Quantitative Classification and Prediction of Starkrimson Pear Maturity by Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Design
2.3. Data Collection
2.4. Indices for Assessing Maturity
2.5. Data Processing and Modeling
2.5.1. Outlier Removal and Spectral Preprocessing
2.5.2. Spectral Dimensionality Reduction
2.5.3. Quantitative and Classification Model of Starkrimson Pear Maturity
3. Results and Discussion
3.1. Maturity Analysis
3.1.1. VRPI
3.1.2. Statistics of Each Maturity Index
3.2. Spectral Analysis
3.3. Quantitative Analysis
3.4. Qualitative Analysis
3.4.1. Maturity
3.4.2. Classification of Starkrimson Pears with Differences in Maturity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belwal, T.; Huang, H.; Li, L.; Duan, Z.; Zhang, X.; Aalim, H.; Luo, Z. Optimization Model for Ultrasonic-Assisted and Scale-Up Extraction of Anthocyanins from Pyrus Communis ‘Starkrimson’ Fruit Peel. Food Chem. 2019, 297, 124993. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.; Gao, R.; Chen, Y.; Pang, J.; Liu, S.; Linghu, T.; Rui, Z.; Wang, Z.; Xu, L. Exogenous Putrescine and 1-Methylcyclopropene Prevent Soft Scald in ‘Starkrimson’ Pear. Postharvest Biol. Tec. 2022, 193, 112035. [Google Scholar] [CrossRef]
- Song, L.; Wang, Z.; Wang, Z.; Meng, G.; Zhai, R.; Cai, M.; Ma, F.; Xu, L. Screening of Cell Wall-Related Genes that are Expressed Differentially During Ripening of Pears with Different Softening Characteristics. Postharvest Biol. Tec. 2016, 115, 1–8. [Google Scholar] [CrossRef]
- Taniwaki, M.; Hanada, T.; Tohro, M.; Sakurai, N. Non-Destructive Determination of the Optimum Eating Ripeness of Pears and Their Texture Measurements Using Acoustical Vibration Techniques. Postharvest Biol. Tec. 2009, 51, 305–310. [Google Scholar] [CrossRef]
- Huč, A.; Vidrih, R.; Trebar, M. Determination of Pears Ripening Stages Based on Electrochemical Ethylene Sensor. IEEE Sens. J. 2020, 20, 13976–13983. [Google Scholar] [CrossRef]
- Escribano, S.; Lopez, A.; Sivertsen, H.; Biasi, W.V.; Macnish, A.J.; Mitcham, E.J. Impact of 1-Methylcyclopropene Treatment on the Sensory Quality of ‘Bartlett’ Pear Fruit. Postharvest Biol. Tec. 2016, 111, 305–313. [Google Scholar] [CrossRef]
- Dias, C.; Brandão, T.R.S.; Cassoni, C.; Vasconcelos, M.W.; Ferrante, A.; Pintado, M. Firmness Prediction of ‘Rocha’ Pear Based on Non-Destructive Methods and Shelf-Life Using PLS-Regression Modeling. Postharvest Biol. Tec. 2023, 205, 112493. [Google Scholar] [CrossRef]
- Paz, P.; Sánchez, M.-T.; Pérez-Marín, D.; Guerrero, J.E.; Garrido-Varo, A. Instantaneous Quantitative and Qualitative Assessment of Pear Quality Using Near Infrared Spectroscopy. Comput. Electron. Agr. 2009, 69, 24–32. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Chen, Z.; Han, D. Development of Multi-Cultivar Models for Predicting the Soluble Solid Content and Firmness of European Pear (Pyrus Communis L.) Using Portable Vis–Nir Spectroscopy. Postharvest Biol. Tec. 2017, 129, 143–151. [Google Scholar] [CrossRef]
