Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation and Fermentation of Pea Milk
2.3. Fermentation Performance Determination
2.4. Analysis of Texture Characteristics
2.5. Particle Size Distribution
2.6. Determination of Rheological Properties
2.7. Electronic Nose Analysis
2.8. Volatile Compounds Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Characteristics
3.2. Analysis of Texture Characteristics
3.3. Particle Size Distribution
3.4. Determination of Rheological Properties
3.5. Electronic Nose Analysis
3.6. Volatile Flavor Components in Fermented Pea Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, L.; Zhu, W.; Jiang, B.; Chen, J.; Zhou, L.; Zhong, F. Volatile compounds analysis and biodegradation strategy of beany flavor in pea protein. Food Chem. 2023, 402, 134275. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, M.; Ohm, J.B.; Chen, B.; Rao, J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chem. 2019, 278, 665–673. [Google Scholar] [CrossRef]
- Vioque, J.; Giron-Calle, J.; Torres-Salas, V.; Elamine, Y.; Alaiz, M. Characterization of Vicia ervilia (bitter vetch) seed proteins, free amino acids, and polyphenols. J. Food Biochem. 2020, 44, e13271. [Google Scholar] [CrossRef]
- Taylor, S.L.; Marsh, J.T.; Koppelman, S.J.; Kabourek, J.L.; Johnson, P.E.; Baumert, J.L. A perspective on pea allergy and pea allergens. Trends Food Sci. Technol. 2021, 116, 186–198. [Google Scholar] [CrossRef]
- Yang, M.; Li, N.; Tong, L.; Fan, B.; Wang, L.; Wang, F.; Liu, L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. LWT-Food Sci. Technol. 2021, 152, 112390. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Lan, Y.; Rao, J.; Chen, B. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chem. 2019, 280, 83–95. [Google Scholar] [CrossRef]
- Shi, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Lactic acid fermentation: A novel approach to eliminate unpleasant aroma in pea protein isolates. LWT-Food Sci. Technol. 2021, 150, 111927. [Google Scholar] [CrossRef]
- Murat, C.; Bard, M.-H.; Dhalleine, C.; Cayot, N. Characterisation of odour active compounds along extraction process from pea flour to pea protein extract. Food Res. Int. 2013, 53, 31–41. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q.; Zhang, N.; Bak, K.H.; Soladoye, O.P.; Aluko, R.E.; Fu, Y.; Zhang, Y. Insights into formation, detection and removal of the beany flavor in soybean protein. Trends Food Sci. Technol. 2021, 112, 336–347. [Google Scholar] [CrossRef]
- Klupsaite, D.; Juodeikiene, G.; Zadeike, D.; Bartkiene, E.; Maknickiene, Z.; Liutkute, G. The influence of lactic acid fermentation on functional properties of narrow-leaved lupine protein as functional additive for higher value wheat bread. LWT-Food Sci. Technol. 2017, 75, 180–186. [Google Scholar] [CrossRef]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT-Food Sci. Technol. 2021, 146, 111434. [Google Scholar] [CrossRef]
