The Combined Antibacterial Mechanism of Ferulic Acid and ε-Polylysine Hydrochloride in Shewanella putrefaciens and the Effect of Their Application on the Storage Quality of Refrigerated Crayfish (Procambarus clarkii) with Plasma-Activated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Bacterial Strains
2.2. Antibacterial Test of PL and FA
2.2.1. Determination of MIC Values
2.2.2. Determination of the FICI Values
2.2.3. Time-Killed Curve Plotting
2.2.4. Determination of Alkaline Phosphatase (AKP) Activity
2.2.5. Determination of Extracellular Membrane Permeability
2.2.6. Propidium Iodide (PI) Uptake
2.2.7. Leakage of Intracellular K+
2.2.8. Cell Morphology Observation
2.2.9. DNA Extraction
2.3. Application of PL and FA in Crayfish
2.3.1. Preparation and Treatment of Crayfish
2.3.2. Preparation of Low-Temperature Plasma-Activated Water (PAW)
2.3.3. Determination of Color Difference
2.3.4. Total Viable Counts (TVCs)
2.3.5. Total Volatile Base Nitrogen (TVB-N) Value
2.3.6. Determination of pH
2.3.7. Determination of Juice Loss of Meat
2.4. Statistical Analysis
3. Results and Discussion
3.1. Synergistic Antibacterial Effect of FA and PL
3.2. Effect of FA and PL on the S. putrefaciens Cell Wall
3.3. Effect of FA and PL on the Permeability of Cell Membranes of S. putrefaciens
3.3.1. Influence of Extracellular Membrane Permeability
3.3.2. Propidium Iodide (PI) Uptake
3.3.3. K+ Analysis
3.4. Effect of FA and PL on Cell Morphology
3.5. Effect of FA and PL on the Genomic DNA of S. putrefaciens
3.6. Effects of PAW, PL, and FA on Quality of Crayfish
3.6.1. Color Difference Analysis
3.6.2. Bacteriostatic Analysis
3.6.3. S. putrefaciens Bacteriostatic Analysis
3.6.4. TVB-N Analysis
3.6.5. TBA Analysis
3.6.6. pH Analysis
3.6.7. Juice Loss Rate of Meat Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FA | ferulic acid |
PL | ε-polylysine hydrochloride |
S. putrefaciens | Shewanella putrefaciens |
FICI | fractional inhibitory concentration index |
MIC | Minimum Inhibitory Concentration |
PAW | plasma-activated water |
TVC | total viable count |
TVB-N | total volatile base nitrogen |
TBA | thiobarbituric acid value |
NPN | N-phenyl-1-naphthylamine |
PI | propidium iodide |
PBS | phosphate-buffered saline |
TSB | Tryptic Soy Broth |
PCA | plate count agar |
AKP | alkaline phosphatase |
SEM | scanning electron microscopy |
References
- Yin, T.; Shi, L. Processing and Preservation of Aquatic Products. Foods 2023, 12, 2061. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Ranveer, R.C.; Bhagwat, P.K.; Ozogul, F.; Benjakul, S.; Pillai, S.; Annapure, U.S. Cold plasma for the preservation of aquatic food products: An overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4407–4425. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Gai, Y.; Fu, S.; Zhang, D. Application of Biotechnology in Specific Spoilage Organisms of Aquatic Products. Front. Bioeng. Biotechnol. 2022, 10, 895283. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.J.; Ahn, D.H.; Min, G.S. The complete mitochondrial genome of the South American freshwater crayfish, Parastacus nicoleti (Crustacea, Decapoda, Parastacidae). Mitochondrial DNA Part B 2020, 5, 208–209. [Google Scholar] [CrossRef]
