Innovative Cold Plasma Pretreatment and Enzyme-Assisted Extraction of Genistein from Edamame and Storage Stability of Dried Extract Powder
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Cold Plasma Pretreatment
2.3. Enzyme Hydrolysis
2.4. Drying Conditions
2.5. Morphology of Dried Edamame Extract
2.6. Storage Stability Test of Edamame Extract Powder
2.7. Phytochemical Analysis
2.7.1. Determination of Total Phenolic Contents
2.7.2. Determination of Total Flavonoid Content
2.7.3. Determination of Genistein
2.8. Antioxidant Analysis
2.8.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.8.2. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
2.9. Powder Yield
2.10. Physico–Chemical Analysis
2.11. Statistical Analysis
3. Results and Discussions
3.1. Cold Plasma Pretreatment for Enhancing the Extraction of Bioactive Ingredients
3.2. Cold Plasma and Enzymatic Extraction for Bioactive Ingredients
3.3. Comparison of Spray-Drying and Freeze-Drying of Edamame Extract
3.4. Morphological Observations
3.5. Storage Stability of Spray-Dried Extract Powder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAE | catechin equivalents |
CP | cold plasma |
DPPH | 2,2-diphenyl-1-picryl-hydrazyl |
FRAP | ferric-reducing antioxidant power |
GAE | gallic acid equivalents |
HPLC | high-performance liquid chromatography |
SEM | scanning electron microscopy |
TEAC | trolox equivalent antioxidant capacity |
TFC | total flavonoid content |
TPC | total phenolic content |
TPTZ | 2,4,6-Tris (2-pyridyl)-1,3,5-triazine |
UV | ultraviolet radiation |
References
- Rosso, M.L.; Zhang, B.; Williams, M.M.; Fu, X.; Ross, J. Editorial: Everything Edamame: Biology, Production, Nutrition, Sensory and Economics, Volume II. Front. Plant Sci. 2024, 15, 1488772. [Google Scholar] [CrossRef]
- Zeipiņa, S.; Alsiņa, I.; Lepse, L. Insight in Edamame Yield and Quality Parameters: A Review. In Proceedings of the Annual 23rd International Scientific Conference Proceedings, Jelgava, Latvia, 17−19 May 2017; Volume 2. [Google Scholar] [CrossRef]
- Sutejo, I.R.; Hasanah, A.N.; Sudarko, F.R. The Ethanolic Extract of Edamame (Glycine max L. Merril) Enhance Second Degree Burn Wound Healing Trough Modulating of Hydroxiproline Levels and Increasing Epithelial Thickness. Acta Marisiensis—Ser. Medica 2022, 68, 55–60. [Google Scholar] [CrossRef]
- Messina, M.; Messina, V. The Role of Soy in Vegetarian Diets. Nutrients 2010, 2, 855–888. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Pejčić, T.; Zeković, M.; Bumbaširević, U.; Kalaba, M.; Vovk, I.; Bensa, M.; Popović, L.; Tešić, Ž. The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. Antioxidants 2023, 12, 368. [Google Scholar] [CrossRef]
- Kim, I.S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites on Plants. Food Sci. Biotechnol. 2022, 31, 515. [Google Scholar] [CrossRef] [PubMed]
- Blicharski, T.; Oniszczuk, A. Extraction Methods for the Isolation of Isoflavonoids from Plant Material. Open Chem. 2017, 15, 34–45. [Google Scholar] [CrossRef]