- Garcia Arteaga, V.; Leffler, S.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Curr. Res. Food Sci. 2021, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Han, I.H.; Baik, B.K. Oligosaccharide Content and Composition of Legumes and Their Reduction by Soaking, Cooking, Ultrasound, and High Hydrostatic Pressure. Cereal Chem. 2006, 83, 428–433. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Jin, Z.; Gu, Z.; Rao, J.; Chen, B. Physicochemical property changes and aroma differences of fermented yellow pea flours: Role of Lactobacilli and fermentation time. Food Funct. 2021, 12, 6950–6963. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.; Zelena, K.; Krings, U.; Bez, J.; Eisner, P.; Berger, R.G. Improvement of the Aroma of Pea (Pisum sativum) Protein Extracts by Lactic Acid Fermentation. Food Biotechnol. 2012, 26, 58–74. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, W.; Xie, B.; Sun, Z. Insight into the Influence of Lactic Acid Bacteria Fermentation on the Variations in Flavor of Chickpea Milk. Foods 2022, 11, 2445. [Google Scholar] [CrossRef]
- Emkani, M.; Oliete, B.; Saurel, R. Pea Protein Extraction Assisted by Lactic Fermentation: Impact on Protein Profile and Thermal Properties. Foods 2021, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.R.; Dobson RC, J.; Morris, V.K.; Moggre, G.J. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb. Biotechnol. 2022, 15, 1404–1421. [Google Scholar] [CrossRef]
- Sichetti, M.; De Marco, S.; Pagiotti, R.; Traina, G.; Pietrella, D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition 2018, 53, 95–102. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, F.; Cai, W.; Zhao, X.; Shan, C. Evaluating the effect of lactic acid bacteria fermentation on quality, aroma, and metabolites of chickpea milk. Front. Nutr. 2022, 9, 1069714. [Google Scholar] [CrossRef]
- Li, W.; Mutuvulla, M.; Chen, X.; Jiang, M.; Dong, M. Isolation and identification of high viscosity-producing lactic acid bacteria from a traditional fermented milk in Xinjiang and its role in fermentation process. Eur. Food Res. Technol. 2012, 235, 497–505. [Google Scholar]
- Wei, G.; Dai, X.; Zhao, B.; Li, Z.; Tao, J.; Wang, T.; Huang, A. Structure-activity relationship of exopolysaccharides produced by Limosilactobacillus fermentum A51 and the mechanism contributing to the textural properties of yogurt. Food Hydrocoll. 2023, 144, 108993. [Google Scholar] [CrossRef]
- Rui, X.; Zhang, Q.; Huang, J.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Does lactic fermentation influence soy yogurt protein digestibility: A comparative study between soymilk and soy yogurt at different pH. J. Sci. Food Agric. 2019, 99, 861–867. [Google Scholar] [CrossRef]
- Peng, X.; Liao, Y.; Ren, K.; Liu, Y.; Wang, M.; Yu, A.; Tian, T.; Liao, P.; Huang, Z.; Wang, H.; et al. Fermentation performance, nutrient composition, and flavor volatiles in soy milk after mixed culture fermentation. Process Biochem. 2022, 121, 286–297. [Google Scholar] [CrossRef]
- Gao, Z.; Shen, P.; Lan, Y.; Cui, L.; Ohm, J.B.; Chen, B.; Rao, J. Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Res. Int. 2020, 131, 109045. [Google Scholar] [CrossRef] [PubMed]
- Iraporda, C.; Rubel, I.A.; Managó, N.; Manrique, G.D.; Garrote, G.L.; Abraham, A.G. Inulin addition improved probiotic survival in soy-based fermented beverage. World J. Microbiol. Biotechnol. 2022, 38, 133. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, H.N. Effect of Synbiotic Interaction of Fructooligosaccharide and Probiotics on the Acidification Profile, Textural and Rheological Characteristics of Fermented Soy Milk. Food Bioprocess Technol. 2012, 6, 3166–3176. [Google Scholar] [CrossRef]