- Liu, J.; Meng, H. Research on the Maturity Detection Method of Korla Pears Based on Hyperspectral Technology. Agriculture 2024, 14, 1257. [Google Scholar] [CrossRef]
- Yu, X.; Lu, H.; Wu, D. Development of Deep Learning Method for Predicting Firmness and Soluble Solid Content of Postharvest Korla Fragrant Pear Using Vis/NIR Hyperspectral Reflectance Imaging. Postharvest Biol. Tec. 2018, 141, 39–49. [Google Scholar] [CrossRef]
- Che, J.; Liang, Q.; Xia, Y.; Liu, Y.; Li, H.; Hu, N.; Cheng, W.; Zhang, H.; Zhang, H.; Lan, H. The Study on Nondestructive Detection Methods for Internal Quality of Korla Fragrant Pears Based on Near-Infrared Spectroscopy and Machine Learning. Foods 2024, 13, 3522. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yang, J.; Hu, D.; Tian, H.; Ying, Y.; Xie, L. Using knowledge-guided temperature correction for online non-destructive detection of soluble solids content in pear via Vis/NIR spectroscopy. Postharvest Biol. Tec. 2024, 218, 113178. [Google Scholar] [CrossRef]
- Shi, Q.; Li, Y.; Zhang, F.; Ma, Q.; Sun, J.; Liu, Y.; Mu, J.; Wang, W.; Tang, Y. Whale optimization algorithm-based multi-task convolutional neural network for predicting quality traits of multi-variety pears using near-infrared spectroscopy. Postharvest Biol. Tec. 2024, 215, 113018. [Google Scholar] [CrossRef]
- Khodabakhshian, R.; Emadi, B. Application of Vis/SNIR Hyperspectral Imaging in Ripeness Classification of Pear. Int. J. Food Prop. 2017, 20, S3149–S3163. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Li, Y.; Wu, M.; Zhu, D. Simultaneous Measurement of Brown Core and Soluble Solids Content in Pear by On-Line Visible and Near Infrared Spectroscopy. Postharvest Biol. Tec. 2016, 116, 80–87. [Google Scholar] [CrossRef]
- Xu, W.; Lin, M.; Huang, Y.; Liu, H.; Zhou, X. Maturity Stage Distinction of Pear Based on Visible/Near Infrared Spectroscopy Technology. J. Phys.: Conf. Ser. 2017, 887, 012030. [Google Scholar] [CrossRef]
- Daniel, M.; Guerra, R.; Brázio, A.; Rodrigues, D.; Cavaco, A.M.; Antunes, M.D.; Valente de Oliveira, J. Feature Discovery in NIR Spectroscopy Based Rocha Pear Classification. Expert Syst. Appl. 2021, 177, 114949. [Google Scholar] [CrossRef]
- Yu, Y.; Yao, M. A Portable NIR System for Nondestructive Assessment of SSC and Firmness of Nanguo Pears. LWT 2022, 167, 113809. [Google Scholar] [CrossRef]
- Gallardo, R.K.; Kupferman, E.; Colonna, A. Willingness to Pay for Optimal ‘Anjou’ Pear Quality. HortScience Horts 2011, 46, 452–456. [Google Scholar] [CrossRef]
