Contemporary Speculations and Insightful Thoughts on Buckwheat—A Functional Pseudocereal as a Smart Biologically Active Supplement
Abstract
:1. Introduction
2. Bioactivity, Bioavailability, and Absorption of Buckwheat
2.1. Phytochemical Profiles of Buckwheat
2.2. Mechanisms of Action of Buckwheat BACs
2.3. AM Activity
2.4. AO Activity of Buckwheat
2.5. Buckwheat BAC Impact on Digestion of Carbohydrates (CHs) and Glucose (GLU) Absorption
3. Creation of Healthier and Functional Food Whose Ingredient Is Buckwheat
4. A Vision of Potential Future Research Using Buckwheat: Creating Healthier/Functional Meat Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Hao, T.; Zhou, Y.; Tang, W.; Xiao, Y.; Meng, X.; Fang, X. Relationships between Antioxidant Compounds and Antioxidant Activities of Tartary Buckwheat during Germination. J. Food Sci. Technol. 2015, 52, 2458–2463. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, L.; Li, Z.; Zhou, Y.; Chen, Y.; Lu, Y. Advance on the Benefits of Bioactive Peptides from Buckwheat. Phytochem. Rev. 2015, 14, 381–388. [Google Scholar] [CrossRef]
- Sofi, S.A.; Ahmed, N.; Farooq, A.; Rafiq, S.; Zargar, S.M.; Kamran, F.; Dar, T.A.; Mir, S.A.; Dar, B.N.; Mousavi Khaneghah, A. Nutritional and Bioactive Characteristics of Buckwheat, and Its Potential for Developing Gluten-free Products: An Updated Overview. Food Sci. Nutr. 2023, 11, 2256–2276. [Google Scholar] [CrossRef]
- Micucci, M.; Bolchi, C.; Budriesi, R.; Cevenini, M.; Maroni, L.; Capozza, S.; Chiarini, A.; Pallavicini, M.; Angeletti, A. Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. Phytochemistry 2020, 170, 112222. [Google Scholar] [CrossRef]
- Vieites-Álvarez, Y.; Reigosa, M.J.; Sánchez-Moreiras, A.M. A Decade of Advances in the Study of Buckwheat for Organic Farming and Agroecology (2013–2023). Front. Plant Sci. 2024, 15, 1354672. [Google Scholar] [CrossRef]
- Vombergar, B.; Škrabanja, V.; Germ, M. Flavonoid Concentration in Milling Fractions of Tartary and Common Buckwheat. Fagopyrum 2020, 37, 11–21. [Google Scholar] [CrossRef]
- Vombergar, B.; Tašner, L.; Horvat, M.; Vorih, S.; Pem, N.; Golob, S.; Kovač, T. Buckwheat—Challenges in Nutrition and Technology/Ajda–Izzivi v Tehnologiji in Prehrani. Fagopyrum 2022, 39, 33–42. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Satoh, R.; Jensen-Jarolim, E.; Teshima, R. Understanding Buckwheat Allergies for the Management of Allergic Reactions in Humans and Animals. Breed. Sci. 2020, 70, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wu, D.; Ren, G.; Hu, Y.; Peng, L.; Zhao, J.; Garcia-Perez, P.; Carpena, M.; Prieto, M.A.; Cao, H.; et al. Bioactive Compounds, Health Benefits, and Industrial Applications of Tartary Buckwheat (Fagopyrum tataricum). Crit. Rev. Food Sci. Nutr. 2023, 63, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, S.; She, X.; Zhou, X. Study on the Reduction of Tartary Buckwheat Allergenicity during Pediococcus Pentosaceus Fermentation by HPLC-MS/MS Analysis. Food Chem. X 2023, 19, 100773. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Paudel, K.R.; Shukla, S.D.; Shastri, M.D.; Satija, S.; Singh, S.K.; Gulati, M.; Dureja, H.; Zacconi, F.C.; Hansbro, P.M.; et al. Rutin-Loaded Liquid Crystalline Nanoparticles Attenuate Oxidative Stress in Bronchial Epithelial Cells: A PCR Validation. Future Med. Chem. 2021, 13, 543–549. [Google Scholar] [CrossRef]
- Gęgotek, A.; Ambrożewicz, E.; Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Rutin and Ascorbic Acid Cooperation in Antioxidant and Antiapoptotic Effect on Human Skin Keratinocytes and Fibroblasts Exposed to UVA and UVB Radiation. Arch. Dermatol. Res. 2019, 311, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [PubMed]
- Sghaier, M.; Pagano, A.; Mousslim, M.; Ammari, Y.; Kovacic, H.; Luis, J. Rutin Inhibits Proliferation, Attenuates Superoxide Production and Decreases Adhesion and Migration of Human Cancerous Cells. Biomed. Pharmacother. 2016, 84, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Hayek, S.A.; Gyawali, R.; Ibrahim, S.A. Antimicrobial Natural Products. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Centre: Badajoz, Spain, 2013; Volume 1, pp. 910–921. [Google Scholar]
- Huda, M.N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M.I.; Park, S.U.; Zhou, M. Treasure from Garden: Bioactive Compounds of Buckwheat. Food Chem. 2021, 335, 127653. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Chemical Composition and Health Effects of Tartary Buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Wang, Q.; Shan, F.; Hou, Z.; Ren, G. Nutritional Composition and Flavonoids Content of Flour from Different Buckwheat Cultivars. Int. J. Food Sci. Technol. 2010, 45, 951–958. [Google Scholar] [CrossRef]
