Impact of the Wood Species Used on the Chemical Composition, Color and Sensory Characteristics of Wine
Abstract
1. Introduction
2. Materials and Methods
2.1. Woods
2.2. White Wine and Experimental Conditions
2.3. Chemical Analysis
2.3.1. Spectral Analysis
2.3.2. Phenolic Analysis
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. General Chemical Characteristics
3.2. Total Phenols
3.3. Total Flavonols, Tartaric Esters and Condensed Tannins
3.4. Chromatic Characteristics and Browing Potential Index
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Differents woods in cooperage for oenology: A review. Beverages 2018, 4, 94. [Google Scholar] [CrossRef]
- Martínez-Gil, A.; del Alamo-Sanza, M.; del Barrio-Galán, R.; Nevares, I. Alternative woods in oenology: Volatile compounds characterisation of woods with respect to traditional oak and effect on aroma in wine, a review. Appl. Sci. 2022, 12, 2101. [Google Scholar] [CrossRef]
- Resolution OENO 4/2005. International Œnological Codex: Wood for Wine Containers; COEI-1-WOOCON: 2005; OIV: Dijon, France, 2024; ISBN 978-2-85038-087-7. [Google Scholar]
- Commission Delegated Regulation (UE) 2019/934. Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Wine-Growing Areas Where the Alcoholic Strength may be Increased, Authorised Oenological Practices and Restrictions Applicable to the Production and Conservation of Grapevine Products, the Minimum Percentage of Alcohol for By-Products and Their Disposal, and Publication of Oiv Files; Commission Delegated Regulation (EU); 12 March 2019. p. 934. Available online: https://eur-lex.europa.eu/eli/reg_del/2019/934/oj/eng (accessed on 28 April 2025).
- Correia, A.C.; Miljić, U.; Jordão, A.M. Storage of a white wine with different untoasted wood species: Impact on the chemical composition and sensory characteristics. Eur. Food Res. Technol. 2023, 249, 2689–2703. [Google Scholar] [CrossRef]
- Alañon, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. New Strategies to Improve Sensorial Quality of White Wines by Wood Contact. Beverages 2018, 4, 91. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M. Chapter 22—Use of different wood species for white wine production: Wood composition and impact on wine quality. In White Wine Technology; Academic Press: Oxford, UK, 2022; pp. 281–300. [Google Scholar] [CrossRef]
- Jordão, A.M.; Correia, A.C.; Botelho, R.V.; Ortega-Heras, M.; González-SanJosé, M.L. Phenolic content, volatile composition and sensory profile of red wines macerated with toasted woods from different South American botanical species. J. Food Compost. Anal. 2025, 137, 106854. [Google Scholar] [CrossRef]
- Martinez-Gil, A.M.; del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Alternative woods in enology: Characterization of tannin and low molecular weight phenol compounds with respect to traditional oak woods. A review. Molecules 2020, 25, 1474. [Google Scholar] [CrossRef]
- Karbowiak, T.; Gougeon, R.D.; Alinc, J.B.; Brachais, L.; Debeaufort, F.; Voilley, A.; Chassagne, D. Wine oxidation and the role of cork. Crit. Rev. Food Sci. Nutr. 2009, 50, 20–52. [Google Scholar] [CrossRef]
- Jiménez Moreno, N.; Ancín Azpilicueta, C. Binding of oak volatile compounds by wine lees during simulation of wine ageing. LWT-Food Sci. Technol. 2007, 40, 619–624. [Google Scholar] [CrossRef]
- Liberatone, M.T.; Pati, S.; Del Nobile, M.A.; La Notte, E. Aroma quality improvement of Chardonnay White wine by fermentation and ageing in barrique on lees. Food Res. Int. 2010, 43, 996–1002. [Google Scholar] [CrossRef]
- del Alamo-Sanza, M.; Nevares, I. Oak wine barrel as an active vessel: A critical review of past and current knowledge. Crit. Rev. Food Sci. Nutr. 2018, 58, 2711–2726. [Google Scholar] [CrossRef] [PubMed]
- Délia, L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Influence of different wood chips species (oak, acacia and cherry) used in a short period of aging on the quality of ‘Encruzado’ white wines. Mitt. Klosterneuburg 2017, 67, 84–96. [Google Scholar]
- Guchu, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; González Viñas, M.A.; Cabezudo, M.D. Volatile composition and sensory characteristics of Chardonnay wines treated with American and Hungarian oak chips. Food Chem. 2006, 99, 350–359. [Google Scholar] [CrossRef]
