Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Material and Reagents
2.2. Drying Procedures
2.3. Reducing Sugar and Soluble Solids
2.4. Moisture Content
2.5. Bioactive Compounds and Antioxidant Ability
2.6. Hardness and Brittleness
2.7. Color
2.8. Microstructure of Mulberry
2.9. Volatile Flavor Compounds
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussions
3.1. Determination of Bioactive Compounds
3.2. Antioxidant Activity
3.3. Hardness and Brittleness
3.4. Color
3.5. Drying Curve
3.6. Microstructure of Dried Mulberry
3.7. Sensory Evaluation
3.8. Analysis of Volatile Flavor Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kakaei, S.; Saba, M.K.; Mansouri, S.; Darvishi, H. Melatonin Postharvest Spray Influence on White Mulberry Browning, Storage Life, and Biochemical Changes. Postharvest Biol. Technol. 2024, 213, 112947. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, X.; Yang, T.; Wang, Z.; Chen, Q.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effects of Whey Protein Isolate and Ferulic Acid/Phloridzin/Naringin/Cysteine on the Thermal Stability of Mulberry Anthocyanin Extract at Neutral Ph. Food Chem. 2023, 425, 136494. [Google Scholar] [CrossRef] [PubMed]
- An, N.N.; Sun, W.-H.; Li, B.Z.; Wang, Y.; Shang, N.; Lv, W.Q.; Li, D.; Wang, L.J. Wang. Effect of Different Drying Techniques on Drying Kinetics, Nutritional Components, Antioxidant Capacity, Physical Properties and Microstructure of Edamame. Food Chem. 2022, 373 Pt B, 131412. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Wang, Z.; Xiang, Y.; Deng, T.; Zhao, X.; Shi, S.; Zheng, Q.; Gao, X.; Li, W. The Effects of Drying Methods on Chemical Profiles and Antioxidant Activities of Two Cultivars of Psidium Guajava Fruits. LWT 2020, 118, 108723. [Google Scholar] [CrossRef]
- Feng, L.; Xu, Y.; Xiao, Y.; Song, J.; Li, D.; Zhang, Z.; Liu, C.; Liu, C.; Jiang, N.; Zhang, M.; et al. Effects of Pre-Drying Treatments Combined with Explosion Puffing Drying on the Physicochemical Properties, Antioxidant Activities and Flavor Characteristics of Apples. Food Chem. 2021, 338, 128015. [Google Scholar] [CrossRef] [PubMed]
- Samoticha, J.; Wojdyło, A.; Lech, K. The Influence of Different the Drying Methods on Chemical Composition and Antioxidant Activity in Chokeberries. LWT Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Z.; Bi, J.; Zhou, L.; Yi, J.; Wu, X. Effect of Hybrid Drying Methods on Physicochemical, Nutritional and Antioxidant Properties of Dried Black Mulberry. LWT 2017, 80, 178–184. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of Different Drying Techniques on Physical Properties, Total Polyphenols and Antioxidant Capacity of Blackcurrant Pomace Powders. LWT 2017, 78, 114–121. [Google Scholar] [CrossRef]
- Bhat, T.A.; Hussain, S.Z.; Wani, S.M.; Rather, M.A.; Reshi, M.; Naseer, B.; Qadri, T.; Khalil, A. The Impact of Different Drying Methods on Antioxidant Activity, Polyphenols, Vitamin C and Rehydration Characteristics of Kiwifruit. Food Biosci. 2022, 48, 101821. [Google Scholar] [CrossRef]
