes Induced by High Pressure Processing in Bambara Bean Proteins at Different pH. LWT 2020, 124, 109187. [Google Scholar] [CrossRef]
- Alvarez, P.A.; Ramaswamy, H.S.; Ismail, A.A. High Pressure Gelation of Soy Proteins: Effect of Concentration, pH and Additives. J. Food Eng. 2008, 88, 331–340. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Structure and Function of Pea, Lentil and Faba Bean Proteins Treated by High Pressure Processing and Heat Treatment. LWT 2021, 152, 112349. [Google Scholar] [CrossRef]
- Mulla, M.Z.; Subramanian, P.; Dar, B.N. Functionalization of Legume Proteins Using High Pressure Processing: Effect on Technofunctional Properties and Digestibility of Legume Proteins. LWT 2022, 158, 113106. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Z.; Cao, Y.; Ming, Y.; Wu, M. Improving the Solubility and Interfacial Absorption of Hempseed Protein via a Novel High Pressure Homogenization-Assisted pH-Shift Strategy. Food Chem. 2024, 442, 138447. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, A.; Hong, P.; Zhou, C.; Li, X.; Xie, M. pH-Induced Interface Protein Structure Changes to Adjust the Stability of Tilapia Protein Isolate Emulsion Prepared by High-Pressure Homogenization. Food Chem. X 2024, 24, 101841. [Google Scholar] [CrossRef]
- Laguna, L.; Picouet, P.; Guàrdia, M.D.; Renard, C.M.G.C.; Sarkar, A. In Vitro Gastrointestinal Digestion of Pea Protein Isolate as a Function of pH, Food Matrices, Autoclaving, High-Pressure and Re-Heat Treatments. LWT 2017, 84, 511–519. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Ruwaih, N.; Mulla, M.; Rahman, M.H. Effect of High Pressure Treatment on Functional, Rheological and Structural Properties of Kidney Bean Protein Isolate. LWT 2018, 91, 191–197. [Google Scholar] [CrossRef]
- Tan, M.; Xu, J.; Gao, H.; Yu, Z.; Liang, J.; Mu, D.; Li, X.; Zhong, X.; Luo, S.; Zhao, Y.; et al. Effects of Combined High Hydrostatic Pressure and pH-Shifting Pretreatment on the Structure and Emulsifying Properties of Soy Protein Isolates. J. Food Eng. 2021, 306, 110622. [Google Scholar] [CrossRef]
- Yildiz, G.; Yıldız, G. A New Approach to Enhance Quinoa Protein Nano-Aggregates: Combined pH Shifting—High Pressure Homogenization. Food Chem. 2023, 415, 135800. [Google Scholar] [CrossRef] [PubMed]
- Kadri, A.; Jenner, G.; Damak, M.; Lorber, B.; Giegé, R. Crystallogenesis Studies of Proteins in Agarose Gel—Combined Effect of High Hydrostatic Pressure and pH. J. Cryst. Growth 2003, 257, 390–402. [Google Scholar] [CrossRef]
- Research Progress in Soybean Lipophilic Protein (LP): Extraction, Structural, Techno-Functional Properties, and High-Performance Food Applications. Trends Food Sci. Technol. 2024, 147, 104440. [CrossRef]
- Zulkali, M.M.D.; Ahmad, A.L.; Derek, C.J.C. Membrane Application in Proteomic Studies: Preliminary Studies on the Effect of pH, Ionic Strength and Pressure on Protein Fractionation. Membr. Drink. Ind. Water Prod. 2005, 179, 381–390. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.-H.; Zhang, M.; Arogundade, L.A. The Effects of pH and High Hydrostatic Pressure on the Physicochemical Properties of a Sweet Potato Protein Emulsion. Food Hydrocoll. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Teixeira, R.F.; Araujo, T.R.; Oliveira, D.d.; Zielinski, A.A.F. Unveiling the Potential of Pressurized Liquid Extraction for Recovering Protein Fractions from Broken Black Beans: Insights into Thermal and Structural Properties. Food Hydrocoll. 2024, 149, 109649. [Google Scholar] [CrossRef]
- Wang, L.; Moraru, C.I. High-Pressure Structuring of Milk Protein Concentrate: Effect of pH and Calcium. J. Dairy Sci. 2021, 104, 4074–4083. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, J.; Xiong, Y.L. High Pressure Homogenization Combined with pH Shift Treatment: A Process to Produce Physically and Oxidatively Stable Hemp Milk. Food Res. Int. 2018, 106, 487–494. [Google Scholar] [CrossRef]