- Adebayo, S.E.; Hashim, N.; Hass, R.; Reich, O.; Regen, C.; Münzberg, M.; Abdan, K.; Hanafi, M.; Zude-Sasse, M. Using Absorption and Reduced Scattering Coefficients for Non-Destructive Analyses of Fruit Flesh Firmness and Soluble Solids Content in Pear (Pyrus Communis ‘Conference’)—An Update When Using Diffusion Theory. Postharvest Biol. Tec. 2017, 130, 56–63. [Google Scholar] [CrossRef]
- Lötze, E.; Bergh, O. Evaluating the Streif Index Against Commercial Subjective Predictions to Determine the Harvest Date of Apples in South Africa. South Afr. J. Plant Soil 2012, 29, 53–56. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Chanona-Pérez, J.; Méndez-Méndez, J.V.; Calderón-Domínguez, G.; López-Santiago, R.; Perea-Flores, M.J.; Arzate-Vázquez, I. Evaluation of the Ripening Stages of Apple (Golden Delicious) by Means of Computer Vision System. Biosyst. Eng. 2017, 159, 46–58. [Google Scholar] [CrossRef]
- Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples. Sustainability 2020, 12, 4575. [Google Scholar] [CrossRef]
- Pan, L.; Li, H.; Zhao, J. Improvement of the Prediction of a Visual Apple Ripeness Index under Seasonal Variation by NIR Spectral Model Correction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 302, 123075. [Google Scholar] [CrossRef]
- Munera, S.; Amigo, J.M.; Blasco, J.; Cubero, S.; Talens, P.; Aleixos, N. Ripeness monitoring of two cultivars of nectarine using VIS-NIR hyperspectral reflectance imaging. J. Food Eng. 2017, 214, 29–39. [Google Scholar] [CrossRef]
- Munera, S.; Blasco, J.; Amigo, J.M.; Cubero, S.; Talens, P.; Aleixos, N. Use of Hyperspectral Transmittance Imaging to Evaluate the Internal Quality of Nectarines. Biosyst. Eng. 2019, 182, 54–64. [Google Scholar] [CrossRef]
- Vélez-Rivera, N.; Blasco, J.; Chanona-Pérez, J.; Calderón-Domínguez, G.; de Jesús Perea-Flores, M.; Arzate-Vázquez, I.; Cubero, S.; Farrera-Rebollo, R. Computer Vision System Applied to Classification of “Manila” Mangoes During Ripening Process. Food Bioprocess Tech. 2014, 7, 1183–1194. [Google Scholar] [CrossRef]
- Gupta, A.K.; Medhi, M.; Chakraborty, S.; Yumnam, M.; Mishra, P. Development of Rapid and Non-Destructive Technique for the Determination of Maturity Indices of Pomelo Fruit (Citrus Grandis). J. Food Meas. Charact. 2021, 15, 1463–1474. [Google Scholar] [CrossRef]
- Funsueb, S.; Thanavanich, C.; Theanjumpol, P.; Kittiwachana, S. Development of New Fruit Quality Indices through Aggregation of Fruit Quality Parameters and their Predictions Using Near-Infrared Spectroscopy. Postharvest Biol. Tec. 2023, 204, 112438. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Lin, M.; Liu, H.; Zhou, X. Identification of Maturity of Cuiguan Pear Based on RobustICA and PSO-ELM. J. Phys.: Conf. Ser. 2017, 887, 012096. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-Radenkova, K. Comparison of Three Storage Techniques for Post-Harvest Quality Preservation of Six Commercially Available Cultivars of Apple. Int. J. Fruit Sci. 2018, 18, 268–286. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Tian, H.; Tian, S.; Xu, H. Non-destructive evaluation of the edible rate for pomelo using X-ray imaging method. Food Control 2023, 144, 109358. [Google Scholar] [CrossRef]
