Fermentation with Lactic Acid Bacteria for Bean Flour Improvement: Experimental Study and Molecular Modeling as Complementary Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Conditions
2.2. Experimental Design for Beans Flour Fermentation
2.3. Raw Material and Dough Formulation
2.4. Microbiological Analysis and pH Determinations
2.5. Phenolics’ and Tannins’ Quantification
2.6. Enzyme Inhibitors’ Quantification
2.7. Determination of Free Amino Acids (FAAs)
2.8. In Silico Analyses
2.8.1. Genome Sequencing of Lp. plantarum CRL 2211 and W. paramesenteroides CRL 2182
2.8.2. Metabolic Modeling
2.8.3. Molecular Modeling
2.9. Other Processing Treatments
2.10. Antioxidant Activity
2.11. Statistical Analysis of Data
3. Results and Discussion
3.1. Effect of Process Variables on Dough Acidification
3.2. Effect of Process Variables on TPC
3.3. Effect of Process Variables on Tannin Hydrolysis
3.4. Effect of Process Variables on Removal of Trypsin Inhibitors
3.5. Effect of Process Variables on Dough LAB Microbiota
3.6. In Silico Analyses
3.6.1. Metabolic Modeling
3.6.2. Molecular Modeling of Phenolic Compound Release and Trypsin Inhibitor Hydrolysis
3.7. Comparison of Processing Methods for Improving Nutri-Functional Properties of Beans
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, C.; Wu, S.; Ma, T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods 2023, 12, 3697. [Google Scholar] [CrossRef] [PubMed]
- FAO-WHO. Resolution adopted by the General Assembly on 20 December 2013, International Year of Pulses 2016. A/RES/68/231. 2013. Available online: http://www.fao.org/pulses-2016/en/ (accessed on 29 May 2024).
- Kovalskys, I.; Fisberg, M.; Gómez, G.; Pareja, R.G.; García, M.C.Y.; Sanabria, L.Y.C.; Herrera-Cuenca, M.; Rigotti, A.; Guajardo, V.; Zimberg, I.Z.; et al. Energy intake and food sources of eight Latin American countries: Results from the Latin American Study of Nutrition and Health (ELANS). Public Health Nutr. 2018, 21, 2535–2547. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M. Food Fermentations for improved digestibility of plant foods—An essential ex situ digestion step in agricultural societies? Curr. Opin. Food Sci. 2020, 32, 124–132. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Coda, R.; Melama, L.; Rizzello, C.G.; Curiel, J.A.; Sibakov, J.; Holopainen, U.; Pulkkinen, M.; Sozer, N. Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. Int. J. Food Microbiol. 2015, 193, 34–42. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. Int. J. Food Microbiol. 2020, 316, 108426. [Google Scholar] [CrossRef]
- Limón, R.I.; Peñas, E.; Torino, M.I.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J. Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem. 2015, 172, 343–352. [Google Scholar] [CrossRef]
- Gan, R.Y.; Shah, N.P.; Wang, M.; Lui, W.; Corke, H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int. J. Food Sci. Technol. 2016, 51, 875–884. [Google Scholar] [CrossRef]