- Ayala, J.R.; Montero, G.; Coronado, M.A.; García, C.; Curiel-Alvarez, M.A.; León, J.A.; Sagaste, C.A.; Montes, D.G. Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules 2021, 26, 1348. [Google Scholar] [CrossRef]
- Burdon, J.; Lallu, N.; Pidakala, P.; Barnett, A. Soluble Solids Accumulation and Postharvest Performance of ‘Hayward’ Kiwifruit. Postharvest Biol. Technol. 2013, 80, 1–8. [Google Scholar] [CrossRef]
- Köprüalan, Ö.; Elmas, F.; Bodruk, A.; Arıkaya, Ş.; Koç, M.; Koca, N.; Kaymak-Ertekin, F. Impact of Pre-Drying on the Textural, Chemical, Color, and Sensory Properties of Explosive Puffing Dried White Cheese Snacks. LWT 2022, 154, 112665. [Google Scholar] [CrossRef]
- Cheng, J.R.; Liu, X.M.; Chen, Z.Y.; Zhang, Y.S.; Zhang, Y.H. Zhang. Mulberry Anthocyanin Biotransformation by Intestinal Probiotics. Food Chem. 2016, 213, 721–727. [Google Scholar] [CrossRef]
- Borah, S.; Bhuyan, P.M.; Sarma, B.; Hazarika, S.; Gogoi, A.; Gogoi, P. Sustainable Dyeing of Mulberry Silk Fabric Using Extracts of Green Tea (Camellia sinensis): Extraction, Mordanting, Dyed Silk Fabric Properties and Silk-Dye Interaction Mechanism. Ind. Crops Prod. 2023, 205, 117517. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, Y.; Lagnika, C.; Li, D.; Liu, C.; Jiang, N.; Song, J.; Zhang, M. A Comparative Evaluation of Nutritional Properties, Antioxidant Capacity and Physical Characteristics of Cabbage (Brassica oleracea var. Capitate var L.) Subjected to Different Drying Methods. Food Chem. 2020, 309, 124935. [Google Scholar] [CrossRef] [PubMed]
- Lourith, N.; Kanlayavattanakul, M. Sustainable Approach to Natural Makeup Cosmetics Containing Microencapsulated Butterfly Pea Anthocyanins. Sustain. Chem. Pharm. 2023, 32, 101005. [Google Scholar] [CrossRef]
- Chen, X.; Guan, Y.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Effect of Whey Protein Isolate and Phenolic Copigments in the Thermal Stability of Mulberry Anthocyanin Extract at an Acidic Ph. Food Chem. 2022, 377, 132005. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; Li, C.; Wang, Z.; Lu, C.; Cheng, J.; Wei, S.; Yang, J.; Yang, Q. Integrated Transcriptomic and Metabolomic Analyses Elucidate the Mechanism of Flavonoid Biosynthesis in the Regulation of Mulberry Seed Germination under Salt Stress. BMC Plant Biol. 2024, 24, 132. [Google Scholar] [CrossRef]
- Wang, K.; Kang, S.; Li, F.; Wang, X.; Xiao, Y.; Wang, J.; Xu, H. Relationship between Fruit Density and Physicochemical Properties and Bioactive Composition of Mulberry at Harvest. J. Food Compos. Anal. 2022, 106, 104322. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Q.; Pei, F.; Mugambi, M.A.; Yang, W. Influence of Different Storage Conditions on Physical and Sensory Properties of Freeze-Dried Agaricus bisporus Slices. LWT 2018, 97, 164–171. [Google Scholar]
- Yu, L.; Shi, H. Effect of Two Mulberry (Morus alba L.) Leaf Polyphenols on Improving the Quality of Fresh-Cut Cantaloupe During Storage. Food Control 2021, 121, 107624. [Google Scholar] [CrossRef]