- Saquet, A.A.; Almeida, D.P.F. Ripening Physiology and Biochemistry of ‘Rocha’ Pear as Affected by Ethylene Inhibition. Postharvest Biol. Tec. 2017, 125, 161–167. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Gou, G.; Jia, L.; Zhang, Y.; Shen, X.; Cao, R.; Wang, L. A Nondestructive Detection Method for the Muti-Quality Attributes of Oats Using Near-Infrared Spectroscopy. Foods 2024, 13, 3560. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Li, X.; Zhang, D. Non-Destructive Detection of Meat Quality Based on Multiple Spectral Dimension Reduction Methods by Near-Infrared Spectroscopy. Foods 2023, 12, 300. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Jiang, X.; Ge, K.; Liu, Z.; Chen, N.; Ouyang, A.; Liu, Y.; Huang, Y.; Li, J.; Hu, M. Non-destructive online detection of early moldy core apples based on Vis/NIR transmission spectroscopy. Chem. Biol. Technol. Agric. 2024, 11, 63. [Google Scholar] [CrossRef]
- Naseer, A.; Amjad, M.; Raza, A.; Munir, K.; Samee, N.A.; Alohali, M.A. A Novel Transfer Learning Approach for Detection of Pomegranates Growth Stages. IEEE Access 2024, 12, 27073–27087. [Google Scholar] [CrossRef]
- Taner, A.; Mengstu, M.T.; Selvi, K.Ç.; Duran, H.; Gür, İ.; Ungureanu, N. Apple Varieties Classification Using Deep Features and Machine Learning. Agriculture 2024, 14, 252. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, A.; Wei, H.; Yu, L. A novel method for vegetable and fruit classification based on using diffusion maps and machine learning. Curr. Opin. Food Sci. 2024, 8, 100737. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yu, S.-K.; Qi, Z.-P.; Ding, X.-Y.; Wu, X.; Hu, N. Pears classification by identifying internal defects based on X-ray images and neural networks. ADV MANUF 2024. [Google Scholar] [CrossRef]
- Ghazal, S.; Qureshi, W.S.; Khan, U.S.; Iqbal, J.; Rashid, N.; Tiwana, M.I. Analysis of Visual Features and Classifiers for Fruit Classification Problem. Comput. Electron. Agr. 2021, 187, 106267. [Google Scholar] [CrossRef]
- Pissard, A.; Fernández Pierna, J.A.; Baeten, V.; Sinnaeve, G.; Lognay, G.; Mouteau, A.; Dupont, P.; Rondia, A.; Lateur, M. Non-Destructive Measurement of Vitamin C, Total Polyphenol and Sugar Content in Apples Using Near-Infrared Spectroscopy. J. Sci. Food Agric. 2013, 93, 238–244. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, R.; Chen, Y.; Fu, K.; Song, J.; Xie, L.; Zhai, R.; Wang, Z.; Yang, C.; Xu, L. Nondestructive Testing of Pear Based on Fourier Near-Infrared Spectroscopy. Foods 2022, 11, 1076. [Google Scholar] [CrossRef]
