Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives
Abstract
1. Introduction
2. Diversity and Function of Lactic Acid Bacteria in Beverages
2.1. Fermented Dairy Beverages
2.1.1. Milk Kefir
2.1.2. Buttermilk
2.1.3. Yogurt Drinks
2.2. Non-Dairy Fermented Drinks
2.2.1. Vinegar
2.2.2. Wine and Beer
2.2.3. Plant-Based Fermented Juices
2.3. Hybrid Fermented Beverages
3. Metabolic Activities of LAB During Beverage Fermentation
3.1. Carbohydrate Metabolism
3.2. Organic Acid Metabolism
3.3. Amino Acid and Protein Metabolism
3.4. Polyunsaturated Fatty Acid (PUFA) Metabolism
4. Methods for Isolation and Identification of LAB from Beverages
5. Challenges and Future Perspectives in Using LAB in Beverages
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAB | Lactic acid bacteria |
CFU | Colony-forming unit |
MRS | De MAN Rogosa and Sharp |
MLF | Malolactic fermentation |
UV | Ultraviolet |
AAB | Acetic acid bacteria |
EPS | Exopolysaccharides |
CLA | Conjugated linoleic acid |
GABA | Gamma amino butyric acid |
ATP | Adenosine triphosphate |
GDH | Glutamate dehydrogenase |
PUFA | Polyunsaturated fatty acid |
PCR | Polymerase chain reaction |
WGS | Whole genome sequencing |
GRAS | Generally recognized as safe |
CRISPR–Cas | Clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins |
DGGE | Denaturing gradient gel electrophoresis |
TRFLP | Terminal restriction fragment length polymorphism |
References
- Chen, W.; Gu, Z. Genomic Analysis of Lactic Acid Bacteria and Their Applications. In Lactic Acid Bacteria in Foodborne Hazards Reduction: Physiology to Practice; Springer: Singapore, 2018; pp. 21–49. [Google Scholar] [CrossRef]
- Virdis, C.; Sumby, K.; Bartowsky, E.; Jiranek, V. Lactic Acid Bacteria in Wine: Technological Advances and Evaluation of Their Functional Role. Front. Microbiol. 2021, 11, 612118. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T. Lactic Acid Bacteria as Starter Cultures: An Update in Their Metabolism and Genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Ojha, A.K.; Shah, N.P.; Mishra, V. Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Curr. Microbiol. 2021, 78, 2839–2849. [Google Scholar] [CrossRef]
- Temmerman, R.; Masco, L.; Huys, G.; Swings, J. Application of Repetitive Element Sequence-Based (Rep-) PCR and Denaturing Gradient Gel Electrophoresis for the Identification of Lactic Acid Bacteria in Probiotic Products. In Probiotics in Food Safety and Human Health; CRC Press: Boca Raton, FL, USA, 2005; pp. 207–228. [Google Scholar]
- Sharma, A.; Noda, M.; Sugiyama, M.; Ahmad, A.; Kaur, B. Production of Functional Buttermilk and Soymilk Using Pediococcus acidilactici BD16 (alaD+). Molecules 2021, 26, 4671. [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D.; Kowalska, E.; Florowski, T.; Pijanowski, E. A Study into the Effects of Chosen Lactic Acid Bacteria Cultures on the Quality Characteristics of Fermented Dairy, Dairy–Oat, and Oat Beverages. Appl. Sci. 2025, 15, 3714. [Google Scholar] [CrossRef]
- Lima, J.P.; Dias, A.G.; dos Santos Gomes, F.; das Mercês Penha, E. South American Fermented Fruit-Based Products. In Indigenous Fermented Foods for the Tropics; Elsevier: Amsterdam, The Netherlands, 2023; pp. 245–264. [Google Scholar] [CrossRef]
- Ida Muryany, M.Y.; Farina Syazwani, Z. Analysis of Malaysian Consumers’ Awareness on Probiotics in Fresh Milk and Its Nutritional Health. Food Res. 2023, 7, 132–139. [Google Scholar] [CrossRef]
- Kim, M.J.; Kang, S.; Lee, H.H.; Kim, S.Y.; Li, R.; Ku, S.; Jin, H.; Johnston, T.V.; Park, M.S. Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int. J. Mol. Sci. 2018, 19, 1422. [Google Scholar] [CrossRef]
- Future Market Insights. Lactic Acid Bacteria Market Size & Trends 2025 to 2035. Available online: https://www.futuremarketinsights.com/reports/lactic-acid-bacteria-market (accessed on 27 May 2025).
- DataIntelo. Active Lactic Acid Bacteria Drink Market Report|Global Forecast from 2025 to 2033. Available online: https://dataintelo.com/report/global-active-lactic-acid-bacteria-drink-market?utm_source=chatgpt.com (accessed on 27 May 2025).
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic Acid Fermentation of Smoothies and Juices. In Lactic Acid Fermentation of Fruits and Vegetables; CRC Press: Boca Raton, FL, USA, 2017; pp. 267–282. [Google Scholar] [CrossRef]
- Zamfir, M.; Angelescu, I.R.; Voaides, C.; Cornea, C.P.; Boiu-Sicuia, O.; Grosu-Tudor, S.S. Non-Dairy Fermented Beverages Produced with Functional Lactic Acid Bacteria. Microorganisms 2022, 10, 2314. [Google Scholar] [CrossRef]
- Laosee, W.; Kantachote, D.; Chansuwan, W.; Thongraung, C.; Sirinupong, N. Anti-Salmonella Potential and Antioxidant Activity of Fermented Fruit-Based Juice by Lactic Acid Bacteria and Its Biotransformation. Funct. Foods Health Dis. 2021, 11, 368–384. [Google Scholar] [CrossRef]
- Wang, J.; Wei, B.C.; Zhai, Y.R.; Li, K.X.; Wang, C.Y. Non-Volatile and Volatile Compound Changes in Blueberry Juice Inoculated with Different Lactic Acid Bacteria Strains. J. Sci. Food Agric. 2024, 104, 2587–2596. [Google Scholar] [CrossRef]
- Sengun, I.Y.; Kilic, G.; Charoenyingcharoen, P.; Yukphan, P.; Yamada, Y. Investigation of the Microbiota Associated with Traditionally Produced Fruit Vinegars with Focus on Acetic Acid Bacteria and Lactic Acid Bacteria. Food Biosci. 2022, 47, 101636. [Google Scholar] [CrossRef]
- Lani, M.N.; Nor, N.M.; Ramli, N.A.; Radhuan, Z.; Rizan, M.M.; Lokman, N.H.; Hassan, Z. Effects of Incorporation of Lactic Acid Bacteria on Microbiological Quality and Shelf Life of Raw ‘Satar’. In Fermented Meat Products; Springer: Cham, Switzerland, 2015; pp. 81–109. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, Y.; Guo, Y.; Han, Y. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing. Curr. Microbiol. 2015, 71, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, H.; Li, T.; Zhao, Y.; Chen, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Sharma, D.; Manchanda, P.; Singh, A.; Kaur, A. Lactic Acid Bacteria as Anti-Fungal, Anti-Bacterial Agents and Food Preservatives. In Biofungicides: Eco-Safety and Future Trends: Volume 1: Types and Applications; CRC Press: Boca Raton, FL, USA, 2023; pp. 247–282. [Google Scholar] [CrossRef]
- Ziarno, M.; Godlewska, A. Significance and Application of Lactococcus Species in Dairy Industry. Med. Weter. 2008, 64, 35–39. [Google Scholar]
- Dewi, E.N.; Purnamayati, L. Characterization of Caulerpa racemosa Yogurt Processed Using Lactobacillus bulgaricus and Streptococcus thermophilus. Food Res. 2021, 5, 54–61. [Google Scholar] [CrossRef]
- Admanova, G.; Beisembayeva, A.; Akhmetova, G.; Tashenova, A.; Sarsembayeva, G.; Abdirov, A. Determination of Antagonistic Activity and Antibiotic Resistance of Bacteria and Yeast for Starter Cultures: An Experimental Study to Increase the Production of Fermented Milk Drinks in Kazakhstan. J. Food Chem. Nanotechnol. 2024, 10, 32–39. [Google Scholar] [CrossRef]
- Zhai, Q.; Chen, W. Functional Evaluation Model for Lactic Acid Bacteria. In Lactic Acid Bacteria. In Lactic Acid Bacteria: Omics and Functional Evaluation; Springer: Singapore, 2019; pp. 183–237. [Google Scholar] [CrossRef]
- Garcia, C.; Remize, F. Lactic Acid Fermentation of Fruit and Vegetable Juices and Smoothies: Innovation and Health Aspects. In Lactic Acid Bacteria in Food Biotechnology: Innovations and Functional Aspects. In Lactic Acid Bacteria in Food Biotechnology: Innovations and Functional Aspects; Elsevier: Amsterdam, The Netherlands, 2022; pp. 27–46. [Google Scholar] [CrossRef]
- Shiby, V.K.; Mishra, H.N. Fermented Milks and Milk Products as Functional Foods—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496. [Google Scholar] [CrossRef]
- Farag, M.A.; El Hawary, E.A.; Elmassry, M.M. Rediscovering Acidophilus Milk, Its Quality Characteristics, Manufacturing Methods, Flavor Chemistry and Nutritional Value. Crit. Rev. Food Sci. Nutr. 2020, 60, 3024–3041. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Zhang, T.; Liu, J.; Liu, H.; Duan, C. The Investigation on the Characteristic Metabolites of Lactobacillus plantarum RLL68 during Fermentation of Beverage from By-Products of Black Tea Manufacture. Curr. Res. Food Sci. 2022, 5, 1320–1329. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Liu, R.; Yang, D.; Dai, X. Direct Lactic Acid Production from Household Food Waste by Lactic Acid Bacteria. Sci. Total Environ. 2022, 840, 156479. [Google Scholar] [CrossRef] [PubMed]
- Gunkova, P.I.; Buchilina, A.S.; Maksimiuk, N.N.; Bazarnova, Y.G.; Girel, K.S. Carbohydrate Fermentation Test of Lactic Acid Starter Cultures. IOP Conf. Ser. Earth Environ. Sci. 2021, 852, 012035. [Google Scholar] [CrossRef]