- Malik, M.A.; Sheikh, M.A.; Mir, N.A. A Review on Pulsed Electric Field Modification of Proteins: Effect on the Functional and Structural Properties. Food Biosci. 2024, 61, 104636. [Google Scholar] [CrossRef]
- Kim, Y.J.; Shin, D.-M.; Oh, E.-J.; Chun, Y.G.; Shin, J.-K.; Choi, Y.-S.; Kim, B.-K. Mechanisms Underlying the Changes in the Structural, Physicochemical, and Emulsification Properties of Porcine Myofibrillar Proteins Induced by Prolonged Pulsed Electric Field Treatment. Food Chem. 2024, 456, 140024. [Google Scholar] [CrossRef] [PubMed]
- Chian, F.M.; Kaur, L.; Oey, I.; Astruc, T.; Hodgkinson, S.; Boland, M. Effect of Pulsed Electric Fields (PEF) on the Ultrastructure and in Vitro Protein Digestibility of Bovine Longissimus Thoracis. LWT 2019, 103, 253–259. [Google Scholar] [CrossRef]
- Farjami, T.; Babaei, J.; Nau, F.; Dupont, D.; Madadlou, A. Effects of Thermal, Non-Thermal and Emulsification Processes on the Gastrointestinal Digestibility of Egg White Proteins. Trends Food Sci. Technol. 2021, 107, 45–56. [Google Scholar] [CrossRef]
- Xu, F.-Y.; Wen, Q.-H.; Wang, R.; Li, J.; Chen, B.-R.; Zeng, X.-A. Enhanced Synthesis of Succinylated Whey Protein Isolate by Pulsed Electric Field Pretreatment. Food Chem. 2021, 363, 129892. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Yao, H.; Zhang, A.; Jin, Y.; Zhang, X.; Xu, X. Effect of Constant-Current Pulsed Electric Field Thawing on Proteins and Water-Holding Capacity of Frozen Porcine Longissimus Muscle. Food Chem. 2024, 454, 139784. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-F.; Oey, I.; Bremer, P.; Silcock, P.; Carne, A. Proteolytic Pattern, Protein Breakdown and Peptide Production of Ovomucin-Depleted Egg White Processed with Heat or Pulsed Electric Fields at Different pH. Food Res. Int. 2018, 108, 465–474. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.-H.; Wen, Q.-H.; He, F.; Xu, F.-Y.; Chen, B.-R.; Zeng, X.-A. Combination of Pulsed Electric Field and pH Shifting Improves the Solubility, Emulsifying, Foaming of Commercial Soy Protein Isolate. Food Hydrocoll. 2023, 134, 108049. [Google Scholar] [CrossRef]
- Guo, X.; Aganovic, K.; Bindrich, U.; Juadjur, A.; Hertel, C.; Ebert, E.; Macke, J.g.; Geil, C.; Heinz, V. Extraction of Protein from Juice Blend of Grass and Clover Pressed by a Pilot Pressing Facility Combined with a Pulsed Electric Field Treatment. Future Foods 2022, 6, 100173. [Google Scholar] [CrossRef]
- Saxena, A.; Shahi, V.K. pH Controlled Selective Transport of Proteins through Charged Ultrafilter Membranes under Coupled Driving Forces: An Efficient Process for Protein Separation. J. Membr. Sci. 2007, 299, 211–221. [Google Scholar] [CrossRef]
- Wang, R.; Zeng, M.-Q.; Wu, Y.-W.; Teng, Y.-X.; Wang, L.-H.; Li, J.; Xu, F.-Y.; Chen, B.-R.; Han, Z.; Zeng, X.-A. Enhanced Encapsulation of Lutein Using Soy Protein Isolate Nanoparticles Prepared by Pulsed Electric Field and pH Shifting Treatment. Food Chem. 2023, 424, 136386. [Google Scholar] [CrossRef] [PubMed]
- Akaberi, S.; Krust, D.; Müller, G.; Frey, W.; Gusbeth, C. Impact of Incubation Conditions on Protein and C-Phycocyanin Recovery from Arthrospira Platensis Post- Pulsed Electric Field Treatment. Bioresour. Technol. 2020, 306, 123099. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wu, K.; He, D.; Ou, C.; Lin, J.; Chai, X.; Xiang, Y.; Duan, X.; Cha, Q.; Zhang, X.; et al. Physicochemical and Functional Properties of Cinnamon Essential Oil Emulsions Stabilized by Galactomannan-Rich Aqueous Extract from Gleditsia Sinensis Seeds and Soy Protein Isolate. Int. J. Biol. Macromol. 2025, 295, 139601. [Google Scholar] [CrossRef]