Time of Sampling | Maturity Index | |||
---|---|---|---|---|
Streif | RPI | IQI | VRPI | |
90 DAF | 0.57 ± 0.17 | 2.28 ± 0.27 | 8.37 ± 0.16 | 1.59 ± 0.19 |
97 DAF | 0.55 ± 0.19 | 2.22 ± 0.19 | 8.30 ± 0.23 | 1.81 ± 0.24 |
104 DAF | 0.42 ± 0.11 | 2.02 ± 0.20 | 8.08 ± 0.18 | 2.27 ± 0.37 |
111 DAF | 0.41 ± 0.13 | 1.94 ± 0.19 | 8.02 ± 0.25 | 2.63 ± 0.55 |
Ripeness Index | Pretreatment | PLS Factors | Variables | Training Set | Prediction Set | ||
---|---|---|---|---|---|---|---|
Rcv2 | RMSECV | Rp2 | RMSEP | ||||
Streif | SG | 12 | 46 | 0.59 | 0.11 | 0.58 | 0.12 |
RPI | 11 | 40 | 0.66 | 0.15 | 0.63 | 0.19 | |
IQI | 9 | 168 | 0.75 | 0.13 | 0.73 | 0.15 | |
VRPI | 11 | 71 | 0.76 | 0.27 | 0.74 | 0.31 | |
Streif | MSC | 10 | 40 | 0.61 | 0.11 | 0.60 | 0.15 |
RPI | 11 | 54 | 0.71 | 0.14 | 0.69 | 0.19 | |
IQI | 9 | 46 | 0.77 | 0.12 | 0.77 | 0.15 | |
VRPI | 12 | 82 | 0.80 | 0.24 | 0.79 | 0.30 | |
Streif | MSC + 2nd D | 13 | 194 | 0.72 | 0.09 | 0.68 | 0.20 |
RPI | 11 | 168 | 0.71 | 0.14 | 0.70 | 0.21 | |
IQI | 11 | 109 | 0.78 | 0.12 | 0.77 | 0.23 | |
VRPI | 14 | 146 | 0.86 | 0.20 | 0.86 | 0.43 | |
Streif | SNV | 8 | 30 | 0.55 | 0.12 | 0.54 | 0.14 |
RPI | 10 | 54 | 0.69 | 0.14 | 0.66 | 0.19 | |
IQI | 8 | 109 | 0.76 | 0.12 | 0.75 | 0.15 | |
VRPI | 11 | 62 | 0.78 | 0.25 | 0.76 | 0.30 | |
Streif | SNV + 1st D | 9 | 109 | 0.64 | 0.10 | 0.62 | 0.14 |
RPI | 14 | 126 | 0.80 | 0.11 | 0.76 | 0.18 | |
IQI | 9 | 54 | 0.81 | 0.11 | 0.80 | 0.15 | |
VRPI | 15 | 126 | 0.90 | 0.17 | 0.87 | 0.39 |
Date | a* | SSC | TA | Edible Rate | Rot Rate | Post-Ripeness Score |
---|---|---|---|---|---|---|
90 DAF | 0.00 | 0.00 | 0.00 | 0.00 | 0.37 | 0.07 |
97 DAF | 0.38 | 0.76 | 0.00 | 0.71 | 0.33 | 0.44 |
104 DAF | 0.60 | 0.62 | 1.00 | 1.00 | 1.00 | 0.84 |
111 DAF | 1.00 | 1.00 | 1.00 | 0.71 | 0.00 | 0.74 |
Validation | Model | Confusion Matrix | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|---|
Cross-validation | SVM | Predicted | 88.2 | ||||
Actual | O | R | U | ||||
O | 36 | 15 | 0 | ||||
R | 13 | 54 | 0 | ||||
U | 0 | 0 | 120 | ||||
KNN | Predicted | 80.7 | |||||
Actual | O | R | U | ||||
O | 28 | 23 | 0 | ||||
R | 23 | 44 | 0 | ||||
U | 0 | 0 | 120 | ||||
NN | Predicted | 88.7 | |||||
Actual | O | R | U | ||||
O | 39 | 12 | 0 | ||||
R | 15 | 52 | 0 | ||||
U | 0 | 0 | 120 | ||||
NB | Predicted | 80.7 | |||||
Actual | O | R | U | ||||
O | 32 | 19 | 0 | ||||
R | 26 | 41 | 0 | ||||
U | 0 | 1 | 119 | ||||
LDA | Predicted | 84.0 | |||||
Actual | O | R | U | ||||
O | 35 | 16 | 0 | ||||
R | 20 | 46 | 1 | ||||
U | 0 | 1 | 119 | ||||
Test set validation | SVM | Predicted | 84.7 | ||||
Actual | O | R | U | ||||
O | 9 | 3 | 0 | ||||
R | 6 | 10 | 0 | ||||
U | 0 | 0 | 31 | ||||
KNN | Predicted | 84.7 | |||||
Actual | O | R | U | ||||
O | 9 | 3 | 0 | ||||
R | 6 | 10 | 0 | ||||
U | 0 | 0 | 31 | ||||