- Sviridenko, G.M.; Shukhalova, O.M.; Danilova, E.S. Peculiarities of Development and Metabolism of Streptococcus thermophilus Strains under Different Conditions of Deep Liquid Phase Cultivation. Food Syst. 2023, 6, 512–518. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Hao, G.; Yu, H.; Tian, H.; Zhao, G. Role of Lactic Acid Bacteria on the Yogurt Flavour: A Review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef]
- Ziarno, M. Role of Bacteria of the Genus Leuconostoc for the Dairy Industry. Med. Weter. 2007, 63, 403–407. [Google Scholar]
- Huang, W.; Wätjen, A.P.; Prakash, S.; Bang-Berthelsen, C.H.; Turner, M.S. Exploring Lactic Acid Bacteria Diversity for Better Fermentation of Plant-Based Dairy Alternatives. Microbiol. Aust. 2022, 43, 79–82. [Google Scholar] [CrossRef]
- Romanová, K.; Urminská, D. Potential of Lactobacillus plantarum CCM 3627 and Lactobacillus brevis CCM 1815 for Fermentation of Cereal Substrates. Potravin. Slovak J. Food Sci. 2017, 11, 544–549. [Google Scholar] [CrossRef]
- Hati, S.; Vij, S.; Mandal, S.; Malik, R.K.; Kumari, V.; Khetra, Y. α-Galactosidase Activity and Oligosaccharides Utilization by Lactobacilli during Fermentation of Soy Milk. J. Food Process. Preserv. 2014, 38, 1065–1071. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Wei, Z.; Yin, B.; Man, C.; Jiang, Y. Enhancement of Functional Characteristics of Blueberry Juice Fermented by Lactobacillus plantarum. LWT 2021, 139, 110590. [Google Scholar] [CrossRef]
- Capozzi, V.; Tufariello, M.; De Simone, N.; Fragasso, M.; Grieco, F. Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. Fermentation 2021, 7, 24. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Carminati, D.; Meucci, A.; Tidona, F.; Zago, M.; Giraffa, G. Multifunctional Lactic Acid Bacteria Cultures to Improve Quality and Nutritional Benefits in Dairy Products. In Advances in Food Biotechnology; Toldrá, F., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 263–275. [Google Scholar] [CrossRef]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the Detection of Tetracycline Resistant Genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Rhee, S.J.; Lee, J.E.; Lee, C.H. Importance of Lactic Acid Bacteria in Asian Fermented Foods. Microb. Cell Fact. 2011, 10 (Suppl. S1), S5. [Google Scholar] [CrossRef] [PubMed]
- Padhi, S.; Sharma, S.; Sahoo, D.; Montet, D.; Rai, A.K. Potential of Lactic Acid Bacteria as Starter Cultures for Food Fermentation and as Producers of Biochemicals for Value Addition. In Lactic Acid Bacteria in Food Biotechnology: Innovations and Functional Aspects; Elsevier: Amsterdam, The Netherlands, 2022; pp. 281–304. [Google Scholar] [CrossRef]
- Bojanić Rašović, M. Potential of Indigenous Lactobacilli as Starter Culture in Dairy Products. Acta Period. Technol. 2017, 48, 39–52. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Li, Z.; Zheng, X.; Yan, Y.; Lv, L.; Sun, Z. Lactic Acid Bacteria Isolated from Kazakh Traditional Fermented Milk Products Affect the Fermentation Characteristics and Sensory Qualities of Yogurt. Food Sci. Nutr. 2022, 10, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Ayivi, R.D.; Sanabria, C.; Anderson, A.K.; Chelliah, R.; Alshammari, F.; Hajar, S.M.; Proctor, A.; Komba, E.V.G. The Cultivation, Growth, and Viability of Lactic Acid Bacteria: A Quality Control Perspective. J. Vis. Exp. 2022, 184, e63314. [Google Scholar] [CrossRef]
- Garcia, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic Fermented Fruit or Vegetable Juices: Past, Present and Future. Beverages 2020, 6, 8. [Google Scholar] [CrossRef]
- da Silva Vale, A.; Tormen, L.; de Oliveira Santos, A.; Viegas, E.M.M.; da Silva, M.V.; Oliveira, L.J. Exploring Microbial Diversity of Non-Dairy Fermented Beverages with a Focus on Functional Probiotic Microorganisms. Fermentation 2023, 9, 496. [Google Scholar] [CrossRef]
- Hossain, T.J.; Khan, M.S.; Ferdouse, J. Fermented and Dairy Beverages of Bangladesh: A Rich Source of Probiotic Lactic Acid Bacteria. Food Sci. Appl. Biotechnol. 2024, 7, 195–212. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Saha, S.; Sukumaran, V.; Park, S.C. Use of a Potential Probiotic, Lactobacillus plantarum L7, for the Preparation of a Rice-Based Fermented Beverage. Front. Microbiol. 2018, 9, 473. [Google Scholar] [CrossRef]
- Patten, D.A.; Laws, A.P. Lactobacillus-Produced Exopolysaccharides and Their Potential Health Benefits: A Review. Benef. Microbes 2015, 6, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.D.; Dias, M.M.S.; Grześkowiak, Ł.M.; Reis, S.A.; Conceição, L.L.; Peluzio, M.D.C.G. Milk Kefir: Nutritional, Microbiological and Health Benefits. Nutr. Res. Rev. 2017, 30, 82–96. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Gökırmaklı, Ç.; Greene, A.K. A Comparison of Milk Kefir and Water Kefir: Physical, Chemical, Microbiological and Functional Properties. Trends Food Sci. Technol. 2021, 113, 42–53. [Google Scholar] [CrossRef]
- Lynch, K.M.; Wilkinson, S.; Daenen, L.; Arendt, E.K. An Update on Water Kefir: Microbiology, Composition and Production. Int. J. Food Microbiol. 2021, 345, 109128. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Kim, D.-H.; Kim, H.; Kang, I.-B.; Chon, J.-W.; Kim, H.-S.; Seo, K.-H. Characterization and Antibacterial Activity of a Novel Exopolysaccharide Produced by Lactobacillus kefiranofaciens DN1 Isolated from Kefir. Food Control 2017, 78, 436–442. [Google Scholar] [CrossRef]
- Rodríguez-Figueroa, J.C.; Noriega-Rodríguez, J.A.; Lucero-Acuña, A.; Tejeda-Mansir, A. Advances in the Study of the Multifunctional Bioactivity of Kefir. CyTA–J. Food 2017, 15, 347–354. [Google Scholar]
- Santini, G.; Terzic, S.; Mignani, C.; Parini, C.; Corradini, C.; Dall’Asta, C. Proteomic Characterization of Kefir Milk by Two-Dimensional Electrophoresis Followed by Mass Spectrometry. J. Mass Spectrom. 2020, 55, e4635. [Google Scholar] [CrossRef]
- da Cruz Pedrozo Miguel, M.G.; de Souza, A.C.; de Jesus Cassimiro, D.M.; Dias, D.R.; Schwan, R.F. Volatile Compounds Formation in Kefir; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Agirman, B.; Yildiz, I.; Polat, S.; Erten, H. The Evaluation of Black Carrot, Green Cabbage, Grape, and Apple Juices as Substrates for the Production of Functional Water Kefir-Like Beverages. Food Sci. Nutr. 2024, 12, 6595–6611. [Google Scholar] [CrossRef]
- M’Hir, S.; Rtibi, K.; Mejri, A.; Ziadi, M.; Aloui, H.; Hamdi, M.; Ayed, L. Development of a Novel Whey Date Beverage Fermented with Kefir Grains Using Response Surface Methodology. J. Chem. 2019, 2019, 1218058. [Google Scholar] [CrossRef]
- Darvishzadeh, P.; Orsat, V.; Martinez, J.L. Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia). Food Bioproc. Technol. 2021, 14, 248–260. [Google Scholar] [CrossRef]
- Vimercati, W.C.; da Silva Araújo, C.; Macedo, L.L.; Fonseca, H.C.; Guimarães, J.S.; de Abreu, L.R.; Pinto, S.M. Physicochemical, Rheological, Microbiological and Sensory Properties of Newly Developed Coffee Flavored Kefir. LWT 2020, 123, 109069. [Google Scholar] [CrossRef]
- Marques Soutelino, M.E.; da Silva Rocha, R.; Teixeira Mársico, E.; Almeida Esmerino, E.; de Oliveira Silva, A.C. Innovative Approaches to Kefir Production, Challenges, and Current Remarks. Curr. Opin. Food Sci. 2025, 61, 101252. [Google Scholar] [CrossRef]
- Ok, S.; Yilmaz, E.; Demirel Zorba, N.N. Preparation and Characterization of 3D Printed Objects Based on Different Kefir Gels. Food Biophys. 2024, 19, 453–470. [Google Scholar] [CrossRef]
- Ogrodowczyk, A.M.; Kalicki, B.; Wróblewska, B. The Effect of Lactic Acid Fermentation with Different Bacterial Strains on the Chemical Composition, Immunoreactive Properties, and Sensory Quality of Sweet Buttermilk. Food Chem. 2021, 353, 129512. [Google Scholar] [CrossRef]
- Pereira, C.; Gomes, D.; Dias, S.; Santos, S.; Pires, A.; Viegas, J. Impact of Probiotic and Bioprotective Cultures on the Quality and Shelf Life of Butter and Buttermilk. Dairy 2024, 5, 625–643. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Mari, E.; Guerrini, S.; Granchi, L. Gamma-Aminobutyric Acid (GABA) Production in Fermented Milk by Lactic Acid Bacteria Isolated from Spontaneous Raw Milk Fermentation. Int. Dairy J. 2022, 127, 105284. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Paszczyk, B. Changes in the Folate Content and Fatty Acid Profile in Fermented Milk Produced with Different Starter Cultures during Storage. Molecules 2021, 26, 6063. [Google Scholar] [CrossRef]
- Hernández-Sánchez, H.; Gutiérrez-López, G.; Cano-Sarmiento, C.; Fajardo-Espinoza, F.; Ávila-Reyes, S.; Figueroa-Hernández, C. ACE-Inhibitory and Metal-Binding Activity Produced during Milk Fermentation by Three Probiotic Potential LAB Strains Isolated from Chiapas Double Cream Cheese. Rev. Mex. Ing. Quim. 2021, 20, 97–112. [Google Scholar] [CrossRef]
- García-Burgos, M.; Moreno-Fernández, J.; Alférez, M.J.; Díaz-Castro, J.; López-Aliaga, I. New Perspectives in Fermented Dairy Products and Their Health Relevance. J. Funct. Foods 2020, 72, 104059. [Google Scholar] [CrossRef]