- Dika, F.; Riswanto, O.; Rohman, A.; Pramono, S.; Martono, S. Soybean (Glycine max L.) Isoflavones: Chemical Composition and Its Chemometrics-Assisted Extraction and Authentication. J. Appl. Pharm. Sci. 2021, 11, 12–020. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, V. Non-Thermal Processing Techniques for the Extraction of Bioactive Components of Food. In Bioactive Components: A Sustainable System for Good Health and Well-Being; Springer Nature: Singapore, 2022; pp. 585–594. [Google Scholar] [CrossRef]
- Pattanayek, S.K.; Dutta, D.; Singh, A. Non-Thermal Processing of Functional Foods; Taylor & Francis: London, UK, 2024; pp. 1–336. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold Plasma: A Novel Non-Thermal Technology for Food Processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Sarangapani, C.; Patange, A.; Bourke, P.; Keener, K.; Cullen, P.J. Recent Advances in the Application of Cold Plasma Technology in Foods. Annu. Rev. Food Sci. Technol. 2018, 9, 609–629. [Google Scholar] [CrossRef]
- Heydari, M.; Carbone, K.; Gervasi, F.; Parandi, E.; Rouhi, M.; Rostami, O.; Abedi-Firoozjah, R.; Kolahdouz-Nasiri, A.; Garavand, F.; Mohammadi, R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023, 12, 3181. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Wang, Y.; Zhou, X.; Wei, S.; Zhang, D. Cold Plasma Pretreatment Technology for Enhancing the Extraction of Bioactive Ingredients from Plant Materials: A Review. Ind. Crops Prod. 2024, 209, 117963. [Google Scholar] [CrossRef]
- Gupta, K.K.; Routray, W. Cold Plasma: A Nonthermal Pretreatment, Extraction, and Solvent Activation Technique for Obtaining Bioactive Compounds from Agro-Food Industrial Biomass. Food Chem. 2025, 472, 142960. [Google Scholar] [CrossRef]
- Tripathy, S.; Srivastav, P.P. Effect of Dielectric Barrier Discharge (DBD) Cold Plasma-Activated Water Pre-Treatment on the Drying Properties, Kinetic Parameters, and Physicochemical and Functional Properties of Centella Asiatica Leaves. Chemosphere 2023, 332, 138901. [Google Scholar] [CrossRef] [PubMed]
- Rout, S.; Panda, P.K.; Dash, P.; Srivastav, P.P.; Hsieh, C. Te Cold Plasma-Induced Modulation of Protein and Lipid Macromolecules: A Review. Int. J. Mol. Sci. 2025, 26, 1564. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Li, X.; Yin, J.; Zhang, Z.; Zhou, X. Study of the Effects of Plasma Pretreatment on the Microstructure of Peanuts. Appl. Sci. 2024, 14, 7752. [Google Scholar] [CrossRef]
- Rout, S.; Srivastav, P.P. Modification of Soy Protein Isolate and Pea Protein Isolate by High Voltage Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma: Comparative Study on Structural, Rheological and Techno-Functional Characteristics. Food Chem. 2024, 447, 138914. [Google Scholar] [CrossRef]
- Sowbhagya, H.B.; Chitra, V.N. Enzyme-Assisted Extraction of Flavorings and Colorants from Plant Materials. Crit. Rev. Food Sci. Nutr. 2010, 50, 146–161. [Google Scholar] [CrossRef]
- Guo, P.; Chen, H.; Ma, J.; Zhang, Y.; Chen, H.; Wei, T.; Gao, D.; Li, J. Enzyme-Assisted Extraction, Characterization, and in Vitro Antioxidant Activity of Polysaccharides from Potentilla anserina L. Front. Nutr. 2023, 10, 1216572. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Liu, Y.; Wu, Z. Complex Enzyme-Assisted Extraction Releases Antioxidative Phenolic Compositions from Guava Leaves. Molecules 2017, 22, 1648. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Li, Z.; Ma, Q.; Wang, L. Extraction of Anthocyanins from Haskap Using Cold Plasma-Assisted Enzyme. J. Sci. Food Agric. 2023, 103, 2186–2195. [Google Scholar] [CrossRef] [PubMed]