NN | Predicted | 91.5 | |||||
Actual | O | R | U | ||||
O | 10 | 2 | 0 | ||||
R | 3 | 13 | 0 | ||||
U | 0 | 0 | 31 | ||||
NB | Predicted | 79.7 | |||||
Actual | O | R | U | ||||
O | 7 | 5 | 0 | ||||
R | 7 | 9 | 0 | ||||
U | 0 | 0 | 31 | ||||
LDA | Predicted | 81.4 | |||||
Actual | O | R | U | ||||
O | 6 | 6 | 0 | ||||
R | 4 | 12 | 0 | ||||
U | 0 | 1 | 30 |
Validation | Model | Confusion Matrix | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|---|
Cross-validation | SVM | Predicted | 87.4 | ||||
Actual | O | R | U | ||||
O | 36 | 15 | 0 | ||||
R | 15 | 52 | 0 | ||||
U | 0 | 0 | 120 | ||||
KNN | Predicted | 83.2 | |||||
Actual | O | R | U | ||||
O | 32 | 19 | 0 | ||||
R | 21 | 46 | 0 | ||||
U | 0 | 0 | 120 | ||||
NN | Predicted | 85.3 | |||||
Actual | O | R | U | ||||
O | 34 | 17 | 0 | ||||
R | 16 | 51 | 0 | ||||
U | 1 | 1 | 118 | ||||
NB | Predicted | 79.4 | |||||
Actual | O | R | U | ||||
O | 24 | 27 | 0 | ||||
R | 22 | 45 | 0 | ||||
U | 0 | 0 | 120 | ||||
LDA | Predicted | 81.1 | |||||
Actual | O | R | U | ||||
O | 31 | 20 | 0 | ||||
R | 21 | 45 | 1 | ||||
U | 1 | 2 | 117 | ||||
Test set validation | SVM | Predicted | 89.8 | ||||
Actual | O | R | U | ||||
O | 10 | 3 | 0 | ||||
R | 3 | 13 | 0 | ||||
U | 0 | 0 | 30 | ||||
KNN | Predicted | 86.4 | |||||
Actual | O | R | U | ||||
O | 9 | 4 | 0 | ||||
R | 4 | 12 | 0 | ||||
U | 0 | 0 | 30 | ||||
NN | Predicted | 84.7 | |||||
Actual | O | R | U | ||||
O | 8 | 5 | 0 | ||||
R | 4 | 12 | 0 | ||||
U | 0 | 0 | 30 | ||||
NB | Predicted | 78.0 | |||||
Actual | O | R | U | ||||
O | 5 | 7 | 1 | ||||
R | 3 | 11 | 2 | ||||
U | 0 | 0 | 30 | ||||
LDA | Predicted | 76.3 | |||||
Actual | O | R | U | ||||
O | 4 | 9 | 0 | ||||
R | 5 | 11 | 0 | ||||
U | 0 | 0 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, R.; Qiu, L.; Dong, S.; Xue, Q.; Lu, Z.; Zhai, R.; Wang, Z.; Yang, C.; Xu, L. Quantitative Classification and Prediction of Starkrimson Pear Maturity by Near-Infrared Spectroscopy. Foods 2024, 13, 3761. https://doi.org/10.3390/foods13233761
Lu R, Qiu L, Dong S, Xue Q, Lu Z, Zhai R, Wang Z, Yang C, Xu L. Quantitative Classification and Prediction of Starkrimson Pear Maturity by Near-Infrared Spectroscopy. Foods. 2024; 13(23):3761. https://doi.org/10.3390/foods13233761
Chicago/Turabian StyleLu, Ruitao, Linqian Qiu, Shijia Dong, Qiyang Xue, Zhaohui Lu, Rui Zhai, Zhigang Wang, Chengquan Yang, and Lingfei Xu. 2024. "Quantitative Classification and Prediction of Starkrimson Pear Maturity by Near-Infrared Spectroscopy" Foods 13, no. 23: 3761. https://doi.org/10.3390/foods13233761
APA StyleLu, R., Qiu, L., Dong, S., Xue, Q., Lu, Z., Zhai, R., Wang, Z., Yang, C., & Xu, L. (2024). Quantitative Classification and Prediction of Starkrimson Pear Maturity by Near-Infrared Spectroscopy. Foods, 13(23), 3761. https://doi.org/10.3390/foods13233761