- Borovaya, S.A.; Klykov, A.G. Some Aspects of Flavonoid Biosynthesis and Accumulation in Buckwheat Plants. Plant Biotechnol. Rep. 2020, 14, 213–225. [Google Scholar] [CrossRef]
- Matsui, K.; Walker, A.R. Biosynthesis and Regulation of Flavonoids in Buckwheat. Breed. Sci. 2020, 70, 74–84. [Google Scholar] [CrossRef]
- Zhong, L.; Lin, Y.; Wang, C.; Niu, B.; Xu, Y.; Zhao, G.; Zhao, J. Chemical Profile, Antimicrobial and Antioxidant Activity Assessment of the Crude Extract and Its Main Flavonoids from Tartary Buckwheat Sprouts. Molecules 2022, 27, 374. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Raza, N.; Islam, M.; Imran, M.; Ahmad, I.; Meyyazhagan, A.; Pushparaj, K.; Balasubramanian, B.; Park, S.; Rengasamy, K.R.R.; et al. The Nutraceutical Properties and Health Benefits of Pseudocereals: A Comprehensive Treatise. Crit. Rev. Food Sci. Nutr. 2023, 63, 10217–10229. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Biel, W.; Smetanska, I.; Brestic, M. Bioactive Compounds and Their Biofunctional Properties of Different Buckwheat Germplasms for Food Processing. In Buckwheat Germplasm in the World; Elsevier: Amsterdam, The Netherlands, 2018; pp. 191–204. ISBN 9780128110065. [Google Scholar]
- Kreft, I.; Germ, M.; Golob, A.; Vombergar, B.; Bonafaccia, F.; Luthar, Z. Impact of Rutin and Other Phenolic Substances on the Digestibility of Buckwheat Grain Metabolites. Int. J. Mol. Sci. 2022, 23, 3923. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, M.; Minami, Y.; Watanabe, K.; Tadera, K. Purification, Characterization, and Sequencing of a Novel Type of Antimicrobial Peptides, Fa -AMP1 and Fa -AMP2, from Seeds of Buckwheat (Fagopyrum esculentum Moench.). Biosci. Biotechnol. Biochem. 2003, 67, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.-J.; Chen, H.; Shao, J.-R.; Wu, Q.; Han, X.-Y. An Antifungal Peptide from Fagopyrum Tataricum Seeds. Peptides 2011, 32, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Semaming, Y.; Kumfu, S.; Pannangpetch, P.; Chattipakorn, S.C.; Chattipakorn, N. Protocatechuic Acid Exerts a Cardioprotective Effect in Type 1 Diabetic Rats. J. Endocrinol. 2014, 223, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Nasri, M. Protein Hydrolysates and Biopeptides. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 81, pp. 109–159. ISBN 9780128119167. [Google Scholar]
- Galanakis, C.M. Phenols Recovered from Olive Mill Wastewater as Additives in Meat Products. Trends Food Sci. Technol. 2018, 79, 98–105. [Google Scholar] [CrossRef]
- Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and Metabolic Syndrome: A Review. Phytother. Res. 2021, 35, 5352–5364. [Google Scholar] [CrossRef] [PubMed]
- Bai-Ngew, S.; Chuensun, T.; Wangtueai, S.; Phongthai, S.; Jantanasakulwong, K.; Rachtanapun, P.; Sakdatorn, V.; Klunklin, W.; Regenstein, J.M.; Phimolsiripol, Y. Antimicrobial Activity of a Crude Peptide Extract from Lablab Bean (Dolichos lablab) for Semi-Dried Rice Noodles Shelf-Life. Qual. Assur. Saf. Crop 2021, 13, 25–33. [Google Scholar] [CrossRef]
- Mondal, S.; Soumya, N.P.P.; Mini, S.; Sivan, S.K. Bioactive Compounds in Functional Food and Their Role as Therapeutics. Bioact. Compd. Health Dis. 2021, 4, 24. [Google Scholar] [CrossRef]
- Alnour, T.M.S.; Ahmed-Abakur, E.H.; Elssaig, E.H.; Abuduhier, F.M.; Ullah, M.F. Antimicrobial Synergistic Effects of Dietary Flavonoids Rutin and Quercetin in Combination with Antibiotics Gentamicin and Ceftriaxone against E. coli (MDR) and P. mirabilis (XDR) Strains Isolated from Human Infections: Implications for Food–Medicine Interactions. Ital. J. Food Sci. 2022, 34, 34–42. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef] [PubMed]
- Spagnol, C.M.; Assis, R.P.; Brunetti, I.L.; Isaac, V.L.B.; Salgado, H.R.N.; Corrêa, M.A. In Vitro Methods to Determine the Antioxidant Activity of Caffeic Acid. Spectrochim. Acta A 2019, 219, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Possamai Rossatto, F.C.; Tharmalingam, N.; Escobar, I.E.; d’Azevedo, P.A.; Zimmer, K.R.; Mylonakis, E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida Auris. J. Fungi 2021, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Moschovou, K.; Antoniou, M.; Chontzopoulou, E.; Papavasileiou, K.D.; Melagraki, G.; Afantitis, A.; Mavromoustakos, T. Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein. Int. J. Mol. Sci. 2023, 24, 15894. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Y.; Peng, C.-C.; Yang, Y.-L.; Peng, R.Y. Optimization of Bioactive Compounds in Buckwheat Sprouts and Their Effect on Blood Cholesterol in Hamsters. J. Agric. Food Chem. 2008, 56, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Lee, H.-J.; Kim, Y.-S.; Ahn, C.-B.; Shim, S.-Y.; Chun, S.-S. Quality Characteristics of Sponge Cake with Omija Powder. J. Korean Soc. Food Sci. Nutr. 2012, 41, 233–238. [Google Scholar] [CrossRef]