- Tang, C.; Xu, Y.; Yu, D.; Xia, W. Label-free quantification proteomics reveals potential proteins associated with the freshness status of crayfish (Procambarus clarkii) as affected by cooking. Food Res. Int. 2022, 160, 111717. [Google Scholar] [CrossRef]
- Adegbusi, H.S.; Ismail, A.; Esa, N.M.; Daud, Z.A.; Shukri, N.H. Improving complementary feeding in low- and middle-income countries: A review of crayfish’s nutritive and health values. Curr. Opin. Food Sci. 2024, 56, 101128. [Google Scholar] [CrossRef]
- Liu, F.; Qu, Y.-K.; Geng, C.; Wang, A.-M.; Zhang, J.-H.; Li, J.-F.; Chen, K.-J.; Liu, B.; Tian, H.-Y.; Yang, W.-P.; et al. Analysis of the population structure and genetic diversity of the red swamp crayfish (Procambarus clarkii) in China using SSR markers. Electron. J. Biotechnol. 2020, 47, 59–71. [Google Scholar] [CrossRef]
- Gao, X.; Li, P.; Mei, J.; Xie, J. TMT-Based Quantitative Proteomics Analysis of the Fish-Borne Spoiler Shewanella putrefaciens Subjected to Cold Stress Using LC-MS/MS. J. Chem. 2021, 2021, e8876986. [Google Scholar] [CrossRef]
- Yang, S.P.; Xie, J.; Cheng, Y.; Zhang, Z.; Zhao, Y.; Qian, Y.F. Response of Shewanella putrefaciens to low temperature regulated by membrane fluidity and fatty acid metabolism. LWT 2020, 117, 108638. [Google Scholar] [CrossRef]
- Guo, F.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antibacterial Activity and Mechanism of Linalool against Shewanella putrefaciens. Molecules 2021, 26, 245. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, W.; Zhang, J.; Zhu, J.; Sun, T.; Li, J.; Cheng, L. Synergistic effects of ε-polylysine hydrochloride and gallic acid on Shewanella putrefaciens and quality of refrigerated sea bass fillets. Food Control 2022, 139, 109070. [Google Scholar] [CrossRef]
- Miya, S.; Takahashi, H.; Hashimoto, M.; Nakazawa, M.; Kuda, T.; Koiso, H.; Kimura, B. Development of a controlling method for Escherichia coli O157:H7 and Salmonella spp. in fresh market beef by using polylysine and modified atmosphere packaging. Food Control 2014, 37, 62–67. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, M.; Bhandari, B.; Xu, J.; Yang, C. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control 2020, 107, 106771. [Google Scholar] [CrossRef]
- Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2022, 313, 110762. [Google Scholar] [CrossRef]
- Jia, Z.; Li, C.; Fang, T.; Chen, J. Predictive Modeling of the Effect of ε-Polylysine Hydrochloride on Growth and Thermal Inactivation of Listeria monocytogenes in Fish Balls. J. Food Sci. 2019, 84, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ye, K.-P.; Zhang, X.; Pan, D.-D.; Sun, Y.-Y.; Cao, J.-X. Antibacterial Activity and Mechanism of Action of Black Pepper Essential Oil on Meat-Borne Escherichia coli. Front. Microbiol. 2017, 7, 2094. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Dye, L.; Mackie, A. The impact of processing on the release and antioxidant capacity of ferulic acid from wheat: A systematic review. Food Res. Int. 2023, 164, 112371. [Google Scholar] [CrossRef] [PubMed]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant Properties of Ferulic Acid and Its Related Compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef]