- Khonchaisri, R.; Sumonsiri, N.; Prommajak, T.; Rachtanapun, P.; Leksawasdi, N.; Techapun, C.; Taesuwan, S.; Halee, A.; Nunta, R.; Khemacheewakul, J. Optimization of Ultrasonic-Assisted Bioactive Compound Extraction from Green Soybean (Glycine max L.) and the Effect of Drying Methods and Storage Conditions on Procyanidin Extract. Foods 2022, 11, 1775. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zhou, Z.; Zhou, J.; Ouyang, W.; Wu, Z. The Potential Effects of Dielectric Barrier Discharge Plasma on the Extraction Efficiency of Bioactive Compounds in Radix Paeoniae Alba. Front. Nutr. 2021, 8, 735742. [Google Scholar] [CrossRef]
- Penha, C.B.; Falcão, H.G.; Ida, E.I.; Speranza, P.; Kurozawa, L.E. Enzymatic Pretreatment in the Extraction Process of Soybean to Improve Protein and Isoflavone Recovery and to Favor Aglycone Formation. Food Res. Int. 2020, 137, 109624. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.A.; Hasanin, M.S.; Ismail, S.A. Enzymatic Valorization of Cellulosic and Hemicellulosic-Based Biomasses via the Production of Antioxidant Water-Soluble Hydrolyzate of Maize Stalks and the Green Bio-Deinking of Mixed Office Waste Paper. Biomass Convers. Biorefin 2023, 14, 30185–30200. [Google Scholar] [CrossRef]
- Pohntadavit, K.; Duangmano, S.; Osiriphan, M.; Leksawasdi, N.; Techapun, C.; Sumonsiri, N.; Sommano, S.R.; Rachtanapun, P.; Nunta, R.; Khemacheewakul, J. Tyrosinase Inhibitory Activity of Crude Procyanidin Extract from Green Soybean Seed and the Stability of Bioactive Compounds in an Anti-Aging Skin Care Formulation. Cosmetics 2024, 11, 178. [Google Scholar] [CrossRef]
- Elizabeth, R.; Cerda, B.; Cruz-Hernández, M.A.; Anisur, M.; Mazumder, R.; Tolaema, A.; Chaikhemarat, P.; Rawdkuen, S. Antioxidant and Anti-Cytotoxicity Effect of Phenolic Extracts from Psidium guajava Linn. Leaves by Novel Assisted Extraction Techniques. Foods 2023, 12, 2336. [Google Scholar] [CrossRef]
- Martínez, S.; Fuentes, C.; Carballo, J. Antioxidant Activity, Total Phenolic Content and Total Flavonoid Content in Sweet Chestnut (Castanea sativa Mill.) Cultivars Grown in Northwest Spain under Different Environmental Conditions. Foods 2022, 11, 3519. [Google Scholar] [CrossRef]
- Martiny, S.; Waszczuk, M.; Kaiser, S.; Nemitz, M.C.; Bassani, V.L. Stability-Indicating HPLC Method for Isoflavones Aglycones Analysis from Trifolium pratense L. Drug Anal. Res. 2020, 4, 29–39. [Google Scholar] [CrossRef]
- Tyug, T.S.; Prasad, K.N.; Ismail, A. Antioxidant Capacity, Phenolics and Isoflavones in Soybean by-Products. Food Chem. 2010, 123, 583–589. [Google Scholar] [CrossRef]
- Choi, Y.M.; Yoon, H.; Shin, M.J.; Lee, Y.; Hur, O.S.; Lee, B.C.; Ha, B.K.; Wang, X.; Desta, K.T. Metabolite Contents and Antioxidant Activities of Soybean (Glycine max (L.) Merrill) Seeds of Different Seed Coat Colors. Antioxidants 2021, 10, 1210. [Google Scholar] [CrossRef]
- Decker, B.L.A.; Miguel, E.d.C.; Fonteles, T.V.; Fernandes, F.A.N.; Rodrigues, S. Impact of Spray Drying on the Properties of Grape Pomace Extract Powder. Processes 2024, 12, 1390. [Google Scholar] [CrossRef]