- Stokić, E.; Mandić, A.; Sakač, M.; Mišan, A.; Pestorić, M.; Šimurina, O.; Jambrec, D.; Jovanov, P.; Nedeljković, N.; Milovanović, I.; et al. Quality of Buckwheat-Enriched Wheat Bread and Its Antihyperlipidemic Effect in Statin Treated Patients. LWT-Food Sci. Technol. 2015, 63, 556–561. [Google Scholar] [CrossRef]
- Lukšič, L.; Árvay, J.; Vollmannová, A.; Tóth, T.; Škrabanja, V.; Trček, J.; Germ, M.; Kreft, I. Hydrothermal Treatment of Tartary Buckwheat Grain Hinders the Transformation of Rutin to Quercetin. J. Cereal Sci. 2016, 72, 131–134. [Google Scholar] [CrossRef]
- Kočevar Glavač, N.; Stojilkovski, K.; Kreft, S.; Park, C.H.; Kreft, I. Determination of Fagopyrins, Rutin, and Quercetin in Tartary Buckwheat Products. LWT-Food Sci. Technol. 2017, 79, 423–427. [Google Scholar] [CrossRef]
- Ge, R.H.; Wang, H. Nutrient Components and Bioactive Compounds in Tartary Buckwheat Bran and Flour as Affected by Thermal Processing. Int. J. Food Prop. 2020, 23, 127–137. [Google Scholar] [CrossRef]
- Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The Role of Quercetin in Plants. Plant Physiol. Biochem. 2021, 166, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ikari, S.; Yang, Q.; Lu, S.-L.; Liu, Y.; Hao, F.; Tong, G.; Lu, S.; Noda, T. Quercetin in Tartary Buckwheat Induces Autophagy against Protein Aggregations. Antioxidants 2021, 10, 1217. [Google Scholar] [CrossRef] [PubMed]
- Anand David, A.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Georgiou, N.; Kakava, M.G.; Routsi, E.A.; Petsas, E.; Stavridis, N.; Freris, C.; Zoupanou, N.; Moschovou, K.; Kiriakidi, S.; Mavromoustakos, T. Quercetin: A Potential Polydynamic Drug. Molecules 2023, 28, 8141. [Google Scholar] [CrossRef]
- Jihwaprani, M.C.; Rizky, W.C.; Mushtaq, M. Pharmacokinetics of Quercetin; IntechOpen: Rijeka, Croatia, 2023; ISBN 9780854665266. [Google Scholar]
- Sato, S.; Numata, Y. Simultaneous Quantitative Analysis of Quercetin and Rutin in Tartary Buckwheat Flour by Raman Spectroscopy and Partial Least Square Regression. J. Food Compos. Anal. 2024, 128, 105991. [Google Scholar] [CrossRef]
- Maroto, J.Á.M. Synergic Polyphenol Combination ES2391211B1. Available online: https://patents.google.com/patent/ES2391211B1/en (accessed on 4 May 2024).
- Li, F.; Zhang, X.; Li, Y.; Lu, K.; Yin, R.; Ming, J. Phenolics Extracted from Tartary (Fagopyrum tartaricum L. Gaerth) Buckwheat Bran Exhibit Antioxidant Activity, and an Antiproliferative Effect on Human Breast Cancer MDA-MB-231 Cells through the P38/MAP Kinase Pathway. Food Funct. 2017, 8, 177–188. [Google Scholar] [CrossRef]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; et al. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. BioMed Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef]
- Kalinová, J.P.; Vrchotová, N.; Tříska, J. Phenolics Levels in Different Parts of Common Buckwheat (Fagopyrum esculentum) Achenes. J. Cereal Sci. 2019, 85, 243–248. [Google Scholar] [CrossRef]
- Sujka, K.; Cacak-Pietrzak, G.; Sułek, A.; Murgrabia, K.; Dziki, D. Buckwheat Hull-Enriched Pasta: Physicochemical and Sensory Properties. Molecules 2022, 27, 4065. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Zhou, Y.; Yan, J.; Zhou, M.; Woo, S.-H.; Weng, W.; Cheng, J.; Zhang, K. Tartary Buckwheat: An Under-Utilized Edible and Medicinal Herb for Food and Nutritional Security. Food Rev. Int. 2022, 38, 440–454. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Domínguez, F.; García-Carrancá, A. Rutin Exerts Antitumor Effects on Nude Mice Bearing SW480 Tumor. Arch. Med. Res. 2013, 44, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Ren, K.; Dong, H.; Song, F.; Chen, J.; Guo, Y.; Liu, Y.; Tao, W.; Zhang, Y. Flavonoids from Persimmon (Diospyros kaki L.) Leaves Inhibit Proliferation and Induce Apoptosis in PC-3 Cells by Activation of Oxidative Stress and Mitochondrial Apoptosis. Chem.-Biol. Interact. 2017, 275, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, H.; Yang, X.; Zhao, H.; Zhu, Y. Evaluation of antiproliferative activities of rutin on human colon cancer LoVo cells and breast cancer MCF-7 cells. Anal. Quant. Cytopathol. Histopathol. 2017, 39, 99–107. [Google Scholar]