- Ashtiani, S.-H.M.; Aghkhani, M.H.; Feizy, J.; Martynenko, A. Effect of Cold Plasma Pretreatment Coupled with Osmotic Dehydration on Drying Kinetics and Quality of Mushroom (Agaricus bisporus). Food Bioprocess Technol. 2023, 16, 2854–2876. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, W.J. Chemical Properties in Fruits of Mulberry Species from the Xinjiang Province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Orhan, E. Chemical Composition of White (Morus alba), Red (Morus rubra) and Black (Morus nigra) Mulberry Fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Chan, E.; Lim, Y.; Wong, S.; Lim, K.; Tan, S.; Lianto, F.; Yong, M. Effects of Different Drying Methods on the Antioxidant Properties of Leaves and Tea of Ginger Species. Food Chem. 2009, 113, 166–172. [Google Scholar] [CrossRef]
- Alonzo-Macías, M.; Montejano-Gaitán, G.; Allaf, K. Impact of Drying Processes on Strawberry (Fragaria var. Camarosa) Texture: Identification of Crispy and Crunchy Features by Instrumental Measurement. J. Texture Stud. 2014, 45, 246–259. [Google Scholar] [CrossRef]
- Yi, J.; Wang, P.; Bi, J.; Liu, X.; Wu, X.; Zhong, Y. Developing Novel Combination Drying Method for Jackfruit Bulb Chips: Instant Controlled Pressure Drop (Dic)-Assisted Freeze Drying. Food Bioprocess Technol. 2015, 9, 452–462. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. [Google Scholar] [CrossRef]
- Jing, N.; Wang, M.; Gao, M.; Zhong, Z.; Ma, Y.; Wei, A. Color Sensory Characteristics, Nutritional Components and Antioxidant Capacity of Zanthoxylum Bungeanum Maxim. As Affected by Different Drying Methods. Ind. Crops Prod. 2021, 160, 113167. [Google Scholar] [CrossRef]
- Altay, K.; Hayaloglu, A.A.; Dirim, S.N. Determination of the Drying Kinetics and Energy Efficiency of Purple Basil (Ocimum Basilicum L.) Leaves Using Different Drying Methods. Heat Mass Transf. 2019, 55, 2173–2184. [Google Scholar] [CrossRef]
- Ma, Q.; Bi, J.; Yi, J.; Wu, X.; Li, X.; Zhao, Y. Stability of Phenolic Compounds and Drying Characteristics of Apple Peel as Affected by Three Drying Treatments. Food Sci. Hum. Wellness 2021, 10, 174–182. [Google Scholar] [CrossRef]
- Wei, L.; Hu, J.; Pan, C.; Cheng, P.; Zhang, J.; Xi, D.; Chen, M.; Lu, L.; Lu, H.; Hu, F. Effects of Different Storage Containers on the Flavor Characteristics of Jiangxiangxing Baijiu. Food Res. Int. 2023, 172, 113196. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zeng, Y.; Sun, Q.; Zhang, W.; Wang, S.; Shen, C.; Shi, B. Insights into the Mechanism of Flavor Compound Changes in Strong Flavor Baijiu During Storage by Using the Density Functional Theory and Molecular Dynamics Simulation. Food Chem. 2022, 373 Pt B, 131522. [Google Scholar] [CrossRef]
Drying Methods | Conditions | Time (h) |
---|---|---|
HAD | At temperature 70 °C, air velocity of 5 m/s | 12 |
VD | At temperature 50 °C | 20 |
VFD | Freeze-drying at temperature −50 °C, vacuum pressure 0.01 kPa | 40 |
Drying Methods | Gallic Acid | Protocatechuic Acid | Chlorogenic Acid | Caffeic Acid | Ferulic Acid | Cumaric Acid | Cinnamic Acid |
---|---|---|---|---|---|---|---|
FM | 4.25 ± 0.19 a | 115.68 ± 4.38 d | 335.32 ± 6.38 d | 3.12 ± 0.21 b | 1.49 ± 0.05 a | 2.42 ± 0.13 a | 0.35 ± 0.05 c |