- Xiang, Q.; Kang, C.; Niu, L.; Zhao, D.; Li, K.; Bai, Y. Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2. LWT 2018, 96, 395–401. [Google Scholar] [CrossRef]
- Guo, J.; Huang, K.; Wang, X.; Lyu, C.; Yang, N.; Li, Y.; Wang, J. Inactivation of Yeast on Grapes by Plasma-Activated Water and Its Effects on Quality Attributes. J. Food Prot. 2017, 80, 225–230. [Google Scholar] [CrossRef]
- Liao, X.; Su, Y.; Liu, D.; Chen, S.; Hu, Y.; Ye, X.; Wang, J.; Ding, T. Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Kang, J.; Liu, L.; Liu, M.; Wu, X.; Li, J. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control 2018, 94, 147–154. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, D.; Zhang, X.; Xiao, X.; Yu, Y.; Li, X. Synergistic effect of citral and carvacrol and their combination with mild heat against Cronobacter sakazakii CICC 21544 in reconstituted infant formula. LWT 2021, 138, 110617. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Meng, X.; He, X.; Zhao, W.; Liu, Y.; He, Y. Inactivation and Membrane Damage Mechanism of Slightly Acidic Electrolyzed Water on Pseudomonas deceptionensis CM2. Molecules 2021, 26, 1012. [Google Scholar] [CrossRef] [PubMed]
- Addo, K.A.; Li, H.; Yu, Y.; Xiao, X. Unraveling the mechanism of the synergistic antimicrobial effect of cineole and carvacrol on Escherichia coli O157:H7 inhibition and its application on fresh-cut cucumbers. Food Control 2023, 144, 109339. [Google Scholar] [CrossRef]
- Chong, Y.; Fu, J.; Chai, T.; Huang, Y.; Jin, D.; Mao, J.; Chen, Y. Preservation effects and antimicrobial mechanism of ultrasound assisted rosmarinic acid treatment on large yellow croaker during cold storage. Food Biosci. 2024, 57, 103455. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Chen, J.; Liu, H.; Liu, Y. Antibacterial mechanism of lactobionic acid against Shewanella baltica and Shewanella putrefaciens and its application on refrigerated shrimp. Food Biosci. 2023, 51, 102291. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, F.; Lai, D.; Zhang, Y.; Hu, J.; Lin, S. Curcumin-mediated sono/photodynamic treatment preserved the quality of shrimp surimi and influenced its microbial community changes during refrigerated storage. Ultrason. Sonochem. 2021, 78, 105715. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Cai, W.-Q.; Shi, Y.-G.; Dong, X.-P.; Bai, F.; Shen, S.-K.; Jiao, R.; Zhang, X.-Y.; Zhu, X. Effects of different salt concentrations and vacuum packaging on the shelf-stability of Russian sturgeon (Acipenser gueldenstaedti) stored at 4 °C. Food Control 2020, 109, 106865. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Liu, Y.; Yu, J.; Li, X.; Huang, Y.; Wang, F. Effect of chitosan coating incorporated with food preservatives on the muscle quality of grass carp during cold storage. Food Sci. 2021, 42, 220–225. [Google Scholar]