- Nikitina, E.; Petrova, T.; Vafina, A.; Ezhkova, A.; Yahia, M.N.; Kayumov, A. Textural and Functional Properties of Skimmed and Whole Milk Fermented by Novel Lactiplantibacillus plantarum AG10 Strain Isolated from Silage. Fermentation 2022, 8, 290. [Google Scholar] [CrossRef]
- Amiri, S.; Aghamirzaei, M.; Mostashari, P.; Sarbazi, M.; Tizchang, S.; Madahi, H. The Impact of Biotechnology on Dairy Industry. In Microbial Biotechnology in Food and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 53–79. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, Y.; Qu, X.; Li, B.; Zhang, L. Post-Acidification of Fermented Milk and Its Molecular Regulatory Mechanism. Int. J. Food Microbiol. 2025, 426, 110920. [Google Scholar] [CrossRef]
- Chandan, R.C.; Gandhi, A.; Shah, N.P. Yogurt: Historical Background, Health Benefits, and Global Trade. In Yogurt in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–29. [Google Scholar] [CrossRef]
- Freitas, M. The Benefits of Yogurt, Cultures, and Fermentation. In The Microbiota in Gastrointestinal Pathophysiology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 209–223. [Google Scholar] [CrossRef]
- Gad, A.S.; Mohamad, S.H.S. Effect of Hydrocolloid Type on Physiochemical Properties of Nonfat Drinkable Yogurt Fermented with Ropy and Non-Ropy Yogurt Cultures. Commun. Sci. 2014, 5, 318–325. [Google Scholar]
- Pannerchelvan, S.; Rios-Solis, L.; Wasoh, H.; Sobri, M.Z.M.; Wong, F.W.F.; Mohamed, M.S.; Mohamad, R.; Halim, M. Functional Yogurt: A Comprehensive Review of Its Nutritional Composition and Health Benefits. Food Funct. 2024, 15, 10927–10955. [Google Scholar] [CrossRef]
- Guizani, N.; Al-Ramadani, K. Microflora and Physical-Chemical Characteristics of Omani Laban. J. Agric. Mar. Sci. 1999, 4, 61–64. [Google Scholar] [CrossRef]
- Walsh, H.; Cheng, J.; Guo, M. Effects of Carbonation on Probiotic Survivability, Physicochemical, and Sensory Properties of Milk-Based Symbiotic Beverages. J. Food Sci. 2014, 79, M604–M613. [Google Scholar] [CrossRef] [PubMed]
- Helal, A.; Cattivelli, A.; Conte, A.; Tagliazucchi, D. In Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds in Coffee-Fortified Yogurt. Molecules 2022, 27, 6843. [Google Scholar] [CrossRef]
- Celik, O.F.; Kilicaslan, M.; Akcaoglu, S.; Ozturk, Y. Improving the Antioxidant Activity of Yogurt through Black and Green Tea Supplementation. Int. J. Food Sci. Technol. 2023, 58, 6121–6130. [Google Scholar] [CrossRef]
- Farhan, A.; Al-Zobaidy, H.N.; Al-Quraishi, M.F. Fortification of Thick Yogurt with Mint (Mentha spicata L.) Leaves Extract. Biochem. Cell Arch. 2020, 20, 1679–1684. [Google Scholar] [CrossRef]
- Jafarpour, D.; Amirzadeh, A.; Maleki, M.; Mahmoudi, M.R. Comparison of Physicochemical Properties and General Acceptance of Flavored Drinking Yogurt Containing Date and Fig Syrups. Foods Raw Mater. 2017, 5, 36–43. [Google Scholar] [CrossRef]
- Al-Malki, F.A.; Al-Kharousi, Z.S.; Guizani, N.; Al-Bulushi, I.M.; Al-Sadi, A.M. Fermentative Microbiota and Chemical Characterization of Traditional Date Vinegar with Promising Biotechnological Applications. Front. Sustain. Food Syst. 2023, 7. [Google Scholar] [CrossRef]
- Johnston, C.S.; Gaas, C.A. Vinegar: Medicinal Uses and Antiglycemic Effect. Medscape Gen. Med. 2006, 8, 61. [Google Scholar]
- Al-Kharousi, Z.S.; Al-Ramadhani, Z.; Al-Malki, F.A.; Al-Habsi, N. Date Vinegar: First Isolation of Acetobacter and Formulation of a Starter Culture. Foods 2024, 13, 1389. [Google Scholar] [CrossRef]
- Hu, Q.; Qi, Y.; Liu, C.; Chen, Q.; Mai, X.; Zhu, Z.; Ma, B. Effects of Lactobacillus plantarum Cofermentation on the Flavor and Taste Characteristics of Mango Vinegar. J. Food Meas. Charact. 2024, 18, 3744–3756. [Google Scholar] [CrossRef]
- Nosratabadi, L.; Kavousi, H.R.; Hajimohammadi-Farimani, R.; Balvardi, M.; Yousefian, S. Estamaran Date Vinegar: Chemical and Microbial Dynamics during Fermentation. Braz. J. Microbiol. 2024, 55, 1265–1277. [Google Scholar] [CrossRef]
- AlShoaily, K. Production of Vinegar from Omani Dates and Characterization of Its Aroma Compounds; University of Otago: Dunedin, New Zealand, 2014. [Google Scholar]
- Ju, J.; Zhang, G.; Xiao, M.; Dong, C.; Zhang, R.; Du, L.; Zheng, Y.; Wei, M.; Wei, M.; Wu, B. Effects of Cellulase and Lactiplantibacillus plantarum on the Fermentation Quality, Microbial Diversity, Gene Function Prediction, and In Vitro Rumen Fermentation Parameters of Caragana korshinskii Silage. Front. Food Sci. Technol. 2022, 2. [Google Scholar] [CrossRef]
- Cao, X.; Zhao, M.; Zou, S.; Li, Z.; Wu, Y.; Ji, C.; Chen, Y.; Dong, L.; Zhang, S.; Liang, H. Effect of Autochthonous Lactic Acid Bacteria-Enhanced Fermentation on the Quality of Suancai. Foods 2022, 11, 3310. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Xu, Q.; Wang, Y.; Wang, S.; Zou, Y.; Yang, Z.; Yuan, L. Addition of Lactic Acid Bacteria Modulates Microbial Community and Promotes the Flavor Profiles of Kombucha. Food Biosci. 2024, 60, 104340. [Google Scholar] [CrossRef]
- Maluleke, E.; Lekganyane, M.A.; Moganedi, K.L.M. Microbial Diversity of Marula Wine during Spontaneous Fermentation. Fermentation 2023, 9, 862. [Google Scholar] [CrossRef]
- Rajendran, S.; Silcock, P.; Bremer, P. Volatile Organic Compounds (VOCs) Produced by Levilactobacillus brevis WLP672 Fermentation in Defined Media Supplemented with Different Amino Acids. Molecules 2024, 29, 753. [Google Scholar] [CrossRef]
- Rajendran, S.; Khomenko, I.; Silcock, P.; Betta, E.; Biasioli, F.; Bremer, P. Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Molecules 2024, 29, 3275. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, C.; Wang, W.; Yu, F.; Xiao, K.; Yi, C.; Fan, X.; Zhu, X.; Xiao, J.; Li, Q.; et al. Ethanol Tolerance Mechanism of Lactic Acid Bacteria and Its Application in Vinegar Fermentation. Mod. Food Sci. Technol. 2024, 40, 91–101. [Google Scholar]
- Sun, L.; Xue, Y.; Xiao, Y.; Te, R.; Wu, X.; Na, N.; Wu, N.; Qili, M.; Zhao, Y.; Cai, Y. Community Synergy of Lactic Acid Bacteria and Cleaner Fermentation of Oat Silage Prepared with a Multispecies Microbial Inoculant. Microbiol. Spectr. 2023, 11, e0504322. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Hu, C.; Wei, B.; Xu, F.; Guo, Q. Fermentation Performance Evaluation of Lactic Acid Bacteria Strains for Sichuan Radish Paocai Production. Foods 2024, 13, 1813. [Google Scholar] [CrossRef] [PubMed]
- Sahin, M.; Ozgolet, M.; Cankurt, H.; Dertli, E. Harnessing the Role of Three Lactic Acid Bacteria (LAB) Strains for Type II Sourdough Production and Influence of Sourdoughs on Bread Quality and Maillard Reaction Products. Foods 2024, 13, 1801. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.M.; Weckx, S. Microbial Ecology of Sourdough Fermentations: Diverse or Uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef]
- Salim-ur-Rehman; Paterson, A.; Piggott, J.R. Flavour in Sourdough Breads: A Review. Trends Food Sci. Technol. 2006, 17, 557–566. [Google Scholar] [CrossRef]
- Xue, T.D.; Zhang, J.H.; Wang, T.R.; Bai, B.Q.; Hou, Z.X.; Cheng, J.F.; Bo, T.; Fan, S.H. Reveal the Microbial Communities and Functional Prediction during the Fermentation of Fen-Flavor Baijiu via Metagenome Combining Amplicon Sequencing. Ann. Microbiol. 2023, 73, 16. [Google Scholar] [CrossRef]
- Gil-Sánchez, I.; Bartolomé Suáldea, B.; Moreno-Arribas, M.V. Malolactic Fermentation. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 85–98. [Google Scholar] [CrossRef]
- Lerm, E.; Engelbrecht, L.; du Toit, M. Malolactic Fermentation: The ABC’s of MLF. S. Afr. J. Enol. Vitic. 2010, 31, 186–212. [Google Scholar] [CrossRef]
- Bravo-Ferrada, B.M.; Hollmann, A.; Delfederico, L.; Valdés La Hens, D.; Caballero, A.; Semorile, L. Patagonian Red Wines: Selection of Lactobacillus plantarum Isolates as Potential Starter Cultures for Malolactic Fermentation. World J. Microbiol. Biotechnol. 2013, 29, 1537–1549. [Google Scholar] [CrossRef]
- Torres-Guardado, R.; Esteve-Zarzoso, B.; Reguant, C.; Bordons, A. Microbial Interactions in Alcoholic Beverages. Int. Microbiol. 2022, 25, 1–15. [Google Scholar] [CrossRef]
- Grijalva-Vallejos, N.; Aranda, A.; Matallana, E. Evaluation of Yeasts from Ecuadorian Chicha by Their Performance as Starters for Alcoholic Fermentations in the Food Industry. Int. J. Food Microbiol. 2020, 317, 108462. [Google Scholar] [CrossRef] [PubMed]
- Fentie, E.G.; Kassa, H.S. Microbiology and Health Benefits of Traditional Alcoholic Beverages of Africa. In Microbiology and Health Benefits of Traditional Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2024; pp. 261–293. [Google Scholar] [CrossRef]
- Rana, B.; Chandola, R.; Sanwal, P.; Joshi, G.K. Unveiling the Microbial Communities and Metabolic Pathways of Keem, a Traditional Starter Culture, through Whole-Genome Sequencing. Sci. Rep. 2024, 14, 4031. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, A.; Sgouros, G.; Mitropoulou, G.; Santarmaki, V.; Kourkoutas, Y. Freeze-Dried Immobilized Kefir Culture in Low Alcohol Winemaking. Foods 2020, 9, 115. [Google Scholar] [CrossRef]