- Caparica, R.; Júlio, A.; Araújo, M.E.M.; Baby, A.R.; Fonte, P.; Costa, J.G.; Santos De Almeida, T. Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells. Biomolecules 2020, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Imani, A.; Maleki, N.; Bohlouli, S.; Kouhsoltani, M.; Sharifi, S.; Maleki Dizaj, S. Molecular Mechanisms of Anticancer Effect of Rutin. Phytother. Res. 2021, 35, 2500–2513. [Google Scholar] [CrossRef]
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; et al. Potential Mechanisms of Quercetin in Cancer Prevention: Focus on Cellular and Molecular Targets. Cancer Cell Int. 2022, 22, 257. [Google Scholar] [CrossRef] [PubMed]
- Kreft, I.; Golob, A.; Vombergar, B.; Germ, M. Tartary Buckwheat Grain as a Source of Bioactive Compounds in Husked Groats. Plants 2023, 12, 1122. [Google Scholar] [CrossRef]
- Lee, C.-C.; Shen, S.-R.; Lai, Y.-J.; Wu, S.-C. Rutin and Quercetin, Bioactive Compounds from Tartary Buckwheat, Prevent Liver Inflammatory Injury. Food Funct. 2013, 4, 794. [Google Scholar] [CrossRef] [PubMed]
- Su-Que, L.; Ya-Ning, M.; Xing-Pu, L.; Ye-Lun, Z.; Guang-Yao, S.; Hui-Juan, M. Effect of Consumption of Micronutrient Enriched Wheat Steamed Bread on Postprandial Plasma Glucose in Healthy and Type 2 Diabetic Subjects. Nutr. J. 2013, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Rezabakhsh, A.; Rahbarghazi, R.; Malekinejad, H.; Fathi, F.; Montaseri, A.; Garjani, A. Quercetin Alleviates High Glucose-Induced Damage on Human Umbilical Vein Endothelial Cells by Promoting Autophagy. Phytomedicine 2019, 56, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Ragheb, S.R.; El Wakeel, L.M.; Nasr, M.S.; Sabri, N.A. Impact of Rutin and Vitamin C Combination on Oxidative Stress and Glycemic Control in Patients with Type 2 Diabetes. Clin. Nutr. ESPEN 2020, 35, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Ohkawara, T.; Sato, Y.; Satoh, H.; Suzuki, T.; Ishiguro, K.; Noda, T.; Morishita, T.; Nishihira, J. Effectiveness of Rutin-Rich Tartary Buckwheat (Fagopyrum Tataricum Gaertn.) ‘Manten-Kirari’ in Body Weight Reduction Related to Its Antioxidant Properties: A Randomised, Double-Blind, Placebo-Controlled Study. J. Funct. Foods 2016, 26, 460–469. [Google Scholar] [CrossRef]
- Tomotake, H.; Yamamoto, N.; Kitabayashi, H.; Kawakami, A.; Kayashita, J.; Ohinata, H.; Karasawa, H.; Kato, N. Preparation of Tartary Buckwheat Protein Product and Its Improving Effect on Cholesterol Metabolism in Rats and Mice Fed Cholesterol-Enriched Diet. J. Food Sci. 2007, 72, S528–S533. [Google Scholar] [CrossRef] [PubMed]
- Wieslander, G.; Fabjan, N.; Vogrincic, M.; Kreft, I.; Janson, C.; Spetz-Nyström, U.; Vombergar, B.; Tagesson, C.; Leanderson, P.; Norbäck, D. Eating Buckwheat Cookies Is Associated with the Reduction in Serum Levels of Myeloperoxidase and Cholesterol: A Double Blind Crossover Study in Day-Care Centre Staffs. Tohoku J. Exp. Med. 2011, 225, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef] [PubMed]
- Vogrinčič, M.; Kreft, I.; Filipič, M.; Žegura, B. Antigenotoxic Effect of Tartary (Fagopyrum tataricum) and Common (Fagopyrum esculentum) Buckwheat Flour. J. Med. Food 2013, 16, 944–952. [Google Scholar] [CrossRef]
- Kato, M.; Ochiai, R.; Kozuma, K.; Sato, H.; Katsuragi, Y. Effect of Chlorogenic Acid Intake on Cognitive Function in the Elderly: A Pilot Study. Evid.-Based Complement. Altern. Med. 2018, 2018, 8608497. [Google Scholar] [CrossRef]
- Rocchetti, G.; Lucini, L.; Rodriguez, J.M.L.; Barba, F.J.; Giuberti, G. Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties. Food Chem. 2019, 271, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-H.; Peng, J.; Zhen, D.-W.; Chen, Z. Physicochemical and Antioxidant Properties of Buckwheat (Fagopyrum esculentum Moench) Protein Hydrolysates. Food Chem. 2009, 115, 672–678. [Google Scholar] [CrossRef]
- Zhu, F. Buckwheat Proteins and Peptides: Biological Functions and Food Applications. Trends Food Sci. Technol. 2021, 110, 155–167. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.-R.; Gao, J.-M.; Parry, J.W.; Wei, Y.-M. Antioxidant Activity of Tartary Buckwheat Bran Extract and Its Effect on the Lipid Profile of Hyperlipidemic Rats. J. Agric. Food Chem. 2009, 57, 5106–5112. [Google Scholar] [CrossRef] [PubMed]