- Han, W.; Shi, W.; Gong, D.; Zhang, G. Improvement of Solubility, Emulsification Property and Stability of Potato Protein by pH-Shifting Combined with Microwave Treatment and Interaction with Pectin. Food Biosci. 2023, 56, 103301. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.S.; Saini, C.S. Effect of pH Shifting on Different Properties of Microwave-Extracted Soybean Meal Protein Isolate. Food Bioprocess Technol. 2024, 17, 640–655. [Google Scholar] [CrossRef]
- Jahan, K.; Sultan, Z.; Younis, K.; Mir, S.S.; Yousuf, O. pH-Shift Extraction Followed by Microwave and Ultrasound Modified Functional Properties of Mustard Meal Protein. Biocatal. Agric. Biotechnol. 2024, 60, 103295. [Google Scholar] [CrossRef]
- Zhang, J.; Ström, A.; Bordes, R.; Alminger, M.; Undeland, I.; Abdollahi, M. Radial Discharge High Shear Homogenization and Ultrasonication Assisted pH-Shift Processing of Herring Co-Products with Antioxidant-Rich Materials for Maximum Protein Yield and Functionality. Food Chem. 2023, 400, 133986. [Google Scholar] [CrossRef]
- Karabulut, G.; Kapoor, R.; Yemis, O.; Feng, H. Manothermosonication, High-Pressure Homogenization, and Their Combinations with pH-Shifting Improve the Techno-Functionality and Digestibility of Hemp Protein. Food Hydrocoll. 2024, 150, 109661. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Y.; Julian McClements, D.; Liu, F.; Liu, X. Impact of Pea Protein-Inulin Conjugates Prepared via the Maillard Reaction Using a Combination of Ultrasound and pH-Shift Treatments on Physical and Oxidative Stability of Algae Oil Emulsions. Food Res. Int. 2022, 156, 111161. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Ye, X.; Qu, L.; Mu, J.; Huang, L.; Dai, C. Modification of Whey Protein Isolate by Ultrasound-Assisted pH Shift for Complexation with Carboxymethylcellulose: Structure and Interfacial Properties. Int. J. Biol. Macromol. 2023, 252, 126479. [Google Scholar] [CrossRef] [PubMed]
Sample | Condition | Functional Improvements | Reference |
---|---|---|---|
Peanut protein | pH shifting (pH 12) combined with ultrasound (400 W, 20 kHz, 10 min, 25 °C) | The solubility was 111.4% higher than that of the control (d-ppi), respectively. | [68] |
Soybean protein isolate (SPI), potato protein isolate (PPI4) and soybean/potato protein complex (SPI/PPI4 complex) | pH shifting (pH 12) combined with ultrasound (360 W, 20 kHz, 30 min, 25 °C) | Increased protein–water interactions, resulting in enhanced solubility. The gel properties were significantly improved after treatment, and the hardness, elasticity, and water-holding capacity (WHC) were significantly improved. | [65] |
Pleurotus ostreatus | pH shifting (pH 12) combined with ultrasound (45 kHz, 64 min, 35 °C) | Enhanced emulsifying properties and foam stability of protein concentrate. | [62] |
Yeast protein (YP) | pH shifting (pH 12, 2 h) combined with ultrasound (390 W, 25 kHz, 20 min, 25 °C) | The combined treatment greatly reduced the particle size of the protein and increased the solubility, foaming performance, and surface hydrophobicity (H0) value | [69] |
Soy protein isolate (SPI) | Alkaline pH shifting (pH 9 1 h) combined with ultrasonic treatment (200 W, 300 W, 400 W, 10 min) | The viscosity of SPI decreased from 98.97 mPa. s to 22.83 mPa. s. These structural changes endow SPI with higher solubility (increasing from 81.13% to 91.53%), as well as better emulsifying and foaming properties. | [70] |
Cottonseed meal protein (CSMP) | pH shifting (pH 1.5/3.5/9.5/11.5) and sonication (320 W, 20/60 kHz, 21 min) | Combined treatment at alkaline conditions increased absolute surface charge, solubility, foamability, and oil binding efficacy over control, and pH shifting alone (p < 0.05). | [60] |