- Nikolaou, A.; Kourkoutas, Y. High-Temperature Semi-Dry and Sweet Low Alcohol Wine-Making Using Immobilized Kefir Culture. Fermentation 2021, 7, 45. [Google Scholar] [CrossRef]
- Bartowsky, E.J. Bacterial Spoilage of Wine and Approaches to Minimize It. J. Appl. Microbiol. 2009, 106, 149–161. [Google Scholar] [CrossRef]
- Rochefort, L.; Caille, O.; Van Nedervelde, L. Sequentially Pitching Lactic Acid Bacteria and Active Dry Yeasts for Sour Beer Production. J. Am. Soc. Brew. Chem. 2024, 82, 141–149. [Google Scholar] [CrossRef]
- Ciosek, A.; Rusiecka, I.; Poreda, A. Sour Beer Production: Impact of Pitching Sequence of Yeast and Lactic Acid Bacteria. J. Inst. Brew. 2020, 126, 53–58. [Google Scholar] [CrossRef]
- Dysvik, A.; La Rosa, S.L.; Liland, K.H.; Myhrer, K.S.; Østlie, H.M.; De Rouck, G.; Rukke, E.-O.; Westereng, B.; Wicklund, T. Co-Fermentation Involving Saccharomyces cerevisiae and Lactobacillus Species Tolerant to Brewing-Related Stress Factors for Controlled and Rapid Production of Sour Beer. Front. Microbiol. 2020, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Avila, C.R.; Chedraui-Urrea, J.J.T.; Estarrón-Espinosa, M.; Gradilla-Hernández, M.S.; García-Cayuela, T. Chemical Profiling and Probiotic Viability Assessment in Gueuze-Style Beer: Fermentation Dynamics, Metabolite and Sensory Characterization, and In Vitro Digestion Resistance. Food Chem. 2025, 462, 140916. [Google Scholar] [CrossRef]
- Guglielmotti, M.; Passaghe, P.; Buiatti, S. Use of Olive (Olea europaea L.) Leaves as Beer Ingredient, and Their Influence on Beer Chemical Composition and Antioxidant Activity. J. Food Sci. 2020, 85, 2278–2285. [Google Scholar] [CrossRef]
- Menz, G.; Andrighetto, C.; Lombardi, A.; Corich, V.; Aldred, P.; Vriesekoop, F. Isolation, Identification, and Characterisation of Beer-Spoilage Lactic Acid Bacteria from Microbrewed Beer from Victoria, Australia. J. Inst. Brew. 2010, 116, 14–22. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Li, H.; Li, L.; Tu, J.; Fang, H.; Chen, J.; Qian, F. An improved plate culture procedure for the rapid detection of beer-spoilage lactic acid bacteria. J. Inst. Brew. 2014, 120, 127–132. [Google Scholar] [CrossRef]
- Iskakova, J.; Hutzler, M.; Kemelov, K.; Grothusheitkamp, D.; Michel, M.; Methner, F.J. Screening a Bozo Starter Culture for Potential Application in Beer Fermentation. J. Am. Soc. Brew. Chem. 2019, 77, 54–61. [Google Scholar] [CrossRef]
- Patel, S.H.; Tan, J.P.; Börner, R.A.; Zhang, S.J.; Priour, S.; Lima, A.; Ngom-Bru, C.; Cotter, P.D.; Duboux, S. A temporal view of the water kefir microbiota and flavour attributes. Innov. Food Sci. Emerg. Technol. 2022, 80, 103084. [Google Scholar] [CrossRef]
- Zahidah, I.; Bölek, S. The Potential of Non-dairy Kefir Products: Their Health Benefits, Physiochemical, Sensory, and Bioactive Properties. Curr. Nutr. Food Sci. 2024, 20, 476–489. [Google Scholar] [CrossRef]
- Pablo, A.G.; Balmori, V. Water Kefir Beverages and Probiotic Properties; Part F3607; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar] [CrossRef]
- Abdelghani, D.Y.; Gad, A.I.; Orabi, M.M.; Abou-Taleb, K.A.; Mahmoud, E.A.; Al Amoudi, S.A.; Zari, A.; Althubaiti, E.H.; Edris, S.; Amin, S.A. Bioactivity of Organic Fermented Soymilk as Next-Generation Prebiotic/Probiotics Mixture. Fermentation 2022, 8, 513. [Google Scholar] [CrossRef]
- Li, S.; Tao, Y.; Li, D.; Wen, G.; Zhou, J.; Manickam, S.; Han, Y.; Chai, W.S. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. Chemosphere 2021, 276, 130090. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, J.; Li, Y.; Xie, Y.; Cui, M.; Hu, Y.; Yin, R.; Ma, X.; Niu, J.; Cheng, W.; et al. Enhancing physicochemical properties, organic acids, antioxidant capacity, amino acids and volatile compounds for ‘Summer Black’ grape juice by lactic acid bacteria fermentation. LWT 2024, 209, 116791. [Google Scholar] [CrossRef]
- Wang, F.; Chen, S.; Cui, M. Development of fermented beverage of wheat germ and sweet-waxy maize. J. Henan Univ. Technol. Nat. Sci. Ed. 2020, 41, 90–94. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef]
- Batra, V.; Ghosh, M.; Ganguli, A. A simple fermentative process for ensuring safety and nutrition of legume and legume wheat based sourdoughs. Qual. Assur. Saf. Crops Foods 2019, 11, 639–645. [Google Scholar] [CrossRef]
- Shurkhno, R.A.; Validov, S.Z.; Boronin, A.M.; Naumova, R.P. Modeling of lactic acid fermentation of leguminous plant juices. Appl. Biochem. Microbiol. 2006, 42, 204–209. [Google Scholar] [CrossRef]
- Sedó Molina, G.E.; Shetty, R.; Xiao, H.; Wätjen, A.P.; Tovar, M.; Bang-Berthelsen, C.H. Development of a novel lactic acid bacteria starter culture approach: From insect microbiome to plant-based fermentations. LWT 2022, 167, 113797. [Google Scholar] [CrossRef]
- Mefleh, M.; Faccia, M.; Natrella, G.; De Angelis, D.; Pasqualone, A.; Caponio, F.; Summo, C. Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods 2022, 11, 3578. [Google Scholar] [CrossRef]
- Demarinis, C.; Verni, M.; Pinto, L.; Rizzello, C.G.; Baruzzi, F. Use of Selected Lactic Acid Bacteria for the Fermentation of Legume-Based Water Extracts. Foods 2022, 11, 3346. [Google Scholar] [CrossRef]
- Sigüenza-Andrés, T.; Mateo, J.; Rodríguez-Nogales, J.M.; Gómez, M.; Caro, I. Characterization of a Fermented Beverage from Discarded Bread Flour Using Two Commercial Probiotics Starters. Foods 2024, 13, 951. [Google Scholar] [CrossRef]
- Buchilina, A.; Gunkova, P.; Trofimov, A.; Barakova, N.; Maksimiuk, N.; Smyatskaya, Y.; Moskvichev, A.; Sadovoy, V. Biomodification of a plant base from cereal flour to produce an alternative fermented drink. Bioact. Compd. Health Dis. 2025, 8, 41–55. [Google Scholar] [CrossRef]
- Ai, J.; Li, A.L.; Su, B.X.; Meng, X.C. Multi-Cereal Beverage Fermented by Lactobacillus Helveticus and Saccharomyces Cerevisiae. J. Food Sci. 2015, 80, M1259–M1265. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Tontul, S.; Erbas, M. Co-Culture Probiotic Fermentation of Protein-Enriched Cereal Medium (Boza). J. Am. Coll. Nutr. 2020, 39, 72–81. [Google Scholar] [CrossRef]
- Salari, M.; Razavi, S.H.; Gharibzahedi, S.M.T. Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains. Qual. Assur. Saf. Crops Foods 2015, 7, 355–361. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Salovaara, H. Lactic Acid Bacteria in Cereal-Based Products. In Lactic Acid Bacteria: Microbiological and Functional Aspects; CRC Press: Boca Raton, FL, USA, 2019; pp. 199–213. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Lucas-González, R.; Pérez-Alvarez, J.A.; Ponce-Martínez, A.J.; Rodríguez-Párraga, J. Quinoa and its Co-Products as Ingredients for the Development of Dairy Analogs and Hybrid Dairy Products. Curr. Food Sci. Technol. Rep. 2024, 2, 319–331. [Google Scholar] [CrossRef]
- Šertović, E.; Sarić, Z.; Božanić, R.; Barać, M.; Barukčić, I.; Kostić, A. Fermentation of Cow’s Milk and Soy Milk Mixture with L. acidophilus Probiotic Bacteria with Yoghurt Culture. IFMBE Proc. 2020, 78, 251–259. [Google Scholar] [CrossRef]
- Brandt, K.; Nethery, M.A.; O’Flaherty, S.; Barrangou, R. Genomic characterization of Lactobacillus fermentum DSM 20052. BMC Genom. 2020, 21, 328. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, J.; Liu, W.; Li, W.; Sun, Z.; Cui, Y.; Zhang, H. Exploring the industrial potential of Lactobacillus delbrueckii ssp. bulgaricus by population genomics and genome-wide association study analysis. J. Dairy Sci. 2021, 104, 4044–4055. [Google Scholar] [CrossRef]
- Luo, H.; Li, P.; Wang, H.; Roos, S.; Ji, B.; Nielsen, J. Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri. BMC Biotechnol. 2021, 21, 46. [Google Scholar] [CrossRef]
- Stefanovic, E.; Fitzgerald, G.; McAuliffe, O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol. 2017, 61, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhou, X.; Stanton, C.; Ross, R.P.; Zhao, J.; Zhang, H.; Zhang, H.; Yang, B.; Chen, W. Comparative genomics and specific functional characteristics analysis of lactobacillus acidophilus. Microorganisms 2021, 9, 1992. [Google Scholar] [CrossRef] [PubMed]
- Al Noman, M.A.; Slaghuis, H.; Vos, A.; Ngirande, N.G.; Oosterhaven, J.K.; Islam, M.N. Hybrid yoghurt: Enhancing consumer acceptance by combining dairy and plant-based derivatives. J. Dairy Res. 2024, 91, 498–504. [Google Scholar] [CrossRef]
- Physicochemical Properties of Kefir Elaborated from Fortified Milk with Quinoa or Rice Flour as a Prebiotic. Technical Library of the CSBE-SCGAB. Available online: https://library.csbe-scgab.ca/all-publications/3081:physicochemical-properties-of-kefir-elaborated-from-fortified-milk-with-quinoa-or-rice-flour-as-a-prebiotic (accessed on 25 May 2025).