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Domínguez Díaz, L.; Fernández-Ruiz, V.; Cámara, M. An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Foods 2020, 68, 103896. [Google Scholar] [CrossRef]
- Hur, S.-J.; Park, S.-J.; Jeong, C.-H. Effect of Buckwheat Extract on the Antioxidant Activity of Lipid in Mouse Brain and Its Structural Change during in Vitro Human Digestion. J. Agric. Food Chem. 2011, 59, 10699–10704. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Duan, S.; Jia, H.; Bai, C.; Zhang, L.; Wang, Z. Flavonoids from Tartary Buckwheat Induce G2/M Cell Cycle Arrest and Apoptosis in Human Hepatoma HepG2 Cells. Acta Biochim. Biophys. Sin. 2014, 46, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhu, Y. Extraction of Flavonoids from Flavonoid-Rich Parts in Tartary Buckwheat and Identification of the Main Flavonoids. J. Food Eng. 2007, 78, 584–587. [Google Scholar] [CrossRef]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef]
- Mitra, S.; Tareq, A.M.; Das, R.; Emran, T.B.; Nainu, F.; Chakraborty, A.J.; Ahmad, I.; Tallei, T.E.; Idris, A.M.; Simal-Gandara, J. Polyphenols: A First Evidence in the Synergism and Bioactivities. Food Rev. Int. 2023, 39, 4419–4441. [Google Scholar] [CrossRef]
- Pezzani, R.; Salehi, B.; Vitalini, S.; Iriti, M.; Zuñiga, F.; Sharifi-Rad, J.; Martorell, M.; Martins, N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina 2019, 55, 110. [Google Scholar] [CrossRef]
- Borgonovi, S.M.; Iametti, S.; Speranza, A.R.; Di Nunzio, M. Cell Culture Models for Assessing the Effects of Bioactive Compounds in Common Buckwheat (Fagopyrum esculentum): A Systematic Review. Food Funct. 2024, 15, 2799–2813. [Google Scholar] [CrossRef]
- Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical Trials of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Caro, G.; Clifford, M.N.; Polyviou, T.; Ludwig, I.A.; Alfheeaid, H.; Moreno-Rojas, J.M.; Garcia, A.L.; Malkova, D.; Crozier, A. Plasma Pharmacokinetics of (Poly)Phenol Metabolites and Catabolites after Ingestion of Orange Juice by Endurance Trained Men. Free Radic. Biol. Med. 2020, 160, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Marinangeli, C.P.; Harding, S.V.; Glenn, A.J.; Chiavaroli, L.; Zurbau, A.; Jenkins, D.J.; Kendall, C.W.; Miller, K.B.; Sievenpiper, J.L. Destigmatizing Carbohydrate with Food Labeling: The Use of Non-Mandatory Labelling to Highlight Quality Carbohydrate Foods. Nutrients 2020, 12, 1725. [Google Scholar] [CrossRef]
- Qin, P.; Wu, L.; Yao, Y.; Ren, G. Changes in Phytochemical Compositions, Antioxidant and α-Glucosidase Inhibitory Activities during the Processing of Tartary Buckwheat Tea. Food Res. Int. 2013, 50, 562–567. [Google Scholar] [CrossRef]
- Lukšič, L.; Bonafaccia, G.; Timoracka, M.; Vollmannova, A.; Trček, J.; Nyambe, T.K.; Melini, V.; Acquistucci, R.; Germ, M.; Kreft, I. Rutin and Quercetin Transformation during Preparation of Buckwheat Sourdough Bread. J. Cereal Sci. 2016, 69, 71–76. [Google Scholar] [CrossRef]
- Kreft, M. Buckwheat Phenolic Metabolites in Health and Disease. Nutr. Res. Rev. 2016, 29, 30–39. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of Extrusion Technology in Plant Food Processing Byproducts: An Overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Costantini, L.; Lukšič, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of Gluten-Free Bread Using Tartary Buckwheat and Chia Flour Rich in Flavonoids and Omega-3 Fatty Acids as Ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and Technological Properties of the Flour and Bran from Common and Tartary Buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Jambrec, D.; Sakac, M.; Jovanov, P.; Misan, A.; Pestoric, M.; Tomovic, V.; Mandic, A. Effect of Processing and Cooking on Mineral and Phytic Acid Content of Buckwheat-Enriched Tagliatelle. Chem. Ind. Chem. Eng. Q. 2016, 22, 319–326. [Google Scholar] [CrossRef]
- Starowicz, M.; Koutsidis, G.; Zieliński, H. Sensory Analysis and Aroma Compounds of Buckwheat Containing Products—A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1767–1779. [Google Scholar] [CrossRef] [PubMed]
- Kurćubić, V.; Stajić, S.; Miletić, N.; Stanišić, N. Healthier Meat Products Are Fashionable—Consumers Love Fashion. Appl. Sci. 2022, 12, 10129. [Google Scholar] [CrossRef]
- WHO. World Health Organisation—International Agency for Research on Cancer (IARC). Monographs Evaluate Consumption of Red Meat and Processed Meat. 2015. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr240_E.pdf (accessed on 6 May 2024).