- Goswami, R.P.; Jayaprakasha, G.K.; Shetty, K.; Patil, B.S. Lactobacillus plantarum and natural fermentation-mediated biotransformation of flavor and aromatic compounds in horse gram sprouts. Process Biochem. 2018, 66, 7–18. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Polo, A.; Rizzello, C.G. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit. Rev. Food Sci. Nutr. 2019, 60, 2158–2173. [Google Scholar] [CrossRef]
- Ayed, L.; M’hir, S.; Nuzzolese, D.; Di Cagno, R.; Filannino, P. Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review. Foods 2024, 13, 1538. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Maximiano, P.; Ureta, M.; Gomez-Zavaglia, A.; Simões, P.N. Molecular Simulation: A remarkable tool to study mechanisms of cell membrane preservation in probiotic bacteria. Curr. Opin. Food Sci. 2023, 50, 100985. [Google Scholar] [CrossRef]
- Sabater, C.; Calvete-Torre, I.; Ruiz, L.; Margolles, A. Arabinoxylan and Pectin Metabolism in Crohn’s Disease Microbiota: An In Silico Study. Int. J. Mol. Sci. 2022, 23, 7093. [Google Scholar] [CrossRef]
- Sáez, G.D.; Hébert, E.M.; Saavedra, L.; Zárate, G. Molecular identification and technological characterization of lactic acid bacteria isolated from fermented kidney beans flours (Phaseolus vulgaris L. and P. coccineus) in northwestern Argentina. Food Res. Int. 2017, 102, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Sáez, G.D.; Saavedra, L.; Hébert, E.M.; Zárate, G. Identification and biotechnological characterization of lactic acid bacteria isolated from chickpea sourdough in northwestern Argentina. LWT 2018, 93, 249–256. [Google Scholar] [CrossRef]
- Sáez, G.D.; Flomenbaum, L.; Zárate, G. Lactic Acid Bacteria from Argentinean Fermented Foods: Isolation and Characterization for their Potential Use as Starters for Fermentation of Vegetables. Food Technol. Biotechnol. 2018, 56, 398–410. [Google Scholar] [CrossRef]
- Sáez, G.D.; Sabater, C.; Fara, A.; Zárate, G. Fermentation of chickpea flour with selected lactic acid bacteria for improving its nutritional and functional properties. J. Appl. Microbiol. 2022, 133, 181–199. [Google Scholar] [CrossRef]
- Heras, J.; Domínguez, C.; Mata, E.; Pascual, V.; Lozano, C.; Torres, C.; Zarazaga, M. GelJ—A tool for analyzing DNA fingerprint gel images. BMC Bioinform. 2015, 16, 270. [Google Scholar] [CrossRef]
- Vu, D.C.; Alvarez, S. Phenolic, Carotenoid and Saccharide Compositions of Vietnamese Camellia sinensis Teas and Herbal Teas. Molecules 2021, 26, 6496. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Calasso, M.; Campanella, D.; De Angelis, M.; Gobbetti, M. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. Int. J. Food Microbiol. 2014, 180, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; De Angelis, M.; Corsetti, A.; Di Cagno, R. Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Technol. 2005, 16, 57–69. [Google Scholar] [CrossRef]
- Gänzle, M. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Falasconi, I.; Fontana, A.; Patrone, V.; Rebecchi, A.; Duserm Garrido, G.; Principato, L.; Callegari, M.L.; Spigno, G.; Morelli, L. Genome-Assisted Characterization of Lactobacillus fermentum, Weissella cibaria, and Weissella confusa Strains Isolated from Sorghum as Starters for Sourdough Fermentation. Microorganisms 2020, 8, 1388. [Google Scholar] [CrossRef] [PubMed]