- Manickavasagan, A.; Thangavel, K.; Dev, S.R.S.; Delfiya, D.S.A.; Nambi, E.; Orsat, V.; Raghavan, G.S.V. Physicochemical Characteristics of Date Powder Produced in a Pilot-Scale Spray Dryer. Dry. Technol. 2015, 33, 1114–1123. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Al-U’datt, D.G.; Tranchant, C.C.; Alhamad, M.N.; Rababah, T.; Gammoh, S.; Almajwal, A.; Alli, I. Phenolic and Protein Contents of Differently Prepared Protein Co-Precipitates from Flaxseed and Soybean and Antioxidant Activity and Angiotensin Inhibitory Activity of Their Phenolic Fractions. NFS J. 2020, 21, 65–72. [Google Scholar] [CrossRef]
- Jan, K.C.; Gavahian, M. Cold Plasma at Various Voltage, Gas Flow Rate, and Time Assisted Extraction of Blue Pea Flower: Quantitative UPLC-ESI/MS/MS Analysis of Bioactive Compounds, Phenolics, and Anthocyanin Content. Innov. Food Sci. Emerg. Technol. 2024, 98, 103837. [Google Scholar] [CrossRef]
- Paixão, L.M.N.; Fonteles, T.V.; Oliveira, V.S.; Fernandes, F.A.N.; Rodrigues, S. Cold Plasma Effects on Functional Compounds of Siriguela Juice. Food Bioproc. Tech. 2019, 12, 110–121. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Héroux, P.; Sand, W.; Sun, Z.; Zhan, J.; Wang, C.; Hao, S.; Li, Z.; Li, Z.; et al. Effect of Dielectric Barrier Discharge Cold Plasma on Pea Seed Growth. J. Agric. Food Chem. 2019, 67, 10813–10822. [Google Scholar] [CrossRef] [PubMed]
- Settapramote, N.; Laokuldilok, T.; Boonyawan, D.; Utama-ang, N. Optimisation of The Dielectric Barrier Discharge To Produce Riceberry rice Flour Retained With High Activities Of Bioactive Compounds Using Plasma Technology. Int. Food Res. J. 2021, 28, 386–392. [Google Scholar] [CrossRef]
- Mehta, D.; Purohit, A.; Bajarh, P.; Yadav, K.; Shivhare, U.S.; Yadav, S.K. Cold Plasma Processing Improved the Extraction of Xylooligosaccharides from Dietary Fibers of Rice and Corn Bran with Enhanced In-Vitro Digestibility and Anti-Inflammatory Responses. Innov. Food Sci. Emerg. Technol. 2022, 78, 103027. [Google Scholar] [CrossRef]
- Ahmadian, S.; Kenari, R.E.; Amiri, Z.R.; Sohbatzadeh, F.; Khodaparast, M.H.H. Effect of Ultrasound-Assisted Cold Plasma Pretreatment on Cell Wall Polysaccharides Distribution and Extraction of Phenolic Compounds from Hyssop (Hyssopus officinalis L.). Int. J. Biol. Macromol. 2023, 233, 123557. [Google Scholar] [CrossRef]
- Nishad, J.; Saha, S.; Dubey, A.K.; Varghese, E.; Kaur, C. Optimization and Comparison of Non-Conventional Extraction Technologies for Citrus paradisi L. Peels: A Valorization Approach. J. Food Sci. Technol. 2019, 56, 1221. [Google Scholar] [CrossRef]
- Vu, A.T.; Chan Kha, T. Optimization of Enzyme-Assisted Extraction Conditions for Gamma-Aminobutyric Acid and Polyphenols in Germinated Mung Beans (Vigna radiata L.). J. App Biol. Biotech. 2024, 12, 273–282. [Google Scholar] [CrossRef]
- Fu, X.Q.; Ma, N.; Sun, W.P.; Dang, Y.Y. Microwave and Enzyme Co-Assisted Aqueous Two-Phase Extraction of Polyphenol and Lutein from Marigold (Tagetes erecta L.) Flower. Ind. Crops Prod. 2018, 123, 296–302. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Tomar, M.; Lorenzo, J.M.; Dhumal, S.; Chandran, D.; Varghese, E.; Saha, S.; Sairam, K.; et al. Optimization of the Use of Cellulolytic Enzyme Preparation for the Extraction of Health Promoting Anthocyanins from Black Carrot Using Response Surface Methodology. LWT-Food Sci. Technol. 2022, 163, 113528. [Google Scholar] [CrossRef]