- Moreira, M.N.B.; da Veiga, C.P.; da Veiga, C.R.P.; Reis, G.G.; Pascuci, L.M. Reducing meat consumption: Insights from a bibliometric analysis and future scopes. Future Foods 2022, 5, 100120. [Google Scholar] [CrossRef]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B.; et al. Health effects associated with consumption of unprocessed red meat: A Burden of Proof study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Bedale, W.A.; Milkowski, A.L.; Czuprynski, C.J.; Richards, M.P. Mechanistic Development of Cancers Associated with Processed Meat Products: A Review. MMB 2023, 7, 15762. [Google Scholar] [CrossRef]
- Kurćubić, V.S.; Mašković, P.Z.; Vujić, J.M.; Vranić, D.V.; Vesković-Moračanin, S.M.; Okanović, Đ.G.; Lilić, S.V. Antioxidant and Antimicrobial Activity of Kitaibelia Vitifolia Extract as Alternative to the Added Nitrite in Fermented Dry Sausage. Meat Sci. 2014, 97, 459–467. [Google Scholar] [CrossRef]
- Kurćubić, V.S.; Mašković, P.Z.; Dragica, K.; Vesković-Moračanin, S.M.; Okanović, Đ.G.; Lilić, S.V.; Džinić, N.P. Sensory properties of sausage fortified by Kitaibelia vitifolia extract. Agro Food Ind. Hi-Tech 2014, 25, 16–19. [Google Scholar]
- Kurćubić, V.; Stajić, S.; Dmitrić, M.; Miletić, N. Food safety assessment of burger patties with added herbal plant material—The microbial status of Wild Garlic and Wild Garlic extracts as ingredients in burger patties. Fleischwirtschaft 2022, 102, 73–78. [Google Scholar]
- Kurćubić, V.S.; Stajić, S.B.; Miletić, N.M.; Petković, M.M.; Dmitrić, M.P.; Đurović, V.M.; Heinz, V.; Tomasevic, I.B. Techno-Functional Properties of Burgers Fortified by Wild Garlic Extract: A Reconsideration. Foods 2023, 12, 2100. [Google Scholar] [CrossRef] [PubMed]
- Kurćubić, V.S.; Raketić, S.V.; Mašković, J.M.; Mašković, P.Z.; Kurćubić, L.V.; Heinz, V.; Tomasevic, I.B. Evaluation of Antimicrobial Activity of Kitaibelia Vitifolia Extract against Proven Antibiotic-Susceptible and Multidrug-Resistant (MDR) Strains of Bacteria of Clinical Origin. Plants 2023, 12, 3236. [Google Scholar] [CrossRef] [PubMed]
- Micovic, N.; Suvajdzic, B.D.; Stajkovic, S.S.; Karabasil, N.R.; Dimitrijevic, M.R.; Vasilev, D.; Kurcubic, V.S.; Miletic, N.M.; Tomovic, V.M. Antioxidant potential of herbs and spices in nitrite-reduced frankfurter sausages. Fleischwirtschaft 2021, 101, 97–104. [Google Scholar]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of Natural Extracts on the Shelf Life of Modified Atmosphere-Packaged Pork Patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Stajić, S.; Živković, D.; Tomović, V.; Nedović, V.; Perunović, M.; Kovjanić, N.; Lević, S.; Stanišić, N. The Utilisation of Grapeseed Oil in Improving the Quality of Dry Fermented Sausages. Int. J. Food Sci. Technol. 2014, 49, 2356–2363. [Google Scholar] [CrossRef]
- Stajić, S.; Vasilev, D. Encapsulation of meat product ingredients and influence on product quality. In Encapsulation in Food Processing and Fermentation, 1st ed.; Lević, S., Nedović, V., Bugarski, B., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Stajić, S.; Tomasevic, I.; Tomović, V.; Stanišić, N. Dietary fibre as phosphate replacement in all-beef model system emulsions with reduced content of sodium chloride. J. Food Nutr. Res. 2022, 61, 277–285. [Google Scholar]
- Stajić, S.; Pisinov, B.; Tomasevic, I.; Djekic, I.; Čolović, D.; Ivanović, S.; Živković, D. Use of Culled Goat Meat in Frankfurter Production–Effect on Sensory Quality and Technological Properties. Int. J. Food Sci. Technol. 2020, 55, 1032–1045. [Google Scholar] [CrossRef]
- Stajić, S.; Kalušević, A.; Tomasevic, I.; Rabrenović, B.; Božić, A.; Radović, P.; Nedović, V.; Živković, D. Technological Properties of Model System Beef Emulsions with Encapsulated Pumpkin Seed Oil and Shell Powder. Pol. J. Food Nutr. Sci. 2020, 70, 159–168. [Google Scholar] [CrossRef]
- ISO 2918:1975; Meat and Meat Products: Determination of Nitrite Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 1975.