- Gutiérrez Afonso, V.L. Sensory descriptive analysis between white wines fermented with oak chips and in barrels. J. Food Sci. 2002, 67, 2415–2419. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; González-Viñas, M.A.; García-Romero, E.; Cabezudo, M.D.; Sanz, J. Chemical and sensory changes in white wines fermented in the presence of oak chips. Int. J. Food Sci. Technol. 2000, 35, 23–32. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; Sánchez, M.A.; García, E.; González-Viñas, M.S.; Sanz, J.; Cabezudo, M.D. Fermentation of white wines in the presence of wood chips of American and French oak. J. Agric. Food Chem. 2000, 48, 885–889. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Alonso-Villegas, R.; Delgado, J.A.; González-Viñas, M.S. Improvement of Verdejo white wines by contact with oak chips at different winemaking stages. LWT-Food Sci. Technol. 2017, 79, 111–118. [Google Scholar] [CrossRef]
- Spillman, P.J.; Sefton, M.A.; Gawel, R. The contribution of volatile compounds derived during oak barrel maturation to the aroma of a Chardonnay and Cabernet Sauvignon wine. Aust. J. Grape Wine Res. 2004, 10, 227–235. [Google Scholar] [CrossRef]
- Herrero, P.; Sáenz-Navajas, M.P.; Avizcuri, J.M.; Culleré, L.; Balda, P.; Antón, E.C.; Ferreira, V.; Escudero, A. Study of chardonnay and Sauvignon blanc wines form D.O.Ca Rioja (Spain) aged in different French oak wood barrels: Chemical and aroma quality aspects. Food Res. Int. 2016, 89, 227–236. [Google Scholar] [CrossRef]
- Alañón, M.E.; Marchante, L.; Alarcón, M.; Díaz-Maroto, I.J.; Pérez-Coello, M.S.; Díaz-Maroto, M.C. Fingerprints of acacia aging treatments by barrels or chips based on volatile profile, sensorial properties, and multivariate analysis. J. Sci. Food Agric. 2018, 18, 5795–5806. [Google Scholar] [CrossRef]
- Nunes, P.; Muxagata, S.; Correia, A.C.; Nunes, F.; Cosme, F.; Jordão, A.M. Effect of oak wood barrel capacity and utilization time on phenolic and sensorial profile evolution of an Encruzado white wine. J. Sci. Food Agric. 2017, 97, 4847–4856. [Google Scholar] [CrossRef] [PubMed]
- Herjavec, S.; Jeromel, A.; Da Silva, A.; Orlic, S.; Redzepovic, S. The quality of white wines fermented in Croatian oak barrels. Food Chem. 2007, 100, 124–128. [Google Scholar] [CrossRef]
- Kozlovic, G.; Jeromel, A.; Maslov, L.; Pollnitz, A.; Orlíc, S. Use of acacia barrique barrels—Influence on the quality of Malvazija from Istria wines. Food Chem. 2010, 120, 698–702. [Google Scholar] [CrossRef]
- Loupassaki, S.; Abouzer, M.; Basalekou, M.; Fyssarakis, I.; Makris, D.P. Evolution pattern of wood-related volatiles during traditional and artificial ageing of commercial red and white wines: Association with sensory analysis. Int. Food Res. J. 2016, 23, 14591465. [Google Scholar]
- Del Galdo, V.; Correia, A.C.; Jordão, A.M.; Ricardo-da-Silva, J.M. Blends of wood chips from oak and cherry: Impact on the general phenolic parameters and sensory profile of a white wine during the aging process. Vitis 2019, 58, 159–169. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Del Álamo Sanza, M.; Gutiérrez-Gamboa, G.; Mooreno-Simunovic; Nevares, I. Volatile composition and sensory characteristics of Carménère wines macerating with Colombian (Quercus humboldtii) oak chips compared to wines macerated with American (Q. alba) and European (Q. petraea) oak chips. Food Chem. 2018, 266, 90–100. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; OIV: Dijon, France, 2022. [Google Scholar]
- Glories, Y. La couleur des vins rouges. Les equilibres des anthocyanes et des tanins. Connaiss. De La Vigne et Du Vin 1984, 18, 195–217. [Google Scholar] [CrossRef]
- De Coninck, G.; Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Evolución de la composición fenólica y propiedades sensoriales en vino tinto envejecido en contacto con virutas de madera de roble portugués y francés. OENO One 2006, 40, 25–34. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determination in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Masquelier, J.; Michaud, J.T. Fractionnement des leucoanthocyannes du vin. Bull. De Société De Pharm. De Bordx. 1965, 104, 81–85. [Google Scholar]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, phenolics and color of Cabernet Franc, Merlot, and Pinot Noir wines from British Columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Riberéau-Gayón, P.; Stonestreet, E. Determination of anthocyanins in red wine. Bull. De La Société Chim. De Fr. 1965, 9, 2649–2652. [Google Scholar]
- BS EN ISO 8589:2010/A1:2014; Sensory Analysis: General Guidance for the Design of Test Rooms. British Standards Institution: London, UK, 2014; ISBN 9780580779015.