- Sasikumar, R.; Das, M.; Deka, S.C. Process Optimization for the Production of Blood Fruit Powder by Spray Drying Technique and Its Quality Evaluation. J. Food Sci. Technol. 2020, 57, 2269. [Google Scholar] [CrossRef] [PubMed]
- Francisco, E.; Santo, E.; Kanamaru, L.; Lima, F.D.; Pamela, A.; Torres, C.; Oliveira, G.D.; Helena, E.; Ponsano, G. Comparison between Freeze and Spray Drying to Obtain Powder Rubrivivax Gelatinosus Biomass Comparação Entre a Secagem Por Liofilização e Atomização Para Produção de Biomassa Bacteriana. Food Sci. Technol. 2013, 33, 47–51. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Lević, S.M.; Pavlović, V.B.; Marković, S.B.; Pjanović, R.V.; Đorđević, V.B.; Nedović, V.; Bugarski, B.M. Freeze vs. Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material. Molecules 2021, 26, 3933. [Google Scholar] [CrossRef] [PubMed]
- Ezhilarasi, P.N.; Indrani, D.; Jena, B.S.; Anandharamakrishnan, C. Freeze Drying Technique for Microencapsulation of Garcinia Fruit Extract and Its Effect on Bread Quality. J. Food Eng. 2013, 117, 513–520. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, W.; Zhang, Y.Q. Effects of Spray Drying and Freeze Drying on Physicochemical Properties, Antioxidant and ACE Inhibitory Activities of Bighead Carp (Aristichthys nobilis) Skin Hydrolysates. Foods 2022, 11, 2083. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Falcimaigne-Cordin, A.; Rossi, C.; Nadaud, F.; Nesterenko, A.; Moncada, M.; Orel, M.; Ivanišová, E.; Chlebová, Z.; et al. Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study. Foods 2022, 11, 2267. [Google Scholar] [CrossRef]
- Tapía, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (Aw) on Microbial Stability as a Hurdle in Food Preservation. In Water Activity in Foods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 323–355. [Google Scholar] [CrossRef]
- Borges, J.M.; Lucarini, M.; Durazzo, A.; Rufino Arcanjo, D.D.; Rodrigues Lima, S.K.; da Silva, R.A. Effect of Freezing and Freeze-Drying on Bioactive Compounds and Antioxidant Activity of Carnauba Pulp (Copernicia prunifera (Mill.) H.E. Moore). MOJ Food Process. Technol. 2023, 11, 78–82. [Google Scholar] [CrossRef]
- Davoudi, Z.; Azizi, M.H.; Barzegar, M. Porous Corn Starch Obtained from Combined Cold Plasma and Enzymatic Hydrolysis: Microstructure and Physicochemical Properties. Int. J. Biol. Macromol. 2022, 223, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Wu, J.S.B.; Wu, J.S.; Ting, Y. Effect of Novel Atmospheric-Pressure Jet Pretreatment on the Drying Kinetics and Quality of White Grapes. J. Sci. Food Agric. 2019, 99, 5102–5111. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Reddivari, L.; Huang, J.Y. Development of Cold Plasma Pretreatment for Improving Phenolics Extractability from Tomato Pomace. Innov. Food Sci. Emerg. Technol. 2020, 65, 102445. [Google Scholar] [CrossRef]