- Belcour, A.; Frioux, C.; Aite, M.; Bretaudeau, A.; Hildebrand, F.; Siegel, A. Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species. eLife 2020, 9, e61968. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, H.; Sun, H.; Pan, P.; Li, Y.; Li, D.; Hou, T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys. Chem. Chem. Phys. 2016, 18, 22129–22139. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindal, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Curiel, J.A.; Coda, R.; Centomani, I.; Summo, C.; Gobetti, M.; Rizzello, C.G. Exploration of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.M.M.; Mendes-Ferreira, A.; Benevides, C.M.J.; Melo, D.; Costa, A.S.G.; Mendes-Faia, A.; Oliveira, M.B.P. Effect of Controlled Microbial Fermentation on Nutritional and Functional Characteristics of Cowpea Bean Flours. Foods 2019, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.; de las Rivas, B.; López de Felipe, F.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J.A.; Rodriguez, H.; Landete, J.M. Biotransformation of Phenolics by Lactobacillus plantarum. In Fermented Foods in Health and Disease Prevention; Frías, J., Martínez-Villaluenga, V., Peñas, E., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 63–83. [Google Scholar]
- Ibrahim, S.S.; Habiba, R.A.; Shatta, A.A.; Embaby, H.E. Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Food/nahrung 2002, 46, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Starzynska-Janiszewska, A.; Stodolak, B. Effect of inoculated lactic acid fermentation on antinutritional and antiradical properties of grass pea (Lathyrus sativus ‘Krab’) flour. Pol. J. Food Nutr. Sci. 2011, 61, 245–249. [Google Scholar] [CrossRef]
- Minervini, F.; De Angelis, M.; Di Cagno, R.; Pinto, D.; Siragusa, S.; Rizzello, C.G.; Gobbetti, M. Robustness of Lactobacillus plantarum starters during daily propagation of wheat flour sourdough type I. Food Microbiol. 2010, 27, 897–908. [Google Scholar] [CrossRef]
- Alfonzo, A.; Urso, V.; Corona, O.; Francesca, N.; Amato, G.; Settanni, L.; Di Miceli, G. Development of a method for the direct fermentation of semolina by selected sourdough lactic acid bacteria. Int. J. Food Microbiol. 2016, 239, 65–78. [Google Scholar] [CrossRef]
- Rha, C.S.; Kim, S.W.; Byoun, K.H.; Hong, Y.D.; Kim, D.O. Simultaneous optimal production of flavonol aglycones and degalloylated catechins from green tea using a multi-function food-grade enzyme. Catalysts 2019, 9, 861. [Google Scholar] [CrossRef]
- Ono, H.; Nishio, S.; Tsurii, J.; Kawamoto, T.; Sonomoto, K.; Nakayama, J. Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables. J. Biosci. Bioeng. 2014, 118, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Bessmeltseva, M.; Viiard, E.; Simm, J.; Paalme, T.; Sarand, I. Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation. PLoS ONE 2014, 9, e95449. [Google Scholar] [CrossRef] [PubMed]