- Ortega-Heras, M.; González-Sanjosé, M.L.; González-Huerta, C. Consideration of the influence of aging process, type of wine and oenological classic parameters on the levels of wood volatile compounds present in red wines. Food Chem. 2007, 103, 1434–1448. [Google Scholar] [CrossRef]
- Coulter, A.D.; Holdstock, M.G.; Cowey, G.D.; Simos, C.A.; Smith, P.A.; Wilkes, E.N. Potassium bitartrate crystallisation in wine and its inhibition. Aust. J. Grape Wine Res. 2015, 21, 627–641. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Del Alamo-Sanza, M.; Nevares, I. Evolution of red wine in oak barrels with different oxygen transmission rates. Phenolic compounds and colour. LWT-Food Sci. Technol. 2022, 158, 113133. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Delgado-González, M.J.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; García-Barroso, C. Chemical content and sensory changes of Oloroso Sherry wine when aged with four different wood types. LWT-Food Sci. Technol. 2021, 140, 110706. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M. Nontargeted GC–MS approach for volatileprofile of toasting in cherry, chestnut, false acacia, and ash wood. J. Mass. Spectrom. 2014, 49, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Yildiz, S.; Gürgen, A.; Can, Z.; Sana, C.; Tabbouche, A.; Kiliç, A.O. Some Bioactive properties of acacia dealbata extracts and their potential utilization in wood protection. Drewno 2018, 61, 202. [Google Scholar] [CrossRef]
- Jackson, R.S. Sensory Perception and Wine Assessment. In Wine Science, 4th ed.; Principles and Applications; Food Science and Technology Book; Academic Press: Oxford, UK, 2014; Chapter 11; pp. 831–888. [Google Scholar] [CrossRef]
- Vivas, N.; Bourden Nonier, M.F.; Absalon, C.; Abad, V.L.; Jamet, F.; Vivas de Gaulejac, N.; Vitry, C.; Fouquet, É. Formation of flavanol-aldehyde adducts in barrel-aged white wine possible contribution of these products to colour. S. Afr. J. Enol. Vitic. 2008, 29, 98–108. [Google Scholar] [CrossRef]
- Martin, C.; Bruneel, J.C.; Guyon, F.; Médina, B.; Jourdes, M.; Teissedre, P.L.; Guillaume, F. Raman spectroscopy of white wines. Food Chem. 2015, 181, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, D.W.; Parker, M.; Smith, P.A. Flavonol composition of Australian red and white wines determined by high-performance liquid chromatography. Aust. J. Grape Wine Res. 2008, 14, 153–161. [Google Scholar] [CrossRef]
- Vlahou, E.; Christofi, S.; Roussis, I.G.; Kallithraka, S. Browning development and antioxidant compounds in white wines after selenium, iron, and peroxide addition. Appl. Sci. 2002, 12, 3834. [Google Scholar] [CrossRef]