- Tomasevic, I.; Tomovic, V.; Milovanovic, B.; Lorenzo, J.; Đorđević, V.; Karabasil, N.; Djekic, I. Comparison of a Computer Vision System vs. Traditional Colorimeter for Color Evaluation of Meat Products with Various Physical Properties. Meat Sci. 2019, 148, 5–12. [Google Scholar] [CrossRef]
- Stajić, S.; Stanišić, N.; Lević, S.; Tomović, V.; Lilić, S.; Vranić, D.; Jokanović, M.; Živković, D. Physico-Chemical Characteristics and Sensory Quality of Dry Fermented Sausages with Flaxseed Oil Preparations. Pol. J. Food Nutr. Sci. 2018, 68, 367–375. [Google Scholar] [CrossRef]
- Pisinov, B.; Kurćubić, V.; Stajić, S. Nutritional and sensory properties of frankfurters made of culled goat meat. Fleischwirtschaft 2021, 101, 90–96. [Google Scholar]
- Djekic, I.; Ilic, J.; Guiné, R.P.F.; Tomasevic, I. Can We Understand Food Oral Processing Using Kano Model? Case Study with Confectionery Products. J. Texture Stud. 2020, 51, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, B.L.; Boom, R.M.; Van Der Goot, A.J. Structuring Processes for Meat Analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Bohrer, B.M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Sci. Hum. Well. 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Ahmad, M.; Qureshi, S.; Akbar, M.H.; Siddiqui, S.A.; Gani, A.; Mushtaq, M.; Hassan, I.; Dhull, S.B. Plant-Based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Appl. Food Res. 2022, 2, 100154. [Google Scholar] [CrossRef]
Compounds (%) | Average | Cultivars | |
---|---|---|---|
Common buckwheat | Tartary buckwheat | ||
Protein | 13.07 | 12.30 | 13.15 |
Carbohydrates (CH) | 56.00 | 5450 | 57.40 |
Lipid | 2.52 | 3.80 | 3.84 |
Dietary fibre | 11.94 | 7.00 | 10.60 |
Ash | 1.67 | 2.00 | 2.70 |
Other compounds (soluble CH, phenolic compounds, organic acid, nucleotides) | 14.80 | 18.40 | 10.53 |
Country | Year | Area Harvested (ha) | Yield (t/ha) | Production (t) |
---|---|---|---|---|
World | 2,088,527 | 1.16 | 2,268,191 | |
Russia | 2020 | 821,366 | 1.09 | 892,160 |
China, mainland | 2020 | 624,780 | 0.81 | 503,988 |
France | 2017 | 74,883 | 3.52 | 263,485 |
Poland | 2027 | 78,027 | 1.45 | 113,113 |
Ukraine | 2020 | 84,100 | 1.16 | 97,640 |
USA | 2020 | 81,620 | 1.06 | 86,397 |
Brazil | 2020 | 46,416 | 1.40 | 65,117 |
Lithuania | 2017 | 48,499 | 1.10 | 53,221 |
Japan | 2020 | 66,600 | 0.67 | 44,800 |
Kazakhstan | 2020 | 55,076 | 0.73 | 40,094 |
Belarus | 2020 | 27,354 | 1.03 | 28,300 |
United Republic of Tanzania | 2020 | 24,295 | 1.06 | 25,772 |
Latvia | 2017 | 18,300 | 0.93 | 17,100 |
Nepal | 2020 | 10,369 | 1.13 | 11,724 |
Canada | 2020 | 9800 | 0.91 | 8900 |
Estonia | 2017 | 5278 | 0.64 | 3385 |
Slovenia | 2017 | 3647 | 0.80 | 2909 |
Bhutan | 2020 | 2004 | 1.35 | 2701 |
Czech Republic | 2017 | 887 | 2.55 | 2262 |
Bosnia and Herzegovina | 2020 | 833 | 1.56 | 1301 |
Korea | 2020 | 1600 | 0.97 | 1549 |
Hungary | 2017 | 969 | 0.94 | 909 |
Croatia | 2017 | 695 | 0.90 | 624 |
Slovakia | 2017 | 429 | 0.86 | 367 |
South Africa | 2020 | 579 | 0.40 | 234 |
Georgia | 2020 | 106 | 1.11 | 118 |
Kyrgyzstan | 2020 | 10 | 1.70 | 17 |
Republic of Moldova | 2020 | 5 | 0.80 | 4 |
Bioactivity | Bioactive Compounds (BACs) | References | |
---|---|---|---|
Antimicrobial | Antimicrobial peptides | fa-AMP1, fa-AMP2, FtTI | [3,22,26,27,28,29,30,31,32,33,34,35,36] |
Flavonoids | Rutin, quercetin, kaemferol, isoorientin | ||
Phenolic acids | Caffeic acid | ||
Antibacterial and antiviral | Phenolic acids | Chlorogenic acid, hydroxybenzoic acid | [17,37,38,39] |
Flavonoids | Epicatechin, luteolin, kaempferol, quercetin, rutin | ||
Antioxidant | Flavonoids | Rutin, orientin, vitexin, quercetin, isovitexin, isoorientin, catechin | [3,18,19,20,21,22,23,24,25,32,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57] |
Stilbenes | Resveratrol | ||
Phenolic acids | p-Hydroxybenzoic, ferulic, protocatechuic, p-coumaric, gallic, caffeic, vanillic, chlorogenic, syringic, and salicylic acids | ||
Cardioprotective | Flavonoids | Rutin, quercetin, apigenin, isorhamnetin, kaempferol, luteolin, naringenin | [3,17,22,23,32,55,58] |
Phenolic acids | Ferulic acid, gallic acid, cinnamic acid, syringic acid | ||