- Wong, C.W.; Lim, L.W.T. Storage Stability of Spray-Dried Papaya (Carica papaya L.) Powder Packaged in Aluminium Laminated Polyethylene (ALP) and Polyethylene Terephthalate (PET). Int. Food Res. J. 2016, 23, 1887–1894. [Google Scholar]
- Zheng, M.; Jin, Z.; Zhang, Y. Effect of Cross-Linking and Esterification on Hygroscopicity and Surface Activity of Cassava Maltodextrins. Food Chem. 2007, 103, 1375–1379. [Google Scholar] [CrossRef]
- Nunes, G.L.; Boaventura, B.C.B.; Pinto, S.S.; Verruck, S.; Murakami, F.S.; Prudêncio, E.S.; De Mello Castanho Amboni, R.D. Microencapsulation of Freeze Concentrated Ilex Paraguariensis Extract by Spray Drying. J. Food Eng. 2015, 151, 60–68. [Google Scholar] [CrossRef]
- Shams Najafabadi, N.; Sahari, M.A.; Barzegar, M.; Hamidi Esfahani, Z. Effects of Concentration Method and Storage Time on Some Bioactive Compounds and Color of Jujube (Ziziphus jujuba Var Vulgaris) Concentrate. J. Food Sci. Technol. 2017, 54, 2947–2955. [Google Scholar] [CrossRef]
- Khademi, S.A.; Eskandari, M.H.; Golmakani, M.T.; Niakousari, M.; Hashemi, H. Improving Oxidative Stability of Cream Powder Using Pomegranate Concentrate and Peel Extract. Food Sci. Nutr. 2024, 12, 7223–7232. [Google Scholar] [CrossRef]
- Moradinezhad, F.; Dorostkar, M. Effect of Vacuum and Modified Atmosphere Packaging on the Quality Attributes and Sensory Evaluation of Fresh Jujube Fruit. Int. J. Fruit Sci. 2021, 21, 82–94. [Google Scholar] [CrossRef]
- Rahayu, D.U.C.; Hakim, R.A.; Mawarni, S.A.; Satriani, A.R. Indonesian Cinnamon (Cinnamomum burmannii): Extraction, Flavonoid Content, Antioxidant Activity, and Stability in the Presence of Ascorbic Acid. Cosmetics 2022, 9, 57. [Google Scholar] [CrossRef]
Cold Plasma Pretreatment | Bioactive Compounds | |||
---|---|---|---|---|
Gas Flow Rate (L/min) | Time (min) | TPC (mg GAE/100 g) | TFC (mg CAE/100 g) | Genistein (mg/100 g) |
Control | 0 | 8.75 ± 0.76 d | 1.64 ± 0.10 f | 1.46 ± 0.14 g |
5 L/min | 20 | 5.88 ± 0.43 e | 4.04 ± 0.19 d | 3.28 ± 0.09 f |
30 | 15.0 ± 0.37 a | 6.77 ± 0.18 a | 3.69 ± 0.01 a | |
7 L/min | 20 | 14.1 ± 0.65 ab | 4.00 ± 0.24 d | 3.49 ± 0.01 d |
30 | 13.2 ± 0.61 b | 4.39 ± 0.15 c | 3.45 ±0.08 e | |
9 L/min | 20 | 12.2 ± 0.35 c | 3.74 ± 0.07 e | 3.52 ± 0.01 c |
30 | 8.17 ± 0.54 d | 5.27 ± 0.32 b | 3.59 ± 0.01 b |
Enzyme Treatment | Bioactive Compounds | |||
---|---|---|---|---|
Concentration (%) | Time (min) | TPC (mg GAE/100 g) | TFC (mg CAE/100 g) | Genistein (mg/100 g) |
Control | 0 | 13.0 ± 0.48 f | 3.45 ± 0.01 f | 3.09 ± 0.09 d |
1.0 | 120 | 20.4 ± 0.89 bc | 14.2 ± 0.64 c | 10.7 ± 0.28 c |
180 | 20.9 ± 0.88 bc | 15.1 ± 0.39 b | 11.3 ± 0.39 b | |
240 | 16.6 ± 0.31 d | 12.8 ± 0.90 de | 11.4 ± 0.35 b | |
1.5 | 120 | 20.0 ± 0.43 bc | 11.9 ± 0.84 e | 10.9 ± 0.31 c |
180 | 14.6 ± 0.31 e | 12.8 ± 0.28 de | 10.6 ± 0.44 c | |
240 | 16.8 ± 0.97 d | 13.1 ± 0.39 d | 12.5 ± 0.07 a | |
2.0 | 120 | 19.5 ± 1.06 c | 11.0 ± 0.42 e | 10.7 ± 0.39 c |
180 | 21.1 ± 0.58 b | 15.0 ± 0.18 b | 11.7 ± 0.31 b | |
240 | 22.5 ± 0.23 a | 15.3 ± 0.13 a | 12.6 ± 0.10 a |
Drying Methods | Powder Yield (%) | Moisture Content % | Water Activity | TPC (mg GAE/100 g) | TFC (mg CAE/100 g) | Genistein (mg/100 g DM) | Antioxidant Activities | |
---|---|---|---|---|---|---|---|---|
FRAP (mg Fe (II)/g) | TEAC (mg Trolox/g) | |||||||