- Shahein, M.R.; Atwaa, E.S.H.; El-Zahar, K.M.; Elmaadawy, A.A.; Hijazy, H.H.A.; Sitohy, M.Z.; Albrakati, A.; Elmahallawy, E.K. Remedial Action of Yoghurt Enriched with Watermelon Seed Milk on Renal Injured Hyperuricemic Rats. Fermentation 2022, 8, 41. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; Radwan, H.A.; Elmeligy, A.A.; Hafiz, A.A.; Elmahallawy, E.K.; Albrakati, A. Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation 2022, 8, 112. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Abdul Hakim, B.N.; Xuan, N.J.; Oslan, S.N.H. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023, 12, 2850. [Google Scholar] [CrossRef]
- Barrett, E.; Hayes, M.; Fitzgerald, G.F.; Hill, C.; Stanton, C.; Ross, R.P. Fermentation, cell factories and bioactive peptides: Food grade bacteria for production of biogenic compounds. Aust. J. Dairy Technol. 2005, 60, 157–162. [Google Scholar]
- Pessione, E.; Cirrincione, S. Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Front. Microbiol. 2016, 7, 876. [Google Scholar] [CrossRef]
- Prete, R.; Alam, M.K.; Perpetuini, G.; Perla, C.; Pittia, P.; Corsetti, A. Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods 2021, 10, 1653. [Google Scholar] [CrossRef] [PubMed]
- Mančušková, T.; Medveďová, A.; Valík, Ľ. Production of antimicrobial substances by lactic acid bacteria [Produkcia antimikrobiálnych látok baktériami mliečneho kysnutia]. Chem. Listy 2016, 110, 179–184. [Google Scholar]
- Parappilly, S.J.; Radhakrishnan, K.M.; Idicula, D.V.; George, S.M. Antimicrobial compound produced by human gut lactic acid bacteria having antifungal activity against aflatoxigenic Aspergillus flavus MTCC 2798. J. Food Process Preserv. 2022, 46, e16834. [Google Scholar] [CrossRef]
- Mills, S.; Stanton, C.; Ross, R.P. Microbial production of bioactives: From fermented functional foods to probiotic mechanisms. Aust. J. Dairy Technol. 2009, 64, 41–49. [Google Scholar]
- Carneiro, K.O.; Campos, G.Z.; Scafuro Lima, J.M.; Rocha, R.d.S.; Vaz-Velho, M.; Todorov, S.D. The Role of Lactic Acid Bacteria in Meat Products, Not Just as Starter Cultures. Foods 2024, 13, 3170. [Google Scholar] [CrossRef]
- Rashid, N.Y.A.; Razak, D.L.A.; Jamaluddin, A.; Sharifuddin, S.A.; Long, K. Bioactive compounds and antioxidant activity of rice bran fermented with lactic acid bacteria. Malays. J. Microbiol. 2015, 11, 156–162. [Google Scholar] [CrossRef]
- Barbu, V.; Cotârleț, M.; Bolea, C.A.; Cantaragiu, A.; Andronoiu, D.G.; Bahrim, G.E.; Enachi, E. Three types of beetroot products enriched with lactic acid bacteria. Foods 2020, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Tomita, S.; Saito, K.; Nakamura, T.; Sekiyama, Y.; Kikuchi, J. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice. PLoS ONE 2017, 12, e0182229. [Google Scholar] [CrossRef]
- Özcan, E.; Selvi, S.S.; Nikerel, E.; Teusink, B.; Toksoy Öner, E.; Çakır, T. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. cremoris. Appl. Microbiol. Biotechnol. 2019, 103, 3153–3165. [Google Scholar] [CrossRef]
- Burgé, G.; Saulou-Bérion, C.; Moussa, M.; Allais, F.; Athes, V.; Spinnler, H.E. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains. J. Microbiol. 2015, 53, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, A.K.; Beaulieu, A.D.; Pieper, R.; Van Kessel, A.G. Fermentation of barley and wheat with lactic acid bacteria and exogenous enzyme on nutrient composition, microbial count, and fermentative characteristics. Can. J. Anim. Sci. 2021, 101, 106–117. [Google Scholar] [CrossRef]
- Pastink, M.I.; Teusink, B.; Hols, P.; Visser, S.; De Vos, W.M.; Hugenholtz, J. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 2009, 75, 3627–3633. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Deshaware, S.; Singhal, R.S. Health Benefits of Fermented Foods and Beverages; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Hidalgo-Fuentes, B.; de Jesús-José, E.; Cabrera-Hidalgo, A.d.J.; Sandoval-Castilla, O.; Espinosa-Solares, T.; González-Reza, R.M.; Zambrano-Zaragoza, M.L.; Liceaga, A.M.; Aguilar-Toalá, J.E. Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. Foods 2024, 13, 844. [Google Scholar] [CrossRef]
- Khatun, L.; Ray, S. Traditional Fermented Beverages: Origin, Processing, and Qualitative Valorisation. In Traditional Foods: The Reinvented Superfoods; Springer Nature: Cham, Switzerland, 2024; pp. 265–298. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022, 11, 2760. [Google Scholar] [CrossRef]
- Liu, S.Q. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. J. Food Microbiol. 2003, 83, 115–131. [Google Scholar] [CrossRef]
- Manca de Nadra, M.C.; Saguir, F.M.; Strasser de Saad, A.M. Sugars, organic acids and glycerol metabolism of lactic acid bacteria from fruits and fermented beverages: Influence on the products quality. In Red Wine and Health; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 235–278. [Google Scholar]
- Akpoghelie, P.O.; Edo, G.I.; Ali, A.B.; Yousif, E.; Zainulabdeen, K.; Owheruo, J.O.; Isoje, E.F.; Igbuku, U.A.; Essaghah, A.E.A.; Makia, R.S.; et al. Lactic acid bacteria: Nature, characterization, mode of action, products and applications. Process Biochem. 2025, 152, 1–28. [Google Scholar] [CrossRef]
- Zaunmüller, T.; Eichert, M.; Richter, H.; Unden, G. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl. Microbiol. Biotechnol. 2006, 72, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Ravyts, F.; De Vuyst, L.; Leroy, F. Bacterial diversity and functionalities in food fermentations. Eng. Life Sci. 2012, 12, 356–367. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, S.Y.; Jin, J.E.; Hong, K.S.; Kim, D.J.; Kim, Y.K.; Shin, H.C.; Cho, S.K.; Kang, D.H. Comparing the VITEK 2 ANC card, species-specific PCR, and MALDI-TOF mass spectrometry methods for identification of lactic acid bacteria. J. Food Sci. 2022, 87, 5099–5106. [Google Scholar] [CrossRef]
- Pessione, A.; Lamberti, C.; Pessione, E. Proteomics as a tool for studying energy metabolism in lactic acid bacteria. Mol. Biosyst. 2010, 6, 1419–1430. [Google Scholar] [CrossRef]
- Johanningsmeier, S.D.; Fleming, H.P.; Breidt, F. Malolactic activity of lactic acid bacteria during sauerkraut fermentation. J. Food Sci. 2004, 69, M222–M227. [Google Scholar] [CrossRef]
- Inês, A.; Tenreiro, T.; Tenreiro, R.; Mendes-Faia, A. Review: Wine lactic acid bacteria—Part I [Revisão: As bactérias do ácido láctico do vinho—Parte I]. Cienc. Tec. Vitivinic. 2008, 23, 81–96. [Google Scholar]
- Martínez-Cuesta, M.C.; Requena, T.; Peláez, C. Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFPL730. Int. J. Food Microbiol. 2006, 109, 198–204. [Google Scholar] [CrossRef]
- Tanous, C.; Gori, A.; Rijnen, L.; Chambellon, E.; Yvon, M. Pathways for α-ketoglutarate formation by Lactococcus lactis and their role in amino acid catabolism. Int. Dairy J. 2005, 15, 759–770. [Google Scholar] [CrossRef]
- Peralta, G.H.; Bergamini, C.V.; Hynes, E.R. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci. Braz. J. Microbiol. 2016, 47, 741–748. [Google Scholar] [CrossRef]
- Le Bars, D.; Yvon, M. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. J. Appl. Microbiol. 2008, 104, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ardö, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, J.; Takeuchi, M.; Kishino, S. Hydratase, Dehydrogenase, Isomerase, and Enone Reductase Involved in Fatty Acid Saturation Metabolism. In Lipid Modification by Enzymes and Engineered Microbes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–137. [Google Scholar] [CrossRef]
- Kishino, S.; Ogawa, J.; Kamagata, Y.; Ito, M.; Shimizu, S. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc. Natl. Acad. Sci. USA 2013, 110, 17808–17813. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de la Bastida, A.; Peirotén, Á.; Langa, S.; Álvarez, I.; Arqués, J.L.; Landete, J.M. Metabolism of flavonoids and lignans by lactobacilli and bifidobacteria strains improves the nutritional properties of flaxseed-enriched beverages. Food Res. Int. 2021, 147, 110488. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Ahmad, Z.; Malik, A.; Anjum, F.M.; Ashraf, M.; Javed, M. Lactic acid bacteria as a source of functional ingredients. In Food Microbial Sustainability: Integration of Food Production and Food Safety; Springer Nature: Cham, Switzerland, 2023; pp. 153–172. [Google Scholar] [CrossRef]
- Bae, S.; Fleet, G.H.; Heard, G.M. Lactic acid bacteria associated with wine grapes from several Australian vineyards. J. Appl. Microbiol. 2006, 100, 712–727. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yang, H.J.; Li, C.C.; Zhang, F.F.; Ma, C.H. Isolation and Identification of Lactic Acid Bacterium Strain from Bioussonetia Papyrifera Silage. Acta Agrestia Sin. 2022, 30, 38–45. [Google Scholar] [CrossRef]