Antithrombotic | Flavonoids | Rutin, kaempferol, myricetin, quercetin | [3,17] |
Anticancer (mammary, colon, skin, and other cancers) | Flavonoids | Rutin, quercetin | [15,18,22,23,32,49,55], [58,59,60,61,62,63,64,65] |
Phenolic acids | Ferulic acid, gallic acid | ||
Antiulcer | Flavonoids | Rutin, kaempferol, quercetin | [17] |
Hepatoprotective | Flavonoids | Rutin, quercetin | [3,17,66] |
Antidiabetic | Flavonoids | Proanthocyanidins, rutin, quercetin | [3,18,32,58,67,68,69] |
Anti-inflammatory and Antifatigue effects | Carbohydrates | Polysaccharides | [3,22,32,58,70] |
Flavonoids | Apigenin, isoorientin, isovitexin, chrysin, hispidulin, hesperidin, luteolin, rutin, quercetin | ||
Antihyperlipidemia | Carbohydrates | Polysaccharides | [3,32] |
Flavonoids | Quercetin | ||
Cholesterol-lowering | Carbohydrates | Fagopyritol A1 | [18,32,42,71,72] |
Flavonoids | Rutin, quercetin | ||
Antihypertensive | Flavonoids | Quercetin | [3,18,32] |
Antineurodegenerative | Flavonoids | Galangin, kaempferol, myricetin, rutin, quercetin | [3,14,23,32,73] |
Antigenotoxicity | Flavonoids | Rutin, quercetin | [3,74] |
Cognition-improving, and mental health diseases | Flavonoids | Quercetin | [18,32,75] |
Phenolic acids | Chlorogenic acid | ||
Anti-ageing | Phenolic acids | Caffeic acid | [55] |
Immunostimulating | Carbohydrates | Insoluble β-glucan | [42] |
Gluten-Free Flour | Total Phenolics (mg GAE 100 g−1) | In vitro Antioxidant Capacity | |
---|---|---|---|
FRAP (μmol GAE 100 g−1) | ORAC (μmol TE 100 g−1) | ||
Buckwheat | 275.5 ± 2.7 | 494.2 ± 35.9 | 8177.1 ± 68.4 |
Black chickpea | 180.2 ± 0.7 | 396.2 ± 3.8 | 1710.7 ± 18.9 |
Amaranth | 57.0 ± 1.0 | 76.2 ± 3.8 | 1360.4 ± 28.5 |
Kidney bean | 95.5 ± 3.6 | 198.1 ± 7.5 | 3460.4 ± 61.7 |
Adzuki bean | 124.6 ± 1.4 | 330.9 ± 3.7 | 2751.1 ± 108.1 |
Black bean | 90.3 ± 5.9 | 250.4 ± 7.5 | 4033.7 ± 109.9 |
Red lentil | 71.9 ± 1.5 | 106.7 ± 3.8 | 1706.7 ± 24.7 |
Red quinoa | 130.2 ± 2.5 | 230.8 ± 7.5 | 2752.6 ± 54.4 |
Black quinoa | 130.2 ± 1.9 | 289.6 ± 7.5 | 3236.3 ± 52.7 |
Orange rice | 75.9 ± 0.7 | 256.9 ± 26.4 | 2550.7 ± 79.6 |
Ermes rice | 68.4 ± 1.6 | 200.3 ± 7.5 | 1443.7 ± 8.9 |
Wild rice | 81.9 ± 1.4 | 195.9 ± 11.3 | 3181.5 ± 35.7 |
Red sorghum | 108.4 ± 5.1 | 324.4 ± 9.9 | 4734.8 ± 59.5 |
White sorghum | 52.3 ± 0.2 | 145.9 ± 7.5 | 2236.3 ± 63.1 |
Tartary Buckwheat | Extractable TPC | DPPH Radical Scavenging Activity | α-Glucosidase Inhibitory Activity (%) |
---|---|---|---|
Raw whole seeds | 12.992 ± 0.08 | 69.214 ± 1.75 | 28.978 ± 4.72 |
Soaked whole seeds | 16.224 ± 0.34 | 92.987 ± 3.15 | 37.875 ± 3.68 |
Steamed whole seeds | 10.539 ± 0.12 | 45.849 ± 4.25 | 22.551 ± 4.98 |
Dried whole seeds | 8.752 ± 0.18 | 36.218 ± 3.28 | 19.986 ± 4.85 |
Dehulled groats | 5.412 ± 0.23 | 21.896 ± 2.72 | 15.875 ± 2.36 |
Tartary buckwheat tea | 4.751 ± 0.25 | 19.286 ± 2.92 | 15.567 ± 2.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurćubić, V.S.; Stajić, S.B.; Jakovljević, V.; Živković, V.; Stanišić, N.; Mašković, P.Z.; Matejić, V.; Kurćubić, L.V. Contemporary Speculations and Insightful Thoughts on Buckwheat—A Functional Pseudocereal as a Smart Biologically Active Supplement. Foods 2024, 13, 2491. https://doi.org/10.3390/foods13162491
Kurćubić VS, Stajić SB, Jakovljević V, Živković V, Stanišić N, Mašković PZ, Matejić V, Kurćubić LV. Contemporary Speculations and Insightful Thoughts on Buckwheat—A Functional Pseudocereal as a Smart Biologically Active Supplement. Foods. 2024; 13(16):2491. https://doi.org/10.3390/foods13162491
Chicago/Turabian StyleKurćubić, Vladimir S., Slaviša B. Stajić, Vladimir Jakovljević, Vladimir Živković, Nikola Stanišić, Pavle Z. Mašković, Vesna Matejić, and Luka V. Kurćubić. 2024. "Contemporary Speculations and Insightful Thoughts on Buckwheat—A Functional Pseudocereal as a Smart Biologically Active Supplement" Foods 13, no. 16: 2491. https://doi.org/10.3390/foods13162491
APA StyleKurćubić, V. S., Stajić, S. B., Jakovljević, V., Živković, V., Stanišić, N., Mašković, P. Z., Matejić, V., & Kurćubić, L. V. (2024). Contemporary Speculations and Insightful Thoughts on Buckwheat—A Functional Pseudocereal as a Smart Biologically Active Supplement. Foods, 13(16), 2491. https://doi.org/10.3390/foods13162491