- Atale, N.; Gupta, S.; Yadav, U.; Rani, V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J. Microsc. 2014, 255, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-N.; Chang, S.-L.; Xu, P.-W.; Tan, M.-H.; Zhao, B.; Wang, X.-D.; Zhao, Q.-S. Structural Changes and Antibacterial Activity of Epsilon-poly-l-lysine in Response to pH and Phase Transition and Their Mechanisms. J. Agric. Food Chem. 2020, 68, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Tuersuntuoheti, T.; Wang, Z.; Wang, Z.; Liang, S.; Li, X.; Zhang, M. Review of the application of ε-poly-L-lysine in improving food quality and preservation. J. Food Process. Preserv. 2019, 43, e14153. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, R.; Tian, Y.; Su, B.; Wang, K.; Yu, S.; Zhang, J.; Fang, J. Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 2016, 50, 3184–3192. [Google Scholar] [CrossRef]
- Chaijan, S.; Panpipat, W.; Panya, A.; Cheong, L.-Z.; Chaijan, M. Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control 2020, 118, 107400. [Google Scholar] [CrossRef]
- Wu, C.; Sun, J.; Lu, Y.; Wu, T.; Pang, J.; Hu, Y. In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int. J. Biol. Macromol. 2019, 132, 385–392. [Google Scholar] [CrossRef]
- Rezaeifar, M.; Mehdizadeh, T.; Mojaddar Langroodi, A.; Rezaei, F. Effect of chitosan edible coating enriched with lemon verbena extract and essential oil on the shelf life of vacuum rainbow trout (Oncorhynchus mykiss). J. Food Saf. 2020, 40, e12781. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Sun, X.; Zhang, D.; Gao, X.; Wang, Z. Effects of combined chlorogenic acid and cold plasma on the colour and flavour of roasted mutton patties. Int. J. Food Sci. Technol. 2023, 58, 6563–6575. [Google Scholar] [CrossRef]
- Alirezalu, K.; Hesari, J.; Nemati, Z.; Munekata, P.E.S.; Barba, F.J.; Lorenzo, J.M. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Res. Int. 2019, 120, 839–850. [Google Scholar] [CrossRef]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, X.; Zhang, M.; Bai, B.; Yang, Y.; Fan, S. The antibacterial mechanism of perilla rosmarinic acid. Biotechnol. Appl. Biochem. 2022, 69, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Zhang, X.L.; Wang, G.B.; Mo, F.Y.; Zhang, X.R. Application of super-cooled storage of aquatic products: A review. Int. J. Refrig. 2023, 154, 66–72. [Google Scholar] [CrossRef]
Group | 1 d | 2 d | 3 d | 5 d | 7 d | |
---|---|---|---|---|---|---|
L* | CK | 81.95 ± 1.08 d | 80.07 ± 0.57 b | 79.63 ± 1.86 b | 78.01 ± 2.25 c | 72.93 ± 2.22 c |
FA | 82.88 ± 0.83 cd | 81.85 ± 0.96 ab | 81.27 ± 1.34 ab | 79.93 ± 0.62 b | 78.68 ± 0.38 ab | |
PL | 85.14 ± 0.46 ab | 82.97 ± 0.58 a | 81.03 ± 1.07 ab | 80.09 ± 1.14 ab | 77.72 ± 0.12 ab | |
PL-FA | 85.12 ± 0.97 ab | 82.15 ± 0.31 ab | 81.53 ± 0.22 ab | 80.06 ± 0.18 ab | 77.56 ± 1.67 ab | |
PAW | 84.02 ± 0.36 bc | 81.79 ± 2.20 ab | 80.84 ± 1.46 ab | 79.11 ± 0.69 bc | 76.44 ± 0.13 b | |
PAW-FA | 84.57 ± 0.49 ab | 83.66 ± 1.31 a | 82.23 ± 0.25 a | 80.74 ± 0.85 ab | 78.85 ± 1.19 a | |
PAW-PL | 85.58 ± 0.68 a | 84.12 ± 0.03 a | 82.54 ± 1.55 a | 81.97 ± 0.22 a | 79.36 ± 0.85 a | |
PAW + PL-FA | 84.10 ± 0.70 bc | 83.21 ± 2.10 a | 82.01 ± 1.40 ab | 80.70 ± 0.67 ab | 78.01 ± 0.36 ab | |