- Endo, A.; Tanizawa, Y.; Arita, M. Isolation and identification of lactic acid bacteria from environmental samples. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2019; Volume 1887, pp. 3–13. [Google Scholar] [CrossRef]
- Endo, A.; Futagawa-Endo, Y.; Dicks, L.M.T. Influence of carbohydrates on the isolation of lactic acid bacteria. J. Appl. Microbiol. 2011, 110, 1085–1092. [Google Scholar] [CrossRef]
- Sariri, A.K.; Kustantinah; Bachruddin, Z.; Hanim, C. Low pH resistant lactic acid bacteria from cow rumen waste. Indones. J. Biotechnol. 2025, 30, 34–38. [Google Scholar] [CrossRef]
- Bakar, N.A.A.; Rahman, M.H.A.; Shakri, N.A. Identification and characterization of lactic acid bacteria isolated from fruit tree rhizosphere in MARDI, Malaysia. Malays. J. Microbiol. 2017, 13, 61–66. [Google Scholar]
- Liu, W.; El Ouariachi, H.; Ghouila, H.; Rkain, H.; Cherrah, Y.; Tahiri, A.; Soulaymani, A. Isolation, Identification and Diversity of Lactic Acid Bacteria from Fermented Olive Juice in Morocco. Sci. Technol. Food Ind. 2021, 42, 108–113. [Google Scholar] [CrossRef]
- Sanam, M.U.E.; Detha, A.I.R.; Rohi, N.K. Detection of antibacterial activity of lactic acid bacteria, isolated from Sumba mare’s milk, against Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J. Adv. Vet. Anim. Res. 2022, 9, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Moraes, P.M.; Perin, L.M.; Silva Júnior, A.; Nero, L.A. Comparison of phenotypic and molecular tests to identify lactic acid bacteria. Braz. J. Microbiol. 2013, 44, 109–112. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, S.; Park, Y.S. Molecular typing tools for identifying and characterizing lactic acid bacteria: A review. Food Sci. Biotechnol. 2020, 29, 1301–1318. [Google Scholar] [CrossRef]
- Treguier, S.; Couderc, C.; Tormo, H.; Kleiber, D.; Levasseur-Garcia, C. Identification of lactic acid bacteria Enterococcus and Lactococcus by near-infrared spectroscopy and multivariate classification. J. Microbiol. Methods 2019, 165, 105693. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.; LŁaniewska-Trokenheim, L.Ł. Study of the nonculturable state of lactic acid bacteria cells under adverse growth conditions [Badania stanu ‘niehodowalności’ komórek bakterii fermentacji mlekowej w niesprzyjaja̧cych warunkach rozwoju]. Med. Weter. 2011, 67, 105–109. [Google Scholar]
- Fguiri, I.; Atigui, M.; Ziadi, M.; Arroum, S.; Khorchani, T. Biochemical and molecular identification of lactic acid bacteria isolated from camel milk in Tunisia. Emir. J. Food Agric. 2015, 27, 716–720. [Google Scholar] [CrossRef]
- Ren, Y.; Zheng, Y.; Wang, X.; Qu, S.; Sun, L.; Song, C.; Ding, J.; Ji, Y.; Wang, G.; Zhu, P.; et al. Rapid identification of lactic acid bacteria at species/subspecies level via ensemble learning of Ramanomes. Front. Microbiol. 2024, 15, 1361180. [Google Scholar] [CrossRef] [PubMed]
- Bucka-Kolendo, J.; Sokołowska, B. Comparison of lactobacillus identification methods [Porównanie metod identyfikacji bakterii lactobacillus]. Żywn. Nauka Technol. Jakość/Food Sci. Technol. Qual. 2021, 28, 49–60. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Mills, D.A. Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism. Food Microbiol. 2012, 31, 126–132. [Google Scholar] [CrossRef]
- Wieme, A.D.; Spitaels, F.; Aerts, M.; De Bruyne, K.; Van Landschoot, A.; Vandamme, P. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int. J. Food Microbiol. 2014, 185, 41–50. [Google Scholar] [CrossRef]
- Condina, M.R.; Dilmetz, B.A.; Razavi Bazaz, S.; Meneses, J.; Ebrahimi Warkiani, M.; Hoffmann, P. Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. Lab Chip 2019, 19, 1961–1970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Q.; Liu, Y.; Song, Y.; Chen, F.; Wang, X.; Zhang, Q. Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PLoS ONE 2014, 9, e106185. [Google Scholar] [CrossRef]
- Melia, S.; Yuherman; Jaswandi; Purwati, E. Selection of buffalo milk lactic acid bacteria with probiotic potential. Asian J. Pharm. Clin. Res. 2018, 11, 186–189. [Google Scholar] [CrossRef]
- Ida Muryany, M.Y.; Chin, Y.K.; Ina-Salwany, M.Y. Rapid identification and characterization of the Lactobacillus strains by using 16S-23S rRNA gene intergenic spacer region and recA genes. Malays. J. Biochem. Mol. Biol. 2023, 2023, 8–15. [Google Scholar]
- Obioha, P.I.; Ouoba, L.I.I.; Anyogu, A.; Awamaria, B.; Atchia, S.; Ojimelukwe, P.C.; Sutherland, J.P.; Ghoddusi, H.B. Identification and characterisation of the lactic acid bacteria associated with the traditional fermentation of dairy fermented product. Braz. J. Microbiol. 2021, 52, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, L.; Zhang, T.; Liu, Y.; Lü, X.; Kuipers, O.P.; Yi, Y. (Meta)genomics-assisted screening of novel antibacterial lactic acid bacteria strains from traditional fermented milk from Western China and their bioprotective effects on cheese. LWT 2023, 175, 114507. [Google Scholar] [CrossRef]
- Rueangsri, N.; Roytrakul, S.; Muangnoi, C.; Tongkhao, K.; Sae-Tan, S.; Treesuwan, K.; Sirivarasai, J. Metaproteomic analysis of fermented vegetable formulations with lactic acid bacteria: A comparative study from initial stage to 15 days of production. Foods 2025, 14, 1148. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, X.; Yu, Z.; Li, M.; Sheng, T.; Wang, Z.; Tu, J.; Song, X.; Qi, K. Gut microbiome analysis and screening of lactic acid bacteria with probiotic potential in Anhui swine. Animals 2023, 13, 3812. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Elizaquível, P.; Carrasco, P.; Espinosa, J.; Reyes, D.; Wacher, C.; Aznar, R. Diversity and dynamics of lactic acid bacteria in Atole agrio, a traditional maize-based fermented beverage from South-Eastern Mexico, analysed by high throughput sequencing and culturing. Antonie Leeuwenhoek 2018, 111, 385–399. [Google Scholar] [CrossRef]
- Gizachew, S.; Van Beeck, W.; Spacova, I.; Dekeukeleire, M.; Alemu, A.; Mihret, W.; Lebeer, S.; Engidawork, E. Characterization of potential probiotic starter cultures of lactic acid bacteria isolated from Ethiopian fermented cereal beverages, Naaqe, and Cheka. J. Appl. Microbiol. 2023, 134, xad237. [Google Scholar] [CrossRef]
- Al-Madboly, L.A.; Yagi, A.; Kabbash, A.; El-Aasr, M.A.; El-Morsi, R.M. Microbiota-derived short chain fatty acids in fermented Kidachi Aloe promote antimicrobial, anticancer, and immunomodulatory activities. BMC Microbiol. 2023, 23, 240. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, J.; Yuan, J.; Cong, L.; Dang, N.; Sun, T.; Liu, W. Evaluation of lactic acid bacterial communities in spontaneously-fermented dairy products from Tajikistan, Kyrgyzstan and Uzbekistan using culture-dependent and culture-independent methods. Int. Dairy J. 2022, 130, 105281. [Google Scholar] [CrossRef]
- Plessas, S. Advancements in the Use of Fermented Fruit Juices by Lactic Acid Bacteria as Functional Foods: Prospects and Challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum Application. Fermentation 2022, 8, 6. [Google Scholar] [CrossRef]
- Calderón-Martínez, F.E.; González-Laredo, R.F.; González-Escobar, J.L.; Nicolás-García, M.; Muñiz-Márque, D.B.; Veana, F. Fermented Beverages from Agro-Industrial Wastes and Non-Conventional Sources. In Biosystems Engineering Applications for Quality Food Production: Waste Valorization and New Product Development; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 157–216. [Google Scholar]
- Moirangthem, K.; Rai, D.K.; Coda, R. Enzyme technology for value addition in the beverage industry waste. In Value-Addition in Beverages Through Enzyme Technology; Academic Press: Cambridge, MA, USA, 2022; pp. 27–50. [Google Scholar] [CrossRef]
- Saguir, F.M.; Sajur, S.A.; Pérez, M.B.; Savino, M.J.; Maturano, C. Enzymatic activities and fermentation products of lactic acid bacteria from fruits and fermented beverages. Incidence on food quality. In Quality Control in the Beverage Industry: Volume 17: The Science of Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 491–528. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Pot, B.; Tsakalidou, E. How microbes adapt to a diversity of food niches. Curr. Opin. Food Sci. 2015, 2, 29–35. [Google Scholar] [CrossRef]
- Gustaw, K.; Niedźwiedź, I.; Rachwał, K.; Polak-Berecka, M. New insight into bacterial interaction with the matrix of plant-based fermented foods. Foods 2021, 10, 1603. [Google Scholar] [CrossRef]