- Barrón, R.; Mayén, M.; Mérida, J.; Medina, M. Changes in phenolic compounds and browning during biological aging of sherry-type wine. J. Agric. Food Chem. 1997, 45, 1682–1685. [Google Scholar] [CrossRef]
Parameters | |
---|---|
pH | 3.14 ± 0.06 |
Total Acidity (g/L of tartaric acid) | 5.8 ± 0.1 |
Volatile Acidity (g/L of acetic acid) | 0.23 ± 0.01 |
F-SO2 0(mg/L) | 25 ± 1 |
T-SO2 (mg/L) | 76 ± 5 |
Reducing sugars (g/L) | 0.99 ± 0.06 |
Alcoholic content (%) | 12.65 ± 0.24 |
Color (Abs 420 nm) | 0.11 ± 0.00 |
Luminosity (%) | 98.78 ± 0,11 |
Total tannin (g/L) | 0.19 ± 0.00 |
Flavonoles (mg/L of quercetin) | 36.21 ± 0.46 |
Tartaric sters (mg/L of caffeic acid) | 55.69 ± 1.46 |
Total phenolic (Folin) (mg/L of gallic acid) | 217.12 ± 8.48 |
LPP (mg/L of gallic acid) | 78.56 ± 3.66 |
HMP (mg/L of gallic acid) | 138.56 ± 6.76 |
Wine-Wood | pH | Total Acidity (g/L) | Volatile Acidity (g/L) | F-SO2 (mg/L) | T-SO2 (mg/L) | Reducing Sugars (g/L) | Alcoholic Content (%v/v) |
---|---|---|---|---|---|---|---|
Wine without wood (CTw) | 3.22 ± 0.02 a | 5.8 ± 0.1 b | 0.24 ± 0.01 a | 19 ± 3 c | 79 ± 7 bc | 1.11 ± 0.17 ab | 12.75 ± 0.19 a |
Alternative woods | |||||||
Wine+Robina speudoacacia (RPw) | 3.23 ± 0.00 ab | 6.0 ± 0.1 c | 0.40 ± 0.03 f | 12 ± 1 b | 74 ± 2 abc | 1.06 ± 0.02 ab | 12.78 ± 0.16 a |
Wine+Acacia dealbata (ADw) | 3.24 ± 0.01 b | 6.1 ± 0.0 cd | 0.26 ± 0.01 a | 12 ± 2 b | 75 ± 8 abc | 1.09 ± 0.04 a | 12.79 ± 0.14 a |
Wine+Prunus avium (PAw) | 3.24 ± 0.01 b | 6.1 ± 0.00 cd | 0.34 ± 0.02 de | 9 ± 1 a | 70 ± 1 a | 1.00 ± 0.04 ab | 12.68 ± 0.18 a |
Wine+Nothofagus pumilio (NPw) | 3.27 ± 0.02 c | 5.7 ± 0.1 a | 0.29 ± 0.01 b | 9 ± 0 a | 71 ± 2 ab | 1.15 ± 0.08 b | 12.83 ± 0.24 a |
Wine+Q. candicans (QCw) | 3.30 ± 0.01 d | 5.6 ± 0.1 a | 0.31 ± 0.02 bc | 9 ± 2 a | 68 ± 3 a | 1.16 ± 0.04 b | 12.73 ± 0.16 a |
Wine+Q. humboldtti (QHw) | 3.23 ± 0.00 ab | 6.2 ± 0.1 d | 0.33 ± 0.01 cd | 13 ± 3 b | 79 ± 10 c | 1.13 ± 0.06 ab | 12.78 ± 0.12 a |
Traditional woods | |||||||
Wine+romanian Q. petraea (QPRw) | 3.23 ± 0.00 ab | 6.2 ± 0.1 d | 0.35 ± 0.01 e | 8 ± 1 a | 71 ± 2 ab | 1.13 ± 0.12 ab | 12.74 ± 0.16 a |
Wine+french Q. petraea (QPF) | 3.23 ± 0.00 ab | 6.0 ± 0.1 c | 0.31 ± 0.02 bc | 13 ± 2 b | 82 ± 6 c | 1.06 ± 0.04 ab | 12.63 ± 0.18 a |
Wine+Q. alba (QAw) | 3.27 ± 0.02 c | 5.6 ± 0.1 a | 0.30 ± 0.02 b | 9 ± 1 a | 68 ± 3 a | 1.19 ± 0.02 b | 12.60 ± 0.19 a |
Wines with Different Woods | Browning Rate |
---|---|
Control without wood (CTw) | 0.0111 ± 0.0021 a |
Alternative woods | |
Robina speudoacacia (RPw) | 0.0197 ± 0.0019 c |
Acacia dealbata (ADw) | 0.0199 ± 0.0025 c |
Prunus avium (PAw) | 0.0186 ± 0.0012 c |
Nothofagus pumilio (NPw) | 0.0111 ± 0.0008 a |