- Mancheño, J.M.; Atondo, E.; Tomás-Cortázar, J.; Lavín, J.L.; Plaza-Vinuesa, L.; Martín-Ruiz, I.; Barriales, D.; Palacios, A.; Navo, C.D.; Sampedro, L.; et al. A structurally unique Fusobacterium nucleatum tannase provides detoxicant activity against gallotannins and pathogen resistance. Microb. Biotechnol. 2020, 15, 648–667. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.F.; Tintino, S.R.; de Freitas, T.S.; Campina, F.F.; Irwin, R.D.A.; Siqueira-Júnior, J.P.; Coutinho, H.D.M.; Cunha, F.A. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp. Immunol. Microbiol. Infect. Dis. 2018, 57, 22–28. [Google Scholar] [CrossRef] [PubMed]
- De Medeiros, A.F.; de Souza, B.B.P.; Coutinho, L.P.; Murad, A.M.; Dos Santos, P.I.M.; Monteiro, N.K.V.; Santos, E.A.D.; Maciel, B.L.L.; de Araújo Morais, A.H. Structural insights and molecular dynamics into the inhibitory mechanism of a Kunitz-type trypsin inhibitor from Tamarindus indica. J. Enzym. Inhib. Med. Chem. 2021, 36, 480–490. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, H.; Jain, A.; Nair, D.T.; Salunke, D.M. Docking, thermodynamics and molecular dynamics (MD) studies of a non-canonical protease inhibitor, MP-4, from Mucuna pruriens. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Handa, N.; Kuda, T.; Yamamoto, M.; Takahashi, H.; Kimura, B. In vitro anti-oxidant, anti-glycation, and bile acid-lowering capacity of chickpea milk fermented with Lactiplantibacillus pentosus Himuka-SU5 and Lactococcus lactis subsp. lactis Amami-SU1. Process Biochem. 2022, 120, 15–21. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
Fermentation Conditions | LAB (log CFU/g) | pH | TPC (mg GAE/100 g) | Tannin Content (mg GAE/100 g) | Trypsin Inhibitors (mg/g) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | |||||||||||||||
RUN | A | B | C | D | E | Exp | Δ | Exp | Δ | Exp | Δ | Exp | Δ | Exp | Δ |
1 | 0 | 0 | 37 | 24 | 160 | 3.40 | 3.00 | 6.34 | 0.06 | 291.96 | −13.04 | 41.79 | 2.21 | 3.64 | 0.06 |
2 | 1 | 1 | 37 | 24 | 160 | 8.64 | 8.24 | 4.24 | 2.16 | 382.14 | 77.14 | 12.23 | 31.77 | 1.53 | 2.17 |
3 | 0 | 1 | 30 | 24 | 200 | 8.40 | 8.00 | 4.17 | 2.03 | 322.32 | 77.32 | 10.18 | 22.32 | 0.22 | 2.03 |
4 | 0 | 1 | 30 | 8 | 160 | 7.93 | 7.53 | 4.92 | 1.48 | 330.36 | 25.36 | 23.04 | 20.96 | 1.52 | 2.18 |
5 | 1 | 1 | 37 | 8 | 200 | 8.41 | 8.01 | 4.27 | 1.93 | 319.64 | 74.64 | 14.73 | 17.77 | 0.62 | 1.63 |
6 | 1 | 0 | 30 | 8 | 160 | 8.48 | 8.08 | 4.77 | 1.63 | 329.46 | 24.46 | 26.61 | 17.39 | 2.34 | 1.36 |
7 | 0 | 0 | 37 | 8 | 200 | 6.00 | 5.60 | 6.10 | 0.10 | 157.14 | −87.86 | 29.91 | 2.59 | 2.15 | 0.10 |
8 | 1 | 0 | 30 | 24 | 200 | 8.74 | 8.34 | 3.75 | 2.45 | 333.04 | 88.04 | 3.39 | 29.11 | 0.10 | 2.15 |
9 | 0 | 1 | 30 | 8 | 200 | 7.94 | 7.54 | 4.59 | 1.61 | 300.00 | 55.00 | 17.05 | 15.45 | 0.64 | 1.61 |
10 | 1 | 1 | 37 | 24 | 200 | 8.96 | 8.56 | 3.81 | 2.39 | 348.21 | 103.21 | 0.00 | 32.50 | 2.00 | 2.25 |
11 | 1 | 1 | 37 | 8 | 160 | 8.24 | 7.84 | 4.87 | 1.53 | 349.11 | 44.11 | 21.16 | 22.84 | 2.24 | 1.46 |