- Senz, M.; Keil, C.; Schmacht, M.; Palinski, S.; Cämmerer, B.; Hageböck, M. Influence of media heat sterilization process on growth performance of representative strains of the genus Lactobacillus. Fermentation 2019, 5, 20. [Google Scholar] [CrossRef]
- Moračanin, S.V.; Djukić, D.; Zdolec, N.; Milijašević, M.; Mašković, P. Antimicrobial resistance of lactic acid bacteria in fermented food. J. Hyg. Eng. Des. 2017, 18, 25–35. [Google Scholar]
- Leblanc, J.G.; De Moreno De Leblanc, A. The Many Benefits of Lactic Acid Bacteria; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019. [Google Scholar]
- Plavec, T.V.; Berlec, A. Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms 2020, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Pan, L.; Li, L.; Lu, J.; Kwok, L.; Menghe, B.; Zhang, H.; Zhang, W. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. J. Food Sci. 2017, 82, 724–730. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Liu, Z.; Hu, X.; Yi, J. Healthy promoting effects of lactic acid bacteria in fermented foods. Food Ferment. Ind. 2021, 47, 280–287. [Google Scholar] [CrossRef]
- Anumudu, C.K.; Miri, T.; Onyeaka, H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024, 13, 3714. [Google Scholar] [CrossRef] [PubMed]
- Ma, X. Heavy metals remediation through lactic acid bacteria: Current status and future prospects. Sci. Total Environ. 2024, 946, 174455. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, J.; Ren, Q.; Liu, Z.; Zhang, X.; Wu, Z. The Involvement of Lactic Acid Bacteria and Their Exopolysaccharides in the Biosorption and Detoxication of Heavy Metals in the Gut. Biol. Trace Elem. Res. 2024, 202, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.B.; Madhavan, A.; Sindhu, R.; Emmanual, S.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Reshmy, R.; Awasthi, M.K.; Gnansounou, E.; et al. Probiotics and gut microbiome—Prospects and challenges in remediating heavy metal toxicity. J. Hazard. Mater. 2021, 420, 126676. [Google Scholar] [CrossRef]
- Ju, S.Y.; Kim, J.H.; Lee, P.C. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production. Biotechnol. Biofuels 2016, 9, 240. [Google Scholar] [CrossRef]
- Béal, C.; Arana-Agudelo, P.; Farel, T.; Moussa, M.; Athès, V. Lactic acid microbial production and recovery: Review and recent advances in bioprocess integration. In Lactic Acid Bacteria as Cell Factories: Synthetic Biology and Metabolic Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 77–108. [Google Scholar] [CrossRef]
- Akki, A.J.; Hiremath, L.D.; Badkillaya, R.R. Harnessing Symbiotic Association of Lactic Acid Bacteria and Cellulose-Synthesizing Bacteria for Enhanced Biological Activity. Iran. J. Sci. 2024, 48, 311–320. [Google Scholar] [CrossRef]
- Wu, J.; Xin, Y.; Kong, J.; Guo, T. Genetic tools for the development of recombinant lactic acid bacteria. Microb. Cell Fact. 2021, 20, 118. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, Y.; Song, X.; Ai, L.; Wang, G. Advances in the Study of Lactic Acid Bacteria as Vehicles for the In Vivo Delivery of Bioactive Substances. Food Sci. 2023, 44, 193–202. [Google Scholar] [CrossRef]
- Khan, I.; Ahmad, S. Lactic Acid Bacteria (LAB) Fermented Food and Their Therapeutic Importance. In Functional Food Products and Sustainable Health; Springer: Singapore, 2020; pp. 219–233. [Google Scholar] [CrossRef]
- Zhu, Z. Advances in the use of lactic acid bacteria as mucosal delivery vectors of therapeutic molecules. Chin. J. Biotechnol. 2021, 37, 2272–2282. [Google Scholar] [CrossRef]
- Berlec, A.; Ravnikar, M.; Štrukelj, B. Lactic acid bacteria as oral delivery systems for biomolecules. Pharmazie 2012, 67, 891–898. [Google Scholar] [CrossRef]
- Wells, J.M.; Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 2008, 6, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Z.; Chu, M.; Huang, Y.; Li, J.; Pu, G.; Wang, B.; Liu, J. Nanodrug-loaded Bifidobacterium bifidum conjugated with anti-death receptor antibody for tumor-targeted photodynamic and sonodynamic synergistic therapy. Acta Biomater. 2022, 146, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Nouaille, S.; Ribeiro, L.A.; Miyoshi, A.; Pontes, D.; Le Loir, Y.; Oliveira, S.C.; Langella, P.; Azevedo, V. Heterologous protein production and delivery systems for Lactococcus lactis. Genet. Mol. Res. 2003, 2, 102–111. [Google Scholar] [PubMed]
- Wyszyńska, A.; Kobierecka, P.; Bardowski, J.; Jagusztyn-Krynicka, E.K. Lactic acid bacteria—20 years exploring their potential as live vectors for mucosal vaccination. Appl. Microbiol. Biotechnol. 2015, 99, 2967–2977. [Google Scholar] [CrossRef]
Aspect | Dairy Beverages | Non-Dairy Beverages | Specific Traits | Bioactive Compounds/Metabolites Produced | Representative LAB Species | Type of Verification Method | Refs. |
---|---|---|---|---|---|---|---|
Preservation | LAB contribute to preservation by producing lactic acid, which inhibits spoilage microorganisms and pathogens. | LAB produce organic acids and antimicrobial compounds that inhibit spoilage microorganisms and pathogens. | Acid tolerance, antimicrobial activity | Lactic acid, acetic acid, bacteriocins, hydrogen peroxide | Lactococcus lactis, Lactiplantibacillus plantarum, Pediococcus acidilactici | In vitro, molecular tools | [42,43,44,45] |
Flavor and aroma | LAB play a key role in the development of taste, texture, and aroma. | LAB enhance sensory quality by producing various volatile flavor and aroma compounds. | Esterase and proteolytic activity | Diacetyl, acetoin, ethyl acetate, aldehydes | Leuconostoc mesenteroides, Lacticaseibacillus helveticus, L. plantarum | In vitro, consumer sensory evaluation | [44,45,46,47,48,49] |
Nutritional value | LAB enhance the nutritional profile by synthesizing essential metabolites and bioactive compounds. | LAB increase nutritional quality by producing bioactive compounds and enhancing the availability of nutrients. | Proteolysis, vitamin synthesis, phytate degradation | B-group vitamins (e.g., B2, B12), bioactive peptides | Limosilactobacillus fermentum, Lacticaseibacillus casei, L. plantarum | In vitro (antimicrobial activity assays), in vivo (nutritional bioavailability data) | [42,46,48,49,50] |
Health benefits | LAB offer probiotic benefits, such as gut health, antimicrobial properties, and antioxidant potential. | LAB provide probiotic effects, such as antimicrobial activities, antioxidant properties, and cholesterol-lowering effects. | Probiotic potential, cholesterol assimilation, antioxidant enzyme production | Exopolysaccharides, conjugated linoleic acid, γ-aminobutyric acid | Lacticaseibacillus rhamnosus, L. casei, L. plantarum, Lactobacillus acidophilus | In vitro, in vivo (animal), RCT (Randomized controlled trials) | [50,51,52,53] |
Fermentation | LAB are used as starter cultures to ensure efficient fermentation and product stability. | LAB are selected for their ability to ferment various plant matrices effectively, ensuring product stability and quality. | Rapid acidification, carbohydrate metabolism | Lactic acid, CO2, mannitol | L. lactis, Streptococcus thermophilus, L. plantarum, Weissella cibaria | In vitro (fermentation trials), consumer acceptability | [42,46,48,49,50] |
Probiotic potential | Dairy LAB strains are often used for their probiotic properties, contributing to overall health benefits. | Non-dairy LAB strains are recognized for their probiotic potential, enhancing the health benefits of the beverages. | Bile salt tolerance, adhesion to intestinal cells | Exopolysaccharides, antimicrobial peptides | Limosilactobacillus reuteri, Lacticaseibacillus paracasei, L. plantarum, Pediococcus pentosaceus | In vitro (cell line studies), in vivo (animal), RCTs | [50,51,52,53] |
Beverage Type | Key LAB Strains | Main Compound Production/Functionality | Refs. |
---|---|---|---|
Milk Kefir | Lacticaseibacillus kefiranofaciens, Lentilactobacillus kefiri, Lacticaseibacillus kefirgranum, Lentilactobacillus parakefiri, Streptococcus thermophilus, Lactococcus spp. | Production of kefiran (exopolysaccharide) with antimicrobial properties; synthesis of bioactive peptides and vitamins; flavor compounds, like acetaldehyde, ethanol, diacetyl, and acetoin | [54,57,58,59,60] |
Buttermilk | Lactobacillus spp., Lactococcus spp., Streptococcus spp. | Enhancement of phospholipid content (e.g., L-α phosphatidylinositol, L-α phosphatidylcholine); increased levels of acetic and butyric acids; production of γ-aminobutyric acid (GABA); synthesis of folate and conjugated linolenic acid (CLA); generation of bioactive peptides with angiotensin-converting enzyme (ACE) inhibitory and mineral-binding activities | [67,69,70,71] |