Pea protein isolate | pH shifting (pH 12, 1 h) and sonication (500 W, 20 kHz, 10 min, 25 °C) | PPI2 modified by ultrasound and pH change can successfully stabilize solid high internal phase lotion HIPEs with strong viscoelasticity and high stability. | [71] |
Flaxseed protein isolate | pH shifting (pH 10, 2 h) and sonication (504 W, 20 kHz, 20 min, 25 °C) | UFPI-10 (FPI treated by ultrasound coupled with pH 10 cycling) possessed higher emulsification stability (ESI similar to 308.20 min), increasing by 1.74 times. | [72] |
Chicken wooden breast myofibrillar protein (WBMP) | pH shifting (pH 11, 10 min, 4 °C) and sonication (400 W, 20 kHz) | WBMP emulsion more uniform, the gel strength and water-holding capacity of the protein gel increased. | [73] |
Pine kernel protein (PKP) | Acidic pH shifting (pH 2, 30 min) and ultrasound (500 W, 20 kHz, 10 min, 30 °C) | Protein lotion shows higher viscoelasticity and stronger protein interaction, and lotion stability is enhanced. | [74] |
Perilla protein isolate (PPI3) | pH shifting (pH 10/12, 30 min) and sonication (400 W, 20 kHz, 15 min) | the emulsifying and foaming properties of PPI3 could evidently enhance. | [66] |
Chickpea protein isolate (CPI) | pH shifting (pH 2/12, 60 min) and sonication (300 W, 20 kHz, 20 min) | The foaming performance of CPI has significantly improved. | [75] |
Coconut milk protein | pH shifting (pH 1/12, 60 min) and sonication (53 kHz, 40 W/L, 20 min, 25 °C) | Ultrasound can amplify the effect of pH shift on increasing the thermal stability of coconut milk by modifying functional properties and structures of coconut milk protein. | [76] |
Shrimp proteins | alkaline pH shift (pH 12.5) combined with ultrasonication (300 W, 20 min) | The combined treatment of shrimp protein has a significant impact on its foaming and emulsifying properties. | [63] |
Whey protein isolate | pH shifting (pH 2, 0–3 h) combined with ultrasound (600 W, 20 kHz, 30 min) | pH 2-shifting treatment combined with ultrasound could improve emulsion stability of WPI. | [77] |
Native amaranth protein (APN) | pH shifting (pH 2/12, 1 h) combined with ultrasound (50% amplitude for 10 min) | Foaming capacity and stability were significantly increased in all treatments. | [78] |
Faba bean protein isolate | pH shifting (pH 11) combined with ultrasound (1200 W, 20 kHz 10/20 min) | A striking enhancement in foaming capacity (from 93% to 306–386%) and stability (from 10 s to 473–974 s) was achieved by the combined treatment. | [79] |
Barley protein isolate | pH shifting (pH 9) combined with ultrasound (20 kHz) | Ultrasound treatment improved both protein solubility and colloidal stability of the protein-enriched fraction at alkaline pH. | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, R.; Huang, Y.; Dabbour, M.; Mintah, B.K.; Pan, J.; Wu, M.; Zhang, S.; Qin, Z.; He, R.; Ma, H. Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review. Foods 2025, 14, 2360. https://doi.org/10.3390/foods14132360
Long R, Huang Y, Dabbour M, Mintah BK, Pan J, Wu M, Zhang S, Qin Z, He R, Ma H. Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review. Foods. 2025; 14(13):2360. https://doi.org/10.3390/foods14132360
Chicago/Turabian StyleLong, Ruiqi, Yuanyuan Huang, Mokhtar Dabbour, Benjamin Kumah Mintah, Jiayin Pan, Minquan Wu, Shengqi Zhang, Zhou Qin, Ronghai He, and Haile Ma. 2025. "Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review" Foods 14, no. 13: 2360. https://doi.org/10.3390/foods14132360
APA StyleLong, R., Huang, Y., Dabbour, M., Mintah, B. K., Pan, J., Wu, M., Zhang, S., Qin, Z., He, R., & Ma, H. (2025). Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review. Foods, 14(13), 2360. https://doi.org/10.3390/foods14132360