- De Oliveira, S.C.; Bourlieu, C.; Ménard, O.; Bellanger, A.; Henry, G.; Rousseau, F.; Dirson, E.; Carrière, F.; Dupont, D.; Deglaire, A. Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chem. 2016, 211, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Sun, J.; Yang, S.; Wen, R.; Liu, L.; Du, P.; Li, C.; Zhang, G. Fermentation of mung bean milk by Lactococcus lactis: Focus on the physicochemical properties, antioxidant capacities and sensory evaluation. Food Biosci. 2022, 48, 101798. [Google Scholar] [CrossRef]
- Korma, S.A.; Li, L.; Ghamry, M.; Zhou, Q.; An, P.; Abdrabo, K.A.E.; Manzoor, M.F.; Rehman, A.; Niazi, S.; Cacciotti, I. Effect of co-fermentation system with isolated new yeasts on soymilk: Microbiological, physicochemical, rheological, aromatic, and sensory characterizations. Braz. J. Microbiol. 2022, 53, 1549–1564. [Google Scholar] [CrossRef]
- Xu, X.; Cui, H.; Yuan, Z.; Xu, J.; Li, J.; Liu, J.; Liu, H.; Zhu, D. Effects of different combinations of probiotics on rheology, microstructure, and moisture distribution of soy materials-based yogurt. J. Food Sci. 2022, 87, 2820–2830. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, S.; Khaliq, A.; Chughtai MF, J.; Nadeem, M.; Tahir, A.B.; Din, A.A.; Ntsefong, G.N.; Shariati, M.A.; Rebezov, M.; Yessimbekov, Z.; et al. Technofunctional quality assessment of soymilk fermented with Lactobacillus acidophilus and Lactobacillus casei. Biotechnol. Appl. Biochem. 2022, 69, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT-Food Sci. Technol. 2014, 57, 477–485. [Google Scholar] [CrossRef]
- Lv, H.; Teng, Q.; Chen, J.; Peng, L.; Ren, Z.; Ma, L.; Yang, W.; Yu, B.; Wu, Z.; Wan, C. Probiotic potential of a novel exopolysaccharide produced by Bifidobacterium animalis subsp. Lactis SF. LWT-Food Sci. Technol. 2024, 193, 115764. [Google Scholar] [CrossRef]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2019, 60, 2593–2605. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.; Cayot, N.; Cachon, R. Potential of Microorganisms to Decrease the “Beany” Off-Flavor: A Review. J. Agric. Food Chem. 2022, 70, 4493–4508. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; Casciano, F.; Gianotti, A. Volatilome changes during probiotic fermentation of combined soy and rice drinks. Food Funct. 2021, 12, 3159–3169. [Google Scholar] [CrossRef] [PubMed]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavor and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed]
- Smit, B.A.; Engels WJ, M.; Smit, G. Branched chain aldehydes: Production and breakdown pathways and relevance for flavor in foods. Appl. Microbiol. Biotechnol. 2009, 81, 987–999. [Google Scholar]
- Sharma, H.; Ozogul, F.; Bartkiene, E.; Rocha, J.M. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit. Rev. Food Sci. Nutr. 2023, 63, 4819–4841. [Google Scholar] [CrossRef]