Yogurt drinks | Lactobacillus delbrueckii subsp. bulgaricus, S. thermophilus, Lactobacillus acidophilus, Lactococcus lactis subsp. lactis, L. lactis subsp. cremoris, Lactiplantibacillus plantarum, Leuconostoc spp. | Production of exopolysaccharides enhancing texture and stability; synthesis of bioactive compounds (e.g., vitamins, antioxidants); probiotic effects, including gut health improvement and immune modulation; flavor enhancement through incorporation of functional additives like tea and fig syrup | [77,78,79,80,81,83,85] |
Vinegar | L. plantarum, Limosilactobacillus fermentum, Lentilactobacillus buchneri, Lacticaseibacillus casei, Liquorilactobacillus acetotolerans, L. lactis, Pediococcus acidilactici, Pediococcus pentosaceus, Weissella confusa, Fructobacillus tropaeoli, Leuconostoc mesenteroides, Weissella paramesenteroides, Levilactobacillus brevis, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Companilactobacillus paralimentarius | Flavor enhancement; increased vitamin C, volatile organic compounds, and organic acids; possible roles in microbial stability and fermentation efficiency | [87,88,89] |
Wine | Oenococcus oeni, L. plantarum, Liquorilactobacillus mali, Liquorilactobacillus satsumensis, L. paracasei, Pediococcus parvulus | Malolactic fermentation (malic acid to lactic acid), flavor development via volatile compounds, wine stabilization, haze and anthocyanin reduction, ochratoxin A removal, diacetyl production, spoilage (phenols, biogenic amines) | [2,40] |
Beer | L. plantarum, L. brevis, L. rhamnosus, L. acidophilus, Leuconostoc pseudomesenteroides, L. acetotolerans, Pediococcus damnosus | Acidification (lactic acid), aroma development, probiotic viability, reduced pH, enhanced sensory properties, hop tolerance; spoilage risk (off-flavors, turbidity), control via yeast–LAB sequencing and brewing strategies | [115,116] |
Milk–oat fermented beverage | S. thermophilus, L. delbrueckii subsp. bulgaricus, L. plantarum 299v, L. acidophilus La5 | Enhanced sensory attributes depending on bacterial mix and base materials; combined nutritional benefits from dairy and oats | [7,143] |
Milk–soy fermented beverage | L. acidophilus La5 | Improved sensory properties; high consumer acceptability | [144] |
Milk–quinoa fermented beverage | L. acidophilus | Enhanced phenolic content, antioxidant activity, mineral and amino acid levels; quinoa-stimulated microbial growth | [143] |
Milk–watermelon seed yogurt | Streptococcus salivarius subsp. thermophilus EMCC104, L. delbrueckii subsp. bulgaricus EMCC1102 | Enhanced antioxidant activity; improved renal function in hyperuricemic rats via increased enzymatic antioxidant defense; potential for upcycling food waste | [152] |
Bioactive Compound | LAB Source | Chemical Nature | Beverage/Food Type | Health Relevance | Refs. |
---|---|---|---|---|---|
Peptides | Dairy products, various foods | Protein fragments | Fermented dairy products | Antimicrobial, antihypertensive, immunomodulatory | [155,156,157] |
Exopolysaccharides (EPS) | Dairy products | Polysaccharides | Fermented dairy products | Antioxidant, cholesterol-lowering, prebiotic | [155,158] |
Bacteriocins | Various foods | Antimicrobial peptides | Fermented foods | Antimicrobial | [155,159,160] |
Lactic acid | Various foods | Organic acid | Fermented foods and beverages | Antimicrobial, preservative | [155,159,160] |
Conjugated linoleic acid (CLA) | Dairy products | Fatty acid | Fermented dairy products | Cardiovascular health | [161] |
Gamma amino butyric acid (GABA) | Plant-based beverages, grape juice | Non-protein amino acid | Fermented plant-based beverages | Antihypertensive, neuroprotective | [13,161,162] |
Vitamins (e.g., folate, vitamin E) | Various foods | Vitamins | Fermented foods | Antioxidant, nutritional enhancement | [156,163] |
Organic acids (e.g., acetic acid) | Rice bran, various foods | Organic acids | Fermented rice bran | Antioxidant, antimicrobial | [163] |
Phenolic compounds (e.g., ferulic acid) | Rice bran, beetroot | Phenolic acids | Fermented rice bran, beetroot | Antioxidant | [163,164] |
Diacetyl | Various foods | Organic compound | Fermented foods | Antimicrobial | [159,160] |
Hydrogen peroxide | Various foods | Reactive oxygen species | Fermented foods | Antimicrobial | [159,160] |
Reuterin | Various foods | Antimicrobial compound | Fermented foods | Antimicrobial | [159] |
Property | Homolactic Metabolism | Heterolactic Metabolism | Refs. |
---|---|---|---|
Primary pathway | Embden–Meyerhof pathway (EMP) | Phosphoketolase pathway (PKP) | [165,166,167] |
Main products | Primarily lactic acid | Lactic acid, acetic acid, ethanol, and/or mannitol | [165,166,167] |
Energy yield | Higher ATP yield per glucose molecule | Lower ATP yield per glucose molecule | [165,166] |
Key metabolites | Acetoin, phenyllactic acid, ρ-hydroxyphenyllactic acid, glycerophosphocholine, succinic acid | Ornithine, tyramine, γ-aminobutyric acid | [165] |
Fermentation characteristics | Rapid pH decline, higher lactate concentration, lower ethanol and ammonia production | Slower pH decline, higher acetate concentrations, and increased ethanol and ammonia production | [165,168] |
Applications | Dairy fermentations (e.g., yogurt) | flavor compound production in dairy (e.g., cheese) | [166,169] |
Strain examples | Lactococcus lactis, Streptococcus thermophilus | Leuconostoc mesenteroides, Levilactobacillus brevis | [165,166,169] |
Sensory impact | Enhances flavor and aroma by producing lactic acid, which contributes to a tangy taste and can improve the overall sensory profile of beverages. Improves texture and mouthfeel by increasing viscosity and creaminess. | Produces a more complex flavor profile by generating a variety of metabolites, including ethanol, acetic acid, and carbon dioxide, which contribute to a diverse sensory experience. Adds carbonation to beverages, enhancing mouthfeel and providing a refreshing quality. | [170,171,172] |
Functional/health impact | Promotes gut health by increasing the population of beneficial bacteria in the gut. Enhances the bioavailability of nutrients such as vitamins and amino acids. Boosts the immune system through the production of bioactive compounds. Decreases anti-nutritional factors, like phytic acid. | Increases antioxidant activity, which can help in reducing oxidative stress. May contribute to cardiovascular health by producing bioactive compounds that help in reducing cholesterol levels. Provides anti-inflammatory benefits through the production of various metabolites. Improves metabolic health by aiding in glycemic control and reducing the risk of diabetes | [170,171,172,173] |
Method | Advantages | Limitations | References |
---|---|---|---|
Phenotypic methods | Simple and cost-effective; useful for initial screening | May misidentify targets; time-consuming and labor-intensive | [201,204,205] |
16S rDNA sequencing | High accuracy and reliability; can identify species and subspecies | Requires specialized equipment and expertise; can be expensive | [201,206] |
PCR-based methods | High specificity and sensitivity; rapid and reliable | Potential for cross-reactions; requires specific primers and conditions | [179] |
MALDI-TOF MS (Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) | High accuracy and efficiency; rapid identification | Limited by database quality; may not differentiate closely related species | [179,206] |
TRFLP (Terminal restriction fragment length polymorphism) | Sensitive and can discriminate species in mixed cultures | Requires bioinformatics tools for analysis; may not be suitable for all LAB species | [207] |
Near-infrared spectroscopy | Non-destructive and simple; high classification rates at genus level | Lower accuracy at species level; limited to specific spectral ranges | [202] |
Polyphasic approach | Combines multiple methods for higher accuracy; reduces misidentification risk | More complex and time-consuming; requires integration of different data types | [200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kharousi, Z.S. Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives. Foods 2025, 14, 2043. https://doi.org/10.3390/foods14122043
Al-Kharousi ZS. Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives. Foods. 2025; 14(12):2043. https://doi.org/10.3390/foods14122043
Chicago/Turabian StyleAl-Kharousi, Zahra S. 2025. "Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives" Foods 14, no. 12: 2043. https://doi.org/10.3390/foods14122043
APA StyleAl-Kharousi, Z. S. (2025). Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives. Foods, 14(12), 2043. https://doi.org/10.3390/foods14122043