Q. candicans (QCw) | 0.0113 ± 0.0015 a |
Q. humboldtti (QHw) | 0.0166 ± 0.0008 b |
Traditional woods | |
Q. petraea european (QPEw) | 0.0196 ± 0.0016 c |
Q. petraea french (QPFw) | 0.0137 ± 0.0021 ab |
Q. alba (QAw) | 0.0105 ± 0.0016 a |
CTw | RPw | ADw | PAw | NPw | QCw | QHw | QPEw | QPFw | QAw | |
---|---|---|---|---|---|---|---|---|---|---|
Color intensity | a | bcd | e | bcd | cd | d | bc | d | b | bcd |
Yellow | c | b | a | b | b | ab | b | ab | ab | ab |
Green | c | bc | a | b | b | b | b | b | bc | b |
Golden | a | b | e | bcd | d | cd | bc | d | b | cd |
Olfactory Intensity | ab | abc | a | ab | ab | abc | cd | d | bc | abc |
Frankness | a | a | a | a | a | a | a | a | a | a |
Fruity | d | bc | ab | bc | c | ab | a | ab | c | bc |
Floral | d | abc | c | abc | c | ab | ab | a | c | bc |
Vegetable | b | a | a | a | a | a | a | a | a | a |
Wood | a | bc | bcd | bcd | b | bc | d | e | bcd | cd |
Toasted | a | bc | bc | b | bc | c | d | d | bc | bc |
Vanilla | a | b | b | b | b | b | b | c | c | c |
Spicy | a | bcd | bc | b | b | b | cd | d | bcd | cd |
Dried fruits | a | ab | ab | ab | ab | ab | ab | b | ab | ab |
Complexity | a | bc | ab | ab | bc | bc | bc | bc | c | c |
Acidity | b | a | a | a | a | a | a | a | a | a |
Bitterness | a | a | a | a | a | a | a | a | a | a |
Astringency | a | ab | b | ab | ab | b | b | b | b | b |
Body | a | ab | ab | ab | ab | ab | ab | b | b | ab |
Persistence | a | ab | ab | ab | ab | ab | ab | ab | b | ab |
Balance | b | ab | ab | ab | a | ab | ab | ab | b | ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Gil, A.M.; del Alamo-Sanza, M.; Asensio-Cuadrado, M.; del Barrio-Galán, R.; Nevares, I. Impact of the Wood Species Used on the Chemical Composition, Color and Sensory Characteristics of Wine. Foods 2025, 14, 2088. https://doi.org/10.3390/foods14122088
Martínez-Gil AM, del Alamo-Sanza M, Asensio-Cuadrado M, del Barrio-Galán R, Nevares I. Impact of the Wood Species Used on the Chemical Composition, Color and Sensory Characteristics of Wine. Foods. 2025; 14(12):2088. https://doi.org/10.3390/foods14122088
Chicago/Turabian StyleMartínez-Gil, Ana María, Maria del Alamo-Sanza, María Asensio-Cuadrado, Rubén del Barrio-Galán, and Ignacio Nevares. 2025. "Impact of the Wood Species Used on the Chemical Composition, Color and Sensory Characteristics of Wine" Foods 14, no. 12: 2088. https://doi.org/10.3390/foods14122088
APA StyleMartínez-Gil, A. M., del Alamo-Sanza, M., Asensio-Cuadrado, M., del Barrio-Galán, R., & Nevares, I. (2025). Impact of the Wood Species Used on the Chemical Composition, Color and Sensory Characteristics of Wine. Foods, 14(12), 2088. https://doi.org/10.3390/foods14122088