Freeze-drying | 43.4 ± 0.15 b | 7.82 ± 0.19 a | 0.36 ± 0.00 a | 23.6 ± 0.45 b | 6.99 ± 0.09 b | 5.57 ± 0.02 a | 13.0 ± 0.14 b | 56.7 ± 1.57 a |
Spray-drying | 68.0 ± 0.19 a | 5.74 ± 0.23 b | 0.37 ± 0.00 a | 35.9 ± 0.79 a | 9.53 ± 0.09 a | 5.19 ± 0.01 a | 18.2 ± 0.18 a | 43.9 ± 2.10 b |
Storage Temperature (°C) | Time (Days) | Physical Properties | TPC (mg GAE/100 g) | TFC (mg CAE/100 g) | Genistein (mg/100 g) | Antioxidant Activities | ||||
---|---|---|---|---|---|---|---|---|---|---|
Solubility (%) | Color | |||||||||
L* | a* | b* | FRAP (mg Fe (II)/g) | TEAC (mg Trolox/g) | ||||||
4 | 0 | 84.70 ± 1.62 a | 90.63 ± 0.11 b | −0.79 ± 0.05 a | 4.39 ± 0.15 a | 32.22 ± 0.27 a | 13.36 ± 0.10 a | 6.77 ± 0.32 a | 49.66 ± 0.11 a | 95.44 ± 1.93 a |
15 | 83.05 ± 1.67 b | 90.55 ± 0.12 b | −0.77 ± 0.03 a | 4.28 ± 0.30 a | 31.20 ± 0.43 ab | 13.33 ± 0.20 a | 6.73 ± 0.38 a | 48.39 ± 1.80 a | 91.49 ± 1.33 a | |
30 | 83.82 ± 1.80 b | 91.96 ± 0.19 a | −0.76 ± 0.03 a | 4.27 ± 2.52 a | 29.73 ± 1.01 c | 8.78 ± 0.05 b | 6.55 ± 0.36 a | 49.09 ± 0.29 a | 89.34 ± 1.01 b | |
45 | 83.74 ± 1.27 b | 92.44 ± 0.46 a | −0.74 ± 0.04 a | 4.18 ± 0.48 b | 29.14 ± 0.42 c | 6.82 ± 0.19 c | 6.43 ± 0.41 a | 46.89 ± 0.65 b | 84.70 ± 1.42 b | |
25 | 0 | 84.80 ± 2.55 a | 91.01 ± 0.13 a | −0.83 ± 0.06 b | 4.52 ± 0.49 a | 32.12 ± 0.22 a | 13.26 ± 0.03 a | 6.70 ± 0.22 a | 48.14 ± 0.29 a | 92.08 ± 1.39 a |
15 | 83.72 ± 0.54 b | 92.26 ± 0.94 a | −0.78 ± 0.04 a | 4.47 ± 0.07 a | 26.58 ± 0.27 d | 8.01 ± 0.11 b | 5.73 ± 0.79 b | 43.93 ± 0.11 c | 82.21 ± 0.59 b | |
30 | 83.15 ± 1.20 b | 92.50 ± 0.39 a | −0.75 ± 0.02 a | 4.44 ± 0.12 a | 24.78 ± 0.70 e | 8.40 ± 0.58 b | 5.60 ± 0.48 b | 42.14 ± 0.19 c | 66.82 ± 1.30 d | |
45 | 83.37 ± 0.33 b | 92.90 ± 0.28 a | −0.77 ± 0.08 a | 4.16 ± 0.25 b | 20.34 ± 0.34 f | 6.64 ± 0.05 c | 5.54 ± 0.04 b | 36.53 ± 0.11 d | 55.48 ± 1.74 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bano, S.; Sommano, S.R.; Leksawasdi, N.; Taesuwan, S.; Rachtanapun, P.; Techapun, C.; Sumonsiri, N.; Khemacheewakul, J. Innovative Cold Plasma Pretreatment and Enzyme-Assisted Extraction of Genistein from Edamame and Storage Stability of Dried Extract Powder. Foods 2025, 14, 2118. https://doi.org/10.3390/foods14122118
Bano S, Sommano SR, Leksawasdi N, Taesuwan S, Rachtanapun P, Techapun C, Sumonsiri N, Khemacheewakul J. Innovative Cold Plasma Pretreatment and Enzyme-Assisted Extraction of Genistein from Edamame and Storage Stability of Dried Extract Powder. Foods. 2025; 14(12):2118. https://doi.org/10.3390/foods14122118
Chicago/Turabian StyleBano, Shaher, Sarana Rose Sommano, Noppol Leksawasdi, Siraphat Taesuwan, Pornchai Rachtanapun, Charin Techapun, Nutsuda Sumonsiri, and Julaluk Khemacheewakul. 2025. "Innovative Cold Plasma Pretreatment and Enzyme-Assisted Extraction of Genistein from Edamame and Storage Stability of Dried Extract Powder" Foods 14, no. 12: 2118. https://doi.org/10.3390/foods14122118
APA StyleBano, S., Sommano, S. R., Leksawasdi, N., Taesuwan, S., Rachtanapun, P., Techapun, C., Sumonsiri, N., & Khemacheewakul, J. (2025). Innovative Cold Plasma Pretreatment and Enzyme-Assisted Extraction of Genistein from Edamame and Storage Stability of Dried Extract Powder. Foods, 14(12), 2118. https://doi.org/10.3390/foods14122118