HAD | 1.37 ± 0.12 c | 162.12 ± 3.59 b | 399.74 ± 7.56 c | 1.93 ± 0.15 c | 0.31 ± 0.02 d | 1.52 ± 0.09 b | 3.28 ± 0.16 b |
VD | 1.61 ± 0.13 c | 189.75 ± 5.88 a | 711.41 ± 9.92 a | 3.40 ± 0.19 a | 0.53 ± 0.04 b | 1.52 ± 0.07 b | 3.86 ± 0.13 a |
VFD | 3.60 ± 0.16 b | 122.63 ± 4.32 c | 421.87 ± 5.59 b | 1.39 ± 0.08 d | 0.40 ± 0.04 c | 0.92 ± 0.05 c | 0.22 ± 0.03 c |
Drying Methods | L | a | b | ΔE |
---|---|---|---|---|
FM | 6.52 ± 0.05 d | 2.13 ± 0.06 d | −0.97 ± 0.06 d | — |
HAD | 8.53 ± 0.06 c | 2.70 ± 0.04 b | −0.82 ± 0.06 c | 3.20 ± 0.07 b |
VD | 12.45 ± 0.05 b | 2.25 ± 0.08 c | −0.45 ± 0.02 b | 1.18 ± 0.08 c |
VFD | 17.17 ± 0.05 a | 3.83 ± 0.06 a | −0.17 ± 0.01 a | 6.00 ± 0.03 a |
Species | No. | Components | Content (µg/Kg) | ||
---|---|---|---|---|---|
HAD | VD | VFD | |||
Alcohols | 1 | Isoamylol | 0 b | 0 b | 6.82 ± 0.35 a |
2 | Hexanol | 0 b | 0 b | 6.41 ± 0.24 a | |
3 | Isooctanol | 13.02 ± 0.20 a | 11.97 ± 1.00 b | 10.92 ± 0.33 c | |
4 | 3-Octenol | 13.87 ± 1.01 a | 5.93 ± 0.15 c | 10.99 ± 0.15 b | |
5 | 2-Phenylethanol | 5.46 ± 0.17 b | 0 c | 6.25 ± 0.22 a | |
6 | Terpinen-4-ol | 0 b | 0 b | 4.25 ± 0.80 a | |
Aldehydes | 7 | 2-Hexenal | 0 b | 0 b | 34.99 ± 0.55 a |
8 | Heptaldehyde | 73.33 ± 6.53 a | 0 b | 0 b | |
9 | Octanal | 0 b | 0 b | 8.89 ± 0.54 a | |
10 | (E)-2-Octenal | 0 b | 0 b | 7.04 ± 0.92 a | |
11 | 1-Nonanal | 49.59 ± 14.87 a | 32.82 ± 1.53 c | 43.67 ± 6.31 b | |
12 | (E, E)-2,4-Nonadienal | 0 b | 0 b | 5.00 ± 0.42 a | |
13 | 2,6-Nonadienal | 0 b | 0 b | 50.64 ± 3.42 a | |
14 | Caprinaldehyde | 0 b | 0 b | 8.07 ± 0.96 a | |
15 | Benzaldehyde | 143.90 ± 9.63 a | 109.57 ± 9.17 b | 0 c | |
16 | Phenylacetaldehyde | 71.93 ± 3.08 a | 0 b | 0 b | |
17 | Furfuraldehyde | 121.28 ± 2.93 a | 17.58 ± 2.01 b | 0 c | |
18 | 5-Methyl furfural | 15.77 ± 1.95 a | 0 b | 0 b | |
Acids | 19 | Acetic acid | 111.61 ± 7.32 a | 90.91 ± 5.48 b | 108.24 ± 6.62 a |
20 | Butyric acid | 30.63 ± 5.34 a | 14.74 ± 1.42 b | 17.13 ± 1.80 b | |
21 | 2-Methyl butyric acid | 0 b | 0 b | 7.93 ± 1.64 a | |
22 | Valeric acid | 18.19 ± 1.42 a | 0 b | 0 b | |
23 | Caproic acid | 137.05 ± 13.13 a | 51.08 ± 1.53 b | 46.35 ± 2.49 b | |
24 | Octanoic acid | 20.29 ± 2.26 a | 0 b | 0 b | |
Esters | 25 | Methyl octanoate | 16.11 ± 3.04 b | 35.73 ± 4.80 a | 14.21 ± 3.91 b |
26 | Methyln-nonanoate | 30.92 ± 10.10 a | 29.09 ± 1.69 a | 18.08 ± 2.83 b | |
27 | Methyl benzoate | 8.66 ± 0.53 b | 0 c | 23.80 ± 1.09 a | |
28 | Ethyl benzoate | 0 b | 0 b | 11.62 ± 0.50 a | |
29 | Ethyl caproate | 118.19 ± 17.19 a | 111.79 ± 13.03 b | 72.01 ± 1.74 c | |
30 | Octyl acetate | 11.82 ± 0.38 a | 0 b | 0 b | |
31 | Ethyl oleate | 16.03 ± 0.37 a | 0 b | 0 b | |
32 | Methyl hexadecanoate | 0 c | 14.97 ± 1.29 b | 37.15 ± 2.58 a | |
33 | Ethyl palmitate | 37.03 ± 6.93 a | 7.52 ± 1.37 b | 4.66 ± 0.28 b | |
34 | Methyl 4-methylvalerate | 77.46 ± 1.81 a | 57.41 ± 3.96 c | 62.59 ± 2.80 b | |
35 | Methyl n-caprate | 0 b | 3.62 ± 0.12 a | 0 b | |
36 | Methyl laurate | 0 c | 4.54 ± 0.33 b | 13.45 ± 2.40 a | |
37 | Methyl myristate | 0 b | 0 b | 7.85 ± 1.78 a | |
Ketones | 38 | 2-Octanone | 125.65 ± 19.78 c | 261.75 ± 17.59 b | 335.30 ± 22.56 a |
