Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support—A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Lignocellulosic Materials
2.3. Elemental Compositions of Lignocellulosic Materials
2.4. Scanning Electron Microscopy (SEM)
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.6. Immobilization of Sustine® 121
2.7. Immobilization of Yarrowia lipolytica Cells on Loofah Sponge
2.8. Analysis of the Optical Density of Yeast Cultures
2.9. Determination of Yeast Cell Dry Weight
2.10. Protein Content
2.11. Hydrolytic Activity
2.12. Synthetic Activity
2.13. Statistical Analysis
3. Results and Discussion
3.1. Application of Lignocellulosic Materials for Immobilization of Sustine® 121
3.2. Immobilization of Y. lipolytica KKP 379 onto Loofah Sponge
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basso, A.; Serban, S. Industrial Applications of Immobilized Enzymes—A Review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Fahim, Y.A.; El-Khawaga, A.M.; Sallam, R.M.; Elsayed, M.A.; Assar, M.F.A. A Review on Lipases: Sources, Assays, Immobilization Techniques on Nanomaterials and Applications. Bionanoscience 2024, 14, 1780–1797. [Google Scholar] [CrossRef]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.-S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef] [PubMed]
- Spasojević, M.; Prodanović, O.; Pantić, N.; Popović, N.; Balaž, A.M.; Prodanović, R. The Enzyme Immobilization: Carriers and Immobilization Methods. J. Eng. Process. Manag. 2020, 11, 89–105. [Google Scholar] [CrossRef]
- Singh, V.; Srivastava, P.; Singh, A.; Singh, D.; Malviya, T. Polysaccharide-silica hybrids: Design and applications. Polym. Rev. 2016, 56, 113–136. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Naturally-Derived Biopolymers: Potential Platforms for Enzyme Immobilization. Int. J. Biol. Macromol. 2019, 130, 462–482. [Google Scholar] [CrossRef]
- Girelli, A.M.; Chiappini, V. Renewable, Sustainable, and Natural Lignocellulosic Carriers for Lipase Immobilization: A Review. J. Biotechnol. 2023, 365, 29–47. [Google Scholar] [CrossRef]
- Girelli, A.M.; Astolfi, M.L.; Scuto, F.R. Agro-Industrial Wastes as Potential Carriers for Enzyme Immobilization: A Review. Chemosphere 2020, 244, 125368. [Google Scholar] [CrossRef]
- Budžaki, S.; Velić, N.; Ostojčić, M.; Stjepanović, M.; Rajs, B.B.; Šereš, Z.; Maravić, N.; Stanojev, J.; Hessel, V.; Strelec, I. Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods 2022, 11, 409. [Google Scholar] [CrossRef]
- Enzymes in Food Technology, 2nd ed.; Whitehurst, R.J.; van Oort, M. (Eds.) Wiley-Blackwell: Chichester, UK, 2009; ISBN 9781405183666. [Google Scholar]
- Jasińska, K.; Zieniuk, B.; Jankiewicz, U.; Fabiszewska, A. Bio-Based Materials versus Synthetic Polymers as a Support in Lipase Immobilization: Impact on Versatile Enzyme Activity. Catalysts 2023, 13, 395. [Google Scholar] [CrossRef]
- Jasińska, K.; Zieniuk, B.; Piasek, A.M.; Wysocki, Ł.; Sobiepanek, A.; Fabiszewska, A. Obtaining a Biodegradable Biocatalyst—Study on Lipase Immobilization on Spent Coffee Grounds as Potential Carriers. Biocatal. Agric. Biotechnol. 2024, 59, 103255. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Chen, X.; Luo, P.; Chen, T. Properties of Luffa fiber reinforced PHBV biodegradable composites. Polymers 2019, 11, 1765. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Su, N.; Zhang, K.; Zhu, S.; Zhao, L.; Fang, F.; Ren, L.; Guo, Y. In-Depth Analysis of the Structure and Properties of Two Varieties of Natural Luffa Sponge Fibers. Materials 2017, 10, 479. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Ismail, A.R.; Baek, K.-H. Lipase Immobilization with Support Materials, Preparation Techniques, and Applications: Present and Future Aspects. Int. J. Biol. Macromol. 2020, 163, 1624–1639. [Google Scholar] [CrossRef]
- Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Rakocevic, M.; Batista, E.R.; Matsunaga, F.T.; Wendling, I.; Marcheafave, G.G.; Bruns, R.E.; Scarminio, I.S.; Ribeiro, R.V. Canopy Architecture and Diurnal CO2 Uptake in Male and Female Clones of Yerba-mate Cultivated in Monoculture and Agroforestry. Ann. Appl. Biol. 2024, 184, 210–225. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, Q.; Zhang, Y.; Cai, Q.; Dang, Y.; Pang, H.; Wu, X. High Efficiency Solar Interfacial Evaporator for Seawater Desalination Based on High Porosity Loofah Sponge Biochar. Sol. Energy 2022, 238, 305–314. [Google Scholar] [CrossRef]
- Girelli, A.M.; Chiappini, V.; Amadoro, P. Immobilization of Lipase on Spent Coffee Grounds by Physical and Covalent Methods: A Comparison Study. Biochem. Eng. J. 2023, 192, 108827. [Google Scholar] [CrossRef]
- Madivala, A.S.; Maddasani, S.; Shettya, R.; Doreswamy, D. Influence of chemical treatments on the physical and mechanical properties of Furcraea foetida fiber for polymer reinforcement applications. J. Nat. Fibers 2022, 20, 2136816. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of Wheat Straw Leads to Structural Changes and Improved Enzymatic Hydrolysis. Sci. Rep. 2018, 8, 1321. [Google Scholar] [CrossRef] [PubMed]
- Rigo, D.; dos Santos, P.N.A.; Fischer, B.; Vendruscolo, M.D.; Fernandes, I.A.; Fricks, A.T.; Dallago, R.M.; Zeni, J. Covalent Immobilization of Lipase in Residual Yerba Mate Stick (Ilex paraguariensis A. St.-Hil.). Biointerface Res. Appl. Chem. 2021, 11, 14564–14579. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M. Loofa (Luffa cylindrica) Sponge: Review of Development of the Biomatrix as a Tool for Biotechnological Applications. Biotechnol. Prog. 2013, 29, 573–600. [Google Scholar] [CrossRef] [PubMed]
- Saudagar, P.S.; Shaligram, N.S.; Rekha, S. Immobilization of Streptomyces clavuligerus on loofah sponge for the production of clavulanic acid. Bioresour. Technol. 2008, 99, 2250–2253. [Google Scholar] [CrossRef]
- Behera, S.; Ray, R.C. Comparison of Luffa cylindrica L. sponge discs and Ca-alginate gel beads as immobilized matrices of Saccharomyces cerevisiae for bio-ethanol production from sugarcane molasses. Afr. J. Biotechnol. 2012, 11, 16172–16176. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Gao, S.; Dong, X.; Xia, J.; Xu, J.; He, A.; Hu, L.; Yan, Y.; Wang, Z. Enhancing the Erythritol Production by Yarrowia lipolytica from Waste Oil Using Loofah Sponge as Oil-in-Water Dispersant. Biochem. Eng. J. 2019, 151, 107302. [Google Scholar] [CrossRef]
- Try, S.; De-Coninck, J.; Voilley, A.; Chunhieng, T.; Waché, Y. Solid State Fermentation for the Production of γ-Decalactones by Yarrowia lipolytica. Process Biochem. 2018, 64, 9–15. [Google Scholar] [CrossRef]
- Try, S.; Voilley, A.; Chunhieng, T.; De-Coninck, J.; Waché, Y. Effect of Elevated Oxygen Concentration on the Yeast Yarrowia lipolytica for the Production of γ-Decalactones in Solid State Fermentation. Fermentation 2023, 9, 532. [Google Scholar] [CrossRef]
- He, Q.; Shi, H.; Gu, H.; Naka, G.; Ding, H.; Li, X.; Zhang, Y.; Hu, B.; Wang, F. Immobilization of Rhizopus oryzae LY6 onto Loofah Sponge as a Whole-Cell Biocatalyst for Biodiesel Production. Bioresources 2015, 11, 850–860. [Google Scholar] [CrossRef]