12 | 0 | 0 | 37 | 8 | 160 | 1.88 | 1.48 | 6.33 | 0.07 | 258.93 | −46.07 | 42.14 | 1.86 | 3.63 | 0.07 |
13 | 0 | 0 | 37 | 24 | 200 | 5.50 | 5.10 | 4.96 | 1.24 | 267.86 | 22.86 | 25.63 | 6.87 | 1.93 | 0.32 |
14 | 0 | 1 | 30 | 24 | 160 | 8.32 | 7.92 | 4.21 | 2.19 | 247.32 | −57.68 | 33.66 | 10.34 | 1.72 | 1.98 |
15 | 1 | 0 | 30 | 24 | 160 | 8.65 | 8.25 | 4.22 | 2.18 | 377.68 | 72.68 | 6.07 | 37.93 | 2.07 | 1.63 |
16 | 1 | 0 | 30 | 8 | 200 | 8.32 | 7.92 | 4.24 | 1.96 | 320.54 | 75.54 | 16.07 | 16.43 | 0.69 | 1.56 |
17 | 0 | 1 | 37 | 24 | 160 | 8.46 | 8.06 | 4.58 | 1.82 | 341.96 | 36.96 | 15.63 | 28.37 | 2.12 | 1.58 |
18 | 0 | 1 | 37 | 8 | 200 | 8.30 | 7.90 | 4.63 | 1.57 | 277.68 | 32.68 | 23.13 | 9.37 | 0.88 | 1.37 |
19 | 1 | 1 | 30 | 8 | 160 | 8.33 | 7.93 | 4.56 | 1.84 | 353.00 | 48.00 | 30.18 | 13.82 | 2.46 | 1.24 |
20 | 0 | 0 | 30 | 8 | 160 | 4.50 | 4.10 | 6.02 | 0.38 | 289.29 | −15.71 | 43.48 | 0.52 | 3.32 | 0.38 |
21 | 1 | 0 | 37 | 24 | 160 | 8.44 | 8.04 | 4.24 | 2.16 | 349.11 | 44.11 | 6.61 | 37.39 | 1.93 | 1.77 |
22 | 1 | 1 | 30 | 24 | 200 | 8.93 | 8.53 | 4.06 | 2.14 | 347.32 | 102.32 | 0.00 | 32.50 | 0.36 | 1.89 |
23 | 1 | 0 | 37 | 8 | 200 | 8.67 | 8.27 | 4.41 | 1.79 | 306.25 | 61.25 | 17.23 | 15.27 | 0.46 | 1.79 |
24 | 0 | 0 | 30 | 24 | 200 | 5.71 | 5.31 | 5.30 | 0.90 | 250.00 | 5.00 | 30.36 | 2.14 | 1.01 | 1.24 |
25 | 1 | 0 | 37 | 8 | 160 | 7.61 | 7.21 | 4.78 | 1.62 | 333.93 | 28.93 | 32.14 | 11.86 | 2.08 | 1.62 |
26 | 0 | 1 | 37 | 8 | 160 | 8.18 | 7.78 | 4.72 | 1.68 | 318.75 | 13.75 | 34.91 | 9.09 | 2.28 | 1.42 |
27 | 0 | 0 | 30 | 8 | 200 | 5.40 | 5.00 | 5.78 | 0.42 | 243.75 | −1.25 | 30.98 | 1.52 | 1.35 | 0.90 |
28 | 1 | 1 | 30 | 24 | 160 | 8.70 | 8.30 | 4.17 | 2.23 | 359.82 | 54.82 | 8.39 | 35.61 | 1.57 | 2.13 |
29 | 0 | 1 | 37 | 24 | 200 | 8.40 | 8.00 | 4.26 | 1.94 | 317.86 | 72.86 | 4.11 | 28.39 | 0.31 | 1.94 |
30 | 1 | 0 | 37 | 24 | 200 | 9.64 | 9.24 | 3.92 | 2.28 | 307.14 | 62.14 | 0.00 | 32.50 | 0.00 | 2.25 |
31 | 1 | 1 | 30 | 8 | 200 | 8.34 | 7.94 | 4.26 | 1.94 | 269.64 | 24.64 | 13.48 | 19.02 | 0.71 | 1.54 |
32 | 0 | 0 | 30 | 24 | 160 | 4.47 | 4.07 | 4.93 | 1.47 | 312.50 | 7.50 | 40.09 | 3.91 | 2.23 | 1.47 |
Control | Fermentation * | Germination | Soaking | Cooking | Microwave | |
---|---|---|---|---|---|---|
Antinutritional factors | ||||||
Trypsin inhibitors (TIA mg/g) | 2.9 ± 0.8 a | 0.6 ± 0.4 b | 1.0 ± 0.6 b | 2.0 ± 0.5 b,c | 0.0 ± 0.0 d | 1.9 ± 0.1 e |
α-Chymotrypsin inhibitors (CUI/g) | 247.0 ± 44.0 a | 18.0 ± 15.0 b | 44.0 ± 30.0 b,c | 124.0 ± 85.0 c | 12.0 ± 10.0 b | 70.0 ± 27.0 c |
α-Amylase inhibitors (AUI/g) | 701.0 ± 49.0 a | 60.0 ± 35.0 b | 286.0 ± 69.0 c | 514.0 ± 85.0 a,d | 0.0 ± 0.0 e | 325.0 ± 125.0 c |
Tannins (mg GAE/100 g) | 7.0 ± 0.7 a | 1.3 ± 0.6 b | 4.6 ± 1.1 a,c | 5.8 ± 0.8 a,c | 5.3 ± 1.1 c | 6.5 ± 0.9 a |
Main amino acids content (mg/kg) | ||||||
Glutamic acid | 25.4 ± 1.2 a | 61.6 ± 2.3 b | 36.7 ± 2.4 c | 36.2 ± 3.1 c | 44.6 ± 2.3 d | 40.0 ± 3.5 d |
Glutamine | 147.2 ± 4.1 a | 281.9 ± 5.5 b | 134.8 ± 6.5 c | 14.9 ± 3.4 d | 162.8 ± 2.6 e | 203.6 ± 4.3 f |