- Chen, R.; Chen, W.; Chen, H.; Zhang, G.; Chen, W. Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J. Food Qual. 2018, 84, 9490435. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, S.B.; Kim, Y.S. Determination of Key Volatile Compounds Related to Long-Term Fermentation of Soy Sauce. J. Food Sci. 2019, 84, 2758–2776. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, P.; Liao, L.; Qin, Y.; Jiang, L.; Liu, Y. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2021, 361, 130055. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, J.; Wang, S.; Zhang, L.; Qiu, L.; Han, T.; Wang, Q.; Chang, S.K.-C.; Guo, S. Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Food Chem. 2015, 185, 422–429. [Google Scholar] [CrossRef]
- Schindler, S.; Wittig, M.; Zelena, K.; Krings, U.; Bez, J.; Eisner, P.; Berger, R.G. Lactic fermentation to improve the aroma of protein extracts of sweet lupin (Lupinus angustifolius). Food Chem. 2011, 128, 330–337. [Google Scholar] [CrossRef]
- Liu, Y.; Cadwallader, D.C.; Drake, M. Identification of predominant aroma components of dried pea protein concentrates and isolates. Food Chem. 2023, 406, 134998. [Google Scholar] [CrossRef]
- Shen, M.; Liu, Q.; Jia, H.; Jiang, Y.; Nie, S.; Xie, J.; Li, C.; Xie, M. Simultaneous determination of furan and 2-alkylfurans in heat-processed foods by automated static headspace gas chromatography-mass spectrometry. LWT-Food Sci. Technol. 2016, 72, 44–54. [Google Scholar] [CrossRef]
- Peng, X.; Yue, Q.; Chi, Q.; Liu, Y.; Tian, T.; Dai, S.; Yu, A.; Wang, S.; Wang, H.; Tong, X.; et al. Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha. Foods 2023, 12, 884. [Google Scholar] [CrossRef]
Number in Array | Sensor Name | General Description |
---|---|---|
1 | W1C | Aromatic compounds, benzols |
2 | W5S | Sensitive to nitrogen oxides |
3 | W3C | Sensitive aromatic components, ammonia |
4 | W6S | Selective to hydrides |
5 | W5C | Short-chain alkanes and aromatic components |
6 | W1S | Sensitive to methyl groups |
7 | W1W | Sensitive to sulfide |
8 | W2S | Sensitive to alcohols, aldehydes, and ketones |
9 | W2W | Sensitive to organic sulfides |
10 | W3S | Sensitive to long-chain alkanes |
Sample | Hardness (g) | Consistency (g.sec) | Cohesiveness (g) | Work of Cohesion (g.sec) |
---|---|---|---|---|
FP | 24.58 ± 0.98 a | 244.74 ± 13.21 a | −17.18 ± 0.71 a | −18.16 ± 0.31 a |
UFP | 21.05 ± 1.91 b | 198.76 ± 18.38 b | −15.08 ± 1.89 a | −17.46 ± 1.37 a |
No. | Compounds Name by Classes a | RT/min | Relative Quantities (μg/Kg) b | |
---|---|---|---|---|
UFP | FP | |||
Aldehydes | ||||
1 | Pentanal | 2.58 | 19.87 | 1.56 |
2 | Hexanal | 4.27 | 236.11 | 96.13 |
3 | Heptaldehyde | 6.49 | 4.98 | ND |
4 | 2-Hexenal | 7.48 | 3.17 | 0.86 |
5 | Octanal | 9.16 | 6.16 | 0.63 |
6 | (E)-Hept-2-enal | 10.23 | 5.52 | 11.78 |
7 | 2-pentenal | 10.87 | 1.51 | ND |
8 | Nonanal | 12.01 | 25.25 | 13.27 |
9 | (E)-2-octenal | 12.89 | 2.82 | 7.98 |
10 | (E,E)-2,4-decadienal | 21.09 | 0.33 | ND |
11 | Dodecanal | 13.55 | 0.22 | 0.90 |
12 | Decanal | 14.77 | 9.57 | 0.88 |
13 | (E,E)-2,4-nonadienal | 18.79 | 0.35 | ND |
14 | (E)-2-nonanal | 15.67 | ND | 2.84 |
15 | Benzaldehyde | 15.37 | 2.57 | ND |
Alcohols | ||||
16 | Alcohol | 2.21 | ND | 1.15 |
17 | cis-3-Hexen-1-ol | 12.32 | 2.82 | ND |
18 | 1-pentanol | 8.98 | ND | 3.30 |
19 | Trans-2-Octen-1-ol | 17.87 | ND | 1.45 |
20 | 1-Octen-3-ol | 14.90 | 3.19 | 6.74 |
21 | 3-Methyl-1-butanol | 7.99 | ND | 0.37 |