- Baloch, K.A.; Upaichit, A.; Cheirsilp, B.; Fibriana, F. Enhancing the Production and Immobilization of Cell-bound Lipase from Yeast-like Fungus Magnusiomyces capitatus A4C for Sustainable Biodiesel Production in a Packed Bed Reactor. Biofuel. Bioprod. Biorefin. 2024. [Google Scholar] [CrossRef]
- Wojcieszyńska, D.; Klamka, J.; Marchlewicz, A.; Potocka, I.; Żur-Pińska, J.; Guzik, U. Immobilized Stenotrophomonas maltophilia KB2 in Naproxen Degradation. Molecules 2022, 27, 5795. [Google Scholar] [CrossRef] [PubMed]
- Ferrarezi, A.L.; Hideyuki Kobe Ohe, T.; Borges, J.P.; Brito, R.R.; Siqueira, M.R.; Vendramini, P.H.; Quilles, J.C., Jr.; da Costa Carreira Nunes, C.; Bonilla-Rodriguez, G.O.; Boscolo, M.; et al. Production and Characterization of Lipases and Immobilization of Whole Cell of the Thermophilic Thermomucor indicae seudaticae N31 for Transesterification Reaction. J. Mol. Catal. B Enzym. 2014, 107, 106–113. [Google Scholar] [CrossRef]
- da Graça Nascimento, M.; da Silva, J.M.R.; da Silva, J.C.; Alves, M.M. The Use of Organic Solvents/Ionic Liquids Mixtures in Reactions Catalyzed by Lipase from Burkholderia cepacia Immobilized in Different Supports. J. Mol. Catal. B Enzym. 2015, 112, 1–8. [Google Scholar] [CrossRef]
- Sattari, S.; Vahabzadeh, F.; Aghtaei, H.K. Performance of loofa-immobilized Rhizopus oryzae in the enzymatic production of biodiesel with use of oleic acid in n-hexane medium. Braz. J. Chem. Eng. 2015, 32, 367–376. [Google Scholar] [CrossRef]
Support | Percentage Content (%) | |||
---|---|---|---|---|
Pretreatment * | C | N | S | |
Pea Hull | – | 41.26 ± 0.03 j | 1.25 ± 0.02 c | 0.065 ± 0.008 e |
H | 41.11 ± 0.10 j | 1.20 ± 0.07 cd | 0.062 ± 0.006 e | |
H + EtOH | 41.10 ± 0.02 j | 1.15 ± 0.02 d | 0.064 ± 0.001 e | |
Buckwheat Husk | – | 46.48 ± 0.09 f | 0.58 ± 0.07 e | 0.026 ± 0.001 f |
H | 47.18 ± 0.12 e | 0.59 ± 0.01 e | 0.023 ± 0.006 f | |
H + EtOH | 47.16 ± 0.16 e | 0.60 ± 0.02 e | 0.027 ± 0.001 f | |
Yerba Mate Leaves | – | 49.39 ± 0.10 b | 2.30 ± 0.01 b | 0.104 ± 0.003 d |
B | 50.84 ± 0.01 a | 2.37 ± 0.06 b | 0.128 ± 0.003 c | |
B + H | 48.22 ± 0.09 c | 2.84 ± 0.04 a | 0.163 ± 0.001 a | |
B + H + EtOH | 47.72 ± 0.07 d | 2.76 ± 0.01 a | 0.151 ± 0.001 b | |
Loofah Sponge | – | 44.33 ± 0.11 g | 0.57 ± 0.07 e | 0.023 ± 0.001 f |
Acid | 44.02 ± 0.10 h | 0.38 ± 0.06 f | 0.023 ± 0.007 f | |
Alkaline | 43.26 ± 0.02 i | 0.42 ± 0.12 f | 0.019 ± 0.002 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieniuk, B.; Małajowicz, J.; Jasińska, K.; Wierzchowska, K.; Uğur, Ş.; Fabiszewska, A. Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support—A Comparative Study. Foods 2024, 13, 3759. https://doi.org/10.3390/foods13233759
Zieniuk B, Małajowicz J, Jasińska K, Wierzchowska K, Uğur Ş, Fabiszewska A. Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support—A Comparative Study. Foods. 2024; 13(23):3759. https://doi.org/10.3390/foods13233759
Chicago/Turabian StyleZieniuk, Bartłomiej, Jolanta Małajowicz, Karina Jasińska, Katarzyna Wierzchowska, Şuheda Uğur, and Agata Fabiszewska. 2024. "Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support—A Comparative Study" Foods 13, no. 23: 3759. https://doi.org/10.3390/foods13233759
APA StyleZieniuk, B., Małajowicz, J., Jasińska, K., Wierzchowska, K., Uğur, Ş., & Fabiszewska, A. (2024). Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support—A Comparative Study. Foods, 13(23), 3759. https://doi.org/10.3390/foods13233759