39 | Geranylacetone | 0 b | 0 b | 3.85 ± 0.43 a | |
40 | 1,2-Cyclopentanedione | 8.32 ± 0.91 a | 0 b | 0 b | |
Phenols | 41 | 2,4-Di-tert-butylphenol | 33.57 ± 13.10 a | 13.43 ± 1.61 b | 7.69 ± 1.28 c |
42 | Eugenol | 0 b | 0 b | 6.83 ± 0.19 a | |
43 | Hydroquinone | 167.37 ± 4.09 a | 0 b | 0 b | |
44 | Guaiacol, 3-allyl- (6CI) | 13.29 ± 1.11 a | 6.45 ± 0.33 c | 9.26 ± 0.57 b | |
Furans | 45 | 2-Pentylfuran | 70.29 ± 12.67 a | 62.20 ± 5.92 b | 0 c |
46 | 2-Acetylfuran | 6.57 ± 0.01 a | 0 b | 0 b | |
47 | (E)-2-(2-pentenyl) furan | 8.55 ± 0.87 a | 0 b | 0 b |
No. | Components | OT (µg/kg) | Odor Descriptor | OAVs | ||
---|---|---|---|---|---|---|
HAD | VD | VFD | ||||
1 | Isoamylol | 200 | Alcoholic | - | - | <1 |
2 | Hexanol | 5.6 | Grass, grain | - | - | 1.15 |
3 | 3-Octenol | 1.5 | Mushroom | 9.25 | 3.95 | 7.33 |
4 | 2-Phenylethanol | 564.23 | Floral, sweet | <1 | - | <1 |
5 | 2-Hexenal | 17 | Ester | - | - | 2.06 |
6 | Heptaldehyde | 10 | Orange | 7.33 | - | - |
7 | Octanal | 0.59 | Lemon | - | - | 15.07 |
8 | (E)-2-Octenal | 3 | Nutty | - | - | 2.35 |
9 | 1-Nonanal | 1.1 | Citrus-like, soapy | 45.08 | 29.83 | 39.70 |
10 | (E,E)-2,4-Nonadienal | 1.06 | Ester, floral | - | - | 4.718 |
11 | 2,6-Nonadienal | 0.8 | Cucumber-like | - | - | 63.29 |
12 | Caprinaldehyde | 3 | Orange | - | - | 2.69 |
13 | Benzaldehyde | 750.89 | Almond | <1 | <1 | - |
14 | Phenylacetaldehyde | 6.3 | Floral, rose | 11.42 | - | - |
15 | Furfuraldehyde | 970 | Tar, wood | <1 | <1 | - |
16 | 5-Methyl furfural | 1110 | Sweetness | <1 | - | - |
17 | Acetic acid | 22,000 | Vinegar | <1 | <1 | <1 |
18 | Butyric acid | 2400 | Sweaty, rancid | <1 | <1 | <1 |
19 | Caproic acid | 2600 | Sweaty | <1 | <1 | <1 |
20 | Octanoic acid | 3000 | Cheesy | <1 | - | - |
21 | Methyl benzoate | 1 | Fruity | 8.66 | - | 23.80 |
22 | Ethyl benzoate | 0.4 | Floral, fruity | - | - | 29.04 |
23 | Ethyl caproate | 2.2 | Fruity | 53.73 | 50.82 | 32.73 |
24 | Methyl hexadecanoate | 2000 | Fruity | - | <1 | <1 |
25 | Ethyl palmitate | 2000 | Creamy | <1 | <1 | <1 |
26 | Geranylacetone | 60 | Floral | - | - | <1 |
27 | 2,4-Di-tert-butylphenol | 0.5 | Camphor | 67.15 | 26.86 | 15.39 |
28 | 2-Pentylfuran | 5.8 | Fruity | 12.12 | 10.73 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, J.; Lan, J.; Liu, B.; Wang, X.; Zhang, S.; Zuo, Y. Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry. Foods 2024, 13, 2492. https://doi.org/10.3390/foods13162492
Zhang J, Chen J, Lan J, Liu B, Wang X, Zhang S, Zuo Y. Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry. Foods. 2024; 13(16):2492. https://doi.org/10.3390/foods13162492
Chicago/Turabian StyleZhang, Jing, Jing Chen, Jingsha Lan, Bingliang Liu, Xinhui Wang, Suyi Zhang, and Yong Zuo. 2024. "Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry" Foods 13, no. 16: 2492. https://doi.org/10.3390/foods13162492
APA StyleZhang, J., Chen, J., Lan, J., Liu, B., Wang, X., Zhang, S., & Zuo, Y. (2024). Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry. Foods, 13(16), 2492. https://doi.org/10.3390/foods13162492