22 | 2-ethyl-1-hexanol | 14.86 | 1.98 | 7.51 |
23 | 1-nonanol | 18.86 | 5.17 | 1.87 |
24 | 1-hexanol | 11.47 | 18.06 | 6.34 |
25 | 1-octanol | 16.50 | ND | 4.08 |
26 | Benzyl alcohol | 17.79 | 0.30 | 0.28 |
27 | 1-heptanol | 14.01 | 2.80 | 1.60 |
28 | Linalool | 16.30 | 1.17 | 2.81 |
29 | 1-decanol | 21.18 | ND | 1.29 |
30 | 1-Dodecanol | 25.47 | ND | 0.29 |
Ketones | ||||
31 | 2,3-Pentanedione | 3.95 | 1.50 | 1.14 |
32 | 3-Heptanone | 5.78 | ND | 0.50 |
33 | 2-Undecanone | 17.27 | 0.29 | 0.27 |
34 | 2-Heptanone | 9.05 | 0.56 | ND |
35 | 1-Penten-3-one | 9.62 | ND | 1.92 |
36 | 2,3-hexanedione | 10.38 | ND | 3.38 |
37 | 6-Methylhept-5-en-2-one | 10.69 | 1.84 | 4.37 |
38 | 3-Penten-2-one | 12.49 | ND | 4.44 |
39 | (E,E)-3,5-Octadien-2-one | 15.42 | ND | 16.09 |
40 | Acetophenone | 18.39 | 0.60 | ND |
41 | Geranyl acetone | 23.03 | 0.51 | 3.14 |
Acids | ||||
42 | Acetic acid | 14.27 | 2.33 | 9.22 |
43 | Caproic acid | 23.14 | 0.39 | 1.13 |
44 | Nonanoic acid | 29.40 | ND | 0.39 |
45 | Benzoic acid | 34.34 | ND | 0.14 |
46 | Palmitic acid | 40.45 | 0.43 | 0.52 |
Esters | ||||
47 | Ethyl acetate | 1.75 | ND | 4.20 |
48 | Ethyl pyruvate | 1.82 | ND | 6.80 |
49 | Methyl octanoate | 11.75 | ND | 0.18 |
50 | Ethyl octanoate | 12.97 | ND | 14.37 |
51 | Ethyl decanoate | 18.14 | ND | 4.36 |
52 | 3-methylbutyl octanoate | 18.60 | ND | 0.27 |
53 | Tetrahydrofurfuryl acetate | 23.48 | ND | 4.37 |
54 | Dioctyl phthalate | 43.19 | 0.17 | 0.64 |
Furans | ||||
55 | 2-Ethylfuran | 2.27 | 2.56 | 1.55 |
56 | 2-pentylfuran | 7.35 | 5.90 | 2.53 |
Phenol | ||||
57 | Phenol | 26.27 | 0.18 | 0.58 |
58 | Eugenol | 29.20 | 3.53 | 10.69 |
59 | Isoeugenol | 32.54 | 0.28 | 0.72 |
Others | ||||
60 | Styrene | 8.23 | ND | 1.91 |
61 | trans-Caryophyllene | 12.20 | 1.73 | 0.84 |
62 | Iso-caryophyllene | 16.70 | 39.35 | 9.06 |
63 | Octadecyl vinyl ether | 17.38 | ND | 0.90 |
64 | Alpha-caryophyllene | 18.29 | 5.65 | 2.49 |
No. | Flavor Volatiles | Relative Quantities (μg/Kg) * | Percentage | ||
---|---|---|---|---|---|
UFP | FP | UFP (%) | FP (%) | ||
1 | Aldehydes | 318.43 | 136.83 | 74.70 | 47.34 |
2 | Alcohols | 35.49 | 39.08 | 8.33 | 13.52 |
3 | Ketones | 5.30 | 35.25 | 1.24 | 12.20 |
4 | Acids | 3.15 | 11.40 | 0.74 | 3.94 |
5 | Esters | 4.75 | 35.19 | 1.11 | 12.18 |
6 | Furans | 8.46 | 4.08 | 1.98 | 1.41 |
7 | Phenol | 3.99 | 11.99 | 0.94 | 4.15 |
8 | Others | 46.73 | 15.20 | 10.96 | 5.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, R.; Yang, B.; Yang, C.; Jin, Y.; Sui, W.; Zhang, G.; Wu, T. Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80. Foods 2024, 13, 2099. https://doi.org/10.3390/foods13132099
Sun R, Yang B, Yang C, Jin Y, Sui W, Zhang G, Wu T. Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80. Foods. 2024; 13(13):2099. https://doi.org/10.3390/foods13132099
Chicago/Turabian StyleSun, Ronghao, Bochun Yang, Conghao Yang, Yan Jin, Wenjie Sui, Guohua Zhang, and Tao Wu. 2024. "Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80" Foods 13, no. 13: 2099. https://doi.org/10.3390/foods13132099
APA StyleSun, R., Yang, B., Yang, C., Jin, Y., Sui, W., Zhang, G., & Wu, T. (2024). Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80. Foods, 13(13), 2099. https://doi.org/10.3390/foods13132099