a* | CK | 3.03 ± 0.17 a | 3.67 ± 0.29 a | 5.12 ± 0.13 a | 7.05 ± 0.08 a | 8.07 ± 0.18 a |
FA | 2.20 ± 0.12 bcd | 2.38 ± 0.72 bc | 3.40 ± 0.26 c | 3.44 ± 0.13 cd | 3.54 ± 0.15 d | |
PL | 1.96 ± 0.35 cde | 2.08 ± 0.12 c | 3.04 ± 0.08 d | 3.69 ± 0.15 bcd | 4.08 ± 0.22 c | |
PL-FA | 2.37 ± 0.17 bc | 2.83 ± 0.20 b | 3.56 ± 0.20 c | 3.78 ± 0.20 bc | 4.45 ± 0.28 b | |
PAW | 2.54 ± 0.33 b | 2.89 ± 0.37 b | 3.92 ± 0.20 b | 4.01 ± 0.09 b | 4.27 ± 0.12 bc | |
PAW-FA | 1.91 ± 0.10 de | 2.00 ± 0.32 c | 2.43 ± 0.09 e | 2.88 ± 0.19 e | 3.43 ± 0.09 d | |
PAW-PL | 1.60 ± 0.26 e | 1.83 ± 0.32 c | 2.98 ± 0.10 d | 3.48 ± 0.32 cd | 3.96 ± 0.22 c | |
PAW + PL-FA | 2.29 ± 0.22 bcd | 2.44 ± 0.28 bc | 3.46 ± 0.22 c | 3.39 ± 0.24 d | 4.27 ± 0.10 bc | |
b* | CK | 8.45 ± 0.39 a | 8.90 ± 0.31 a | 9.28 ± 0.66 a | 10.90 ± 0.16 a | 12.22 ± 0.18 a |
FA | 7.65 ± 0.24 bcd | 8.29 ± 0.46 ab | 8.60 ± 0.51 ab | 9.43 ± 0.65 bc | 10.19 ± 0.04 b | |
PL | 7.65 ± 0.51 bcd | 7.94 ± 1.26 ab | 9.07 ± 0.19 ab | 9.47 ± 0.22 bc | 9.97 ± 0.21 bc | |
PL-FA | 7.97 ± 0.16 abc | 8.41 ± 0.55 ab | 8.89 ± 0.69 ab | 9.70 ± 0.38 b | 10.21 ± 0.71 b | |
PAW | 8.03 ± 0.23 ab | 8.29 ± 0.34 ab | 8.93 ± 0.55 ab | 9.48 ± 0.23 bc | 10.65 ± 0.78 b | |
PAW-FA | 7.44 ± 0.32 cd | 8.12 ± 0.48 ab | 8.54 ± 0.23 ab | 9.22 ± 0.17 bcd | 9.90 ± 0.11 bc | |
PAW-PL | 7.18 ± 0.11 d | 7.59 ± 0.53 b | 8.41 ± 0.55 ab | 8.97 ± 0.31 cd | 8.95 ± 0.72 c | |
PAW + PL-FA | 7.85 ± 0.17 bc | 8.16 ± 0.38 ab | 8.27 ± 0.39 b | 8.61 ± 0.49 d | 9.77 ± 0.47 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhang, T.; Zhao, D.; Gao, S.; Liu, Y.; Yang, X.; Lu, H.; Gao, X. The Combined Antibacterial Mechanism of Ferulic Acid and ε-Polylysine Hydrochloride in Shewanella putrefaciens and the Effect of Their Application on the Storage Quality of Refrigerated Crayfish (Procambarus clarkii) with Plasma-Activated Water. Foods 2025, 14, 1942. https://doi.org/10.3390/foods14111942
Cui Y, Zhang T, Zhao D, Gao S, Liu Y, Yang X, Lu H, Gao X. The Combined Antibacterial Mechanism of Ferulic Acid and ε-Polylysine Hydrochloride in Shewanella putrefaciens and the Effect of Their Application on the Storage Quality of Refrigerated Crayfish (Procambarus clarkii) with Plasma-Activated Water. Foods. 2025; 14(11):1942. https://doi.org/10.3390/foods14111942
Chicago/Turabian StyleCui, Yue, Tengteng Zhang, Dandan Zhao, Sai Gao, Yinchu Liu, Xinyu Yang, Han Lu, and Xiaoguang Gao. 2025. "The Combined Antibacterial Mechanism of Ferulic Acid and ε-Polylysine Hydrochloride in Shewanella putrefaciens and the Effect of Their Application on the Storage Quality of Refrigerated Crayfish (Procambarus clarkii) with Plasma-Activated Water" Foods 14, no. 11: 1942. https://doi.org/10.3390/foods14111942
APA StyleCui, Y., Zhang, T., Zhao, D., Gao, S., Liu, Y., Yang, X., Lu, H., & Gao, X. (2025). The Combined Antibacterial Mechanism of Ferulic Acid and ε-Polylysine Hydrochloride in Shewanella putrefaciens and the Effect of Their Application on the Storage Quality of Refrigerated Crayfish (Procambarus clarkii) with Plasma-Activated Water. Foods, 14(11), 1942. https://doi.org/10.3390/foods14111942