Arginine | 131.2 ± 4.8 a | 207.3 ± 5.8 b | 166.4 ± 4.1 c | 28.0 ± 2.8 d | 68.2 ± 3.3 e | 104.7 ± 6.1 f |
Leucine | 18.6 ± 2.4 a | 35.7 ± 3.6 b | 2.2 ± 1.2 c | 11.3 ± 1.9 d | 1.5 ± 1.0 c,e | 1.6 ± 1.3 c,e |
Lysine | 6.4 ± 1.8 a | 41.8 ± 3.3 b | 22.6 ± 3.7 c | 0.00 ± 0.0 d | 9.2 ± 2.4 a,e | 8.1 ± 2.1 a,e |
Functional properties | ||||||
Total phenols (mg GAE/100 g) | 466.7 ± 33.0 a,b | 745.7 ± 24.9 c | 696.2 ± 45.5 c | 482.9 ± 52.5 a | 354.3 ± 71.0 b,d | 302.9 ± 23.4 d |
DPPH antioxidant activity (%) | 35.0 | 71.0 | 65.0 | 36.0 | 23.0 | 33.0 |
Phenolic Compounds | Compound (mg/kg) | Raw Flour | Spontaneous Fermentation | LAB Fermentation |
---|---|---|---|---|
Hydroxycinnamic acids | Caffeic acid | 12.83 ± 0.77 a | 4.69 ± 1.70 c | 7.62 ± 0.61 b |
Chlorogenic acid | 4.06 ± 0.56 a | 1.11 ± 0.63 c | 10.11 ± 0.44 b | |
p-cinnamic acid | 5.80 ± 1.35 a | 6.19 ± 2.47 a | 6.30 ± 1.44 a | |
p-coumaric acid | 13.12 ± 1.16 a | 2.83 ± 1.33 c | 27.64 ± 0.89 b | |
Ferulic acid | 41.60 ± 2.89 a | 5.16 ± 2.49 b | 4.09 ± 1.67 b | |
Hydroxybenzoic acids | Gallic acid | 1.90 ± 1.70 a | 68.55 ± 11.45 c | 177.31 ± 3.64 b |
Protocatechuic acid | 1.78 ± 0.48 a | 1.22 ± 0.78 a,b | 0.54 ± 0.44 b | |
Syringic acid | 0.45 ± 0.40 a | 0.24 ± 0.24 a | 0.46 ± 0.46 a | |
Vanillic acid | 13.96 ± 2.76 a | 3.56 ± 3.12 b,c | 8.87 ± 2.69 b | |
Flavonoids | Daidzein | 0.14 ± 0.08 a | 0.13 ± 0.11 a,b | 0.18 ± 0.10 a |
Genistein | 0.31 ± 0.25 a | 0.27 ± 0.30 a,b | 0.33 ± 0.29 a | |
Hesperetin | 0.05 ± 0.05 a | 0.04 ± 0.05 a | 0.08 ± 0.05 a,b | |
Kaempferol | 0.04 ± 0.03 a | 0.06 ± 0.15 b | 0.08 ± 0.11 b | |
Naringenin | 0.28 ± 0.18 a | 0.19 ± 0.19 a | 0.44 ± 0.21 a,b | |
Quercetin-3-glucoside | 2.22 ± 0.55 a | 0.43 ± 0.40 b | 0.50 ± 0.50 b | |
Resveratrol | 0.10 ± 0.10 a | 0.17 ± 0.15 a,b | 0.18 ± 0.11 a,b | |
Rutin | 1.18 ± 0.66 a | 1.01 ± 0.83 a,b | 0.98 ± 0.61 b | |
Total amount * | ≅99.82 | ≅95.83 | ≅245.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabater, C.; Sáez, G.D.; Suárez, N.; Garro, M.S.; Margolles, A.; Zárate, G. Fermentation with Lactic Acid Bacteria for Bean Flour Improvement: Experimental Study and Molecular Modeling as Complementary Tools. Foods 2024, 13, 2105. https://doi.org/10.3390/foods13132105
Sabater C, Sáez GD, Suárez N, Garro MS, Margolles A, Zárate G. Fermentation with Lactic Acid Bacteria for Bean Flour Improvement: Experimental Study and Molecular Modeling as Complementary Tools. Foods. 2024; 13(13):2105. https://doi.org/10.3390/foods13132105
Chicago/Turabian StyleSabater, Carlos, Gabriel D. Sáez, Nadia Suárez, Marisa S. Garro, Abelardo Margolles, and Gabriela Zárate. 2024. "Fermentation with Lactic Acid Bacteria for Bean Flour Improvement: Experimental Study and Molecular Modeling as Complementary Tools" Foods 13, no. 13: 2105. https://doi.org/10.3390/foods13132105
APA StyleSabater, C., Sáez, G. D., Suárez, N., Garro, M. S., Margolles, A., & Zárate, G. (2024). Fermentation with Lactic Acid Bacteria for Bean Flour Improvement: Experimental Study and Molecular Modeling as Complementary Tools. Foods, 13(13), 2105. https://doi.org/10.3390/foods13132105