Development of a Freshness Indicator for Assessing the Quality of Packaged Pork Products during Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of a pH-Sensitive Indicator for Application in Pork Packaging
2.3. Assessment of Factors Contributing to Pork Spoilage
2.3.1. Measurement of Microbial Growth during the Decay of Pork
2.3.2. Determination of Total Volatile Basic Nitrogen Content in Pork
2.3.3. Analysis of pH Variation during the Pork Storage Period
2.4. Quantitative Evaluation of Colorimetric Changes in the Freshness Indicator
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Chemical and Microbiological Indices during Pork Neck Degradation
3.1.1. Bacterial Enumeration throughout the Spoilage Period of Pork Neck Samples
3.1.2. Determination of TVB-N Contents in Pork Neck Samples
3.1.3. Measurement of pH Changes during Pork Neck Storage
3.2. Chromatic Measurement of the Freshness Indicator Using the CIE L*a*b* Color Space
3.3. Assessment of the Correlation between Chemical, Microbiological Parameters, and Color Changes of the Freshness Indicator
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otles, S.; Yalcin, B. Intelligent food packaging. LogForum 2008, 4, 3. [Google Scholar]
- Kalpana, S.; Priyadarshini, S.; Leena, M.M.; Moses, J.; Anandharamakrishnan, C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. 2019, 93, 145–157. [Google Scholar] [CrossRef]
- Sohail, M.; Sun, D.-W.; Zhu, Z. Recent developments in intelligent packaging for enhancing food quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 2650–2662. [Google Scholar] [CrossRef]
- Ghaani, M.; Cozzolino, C.A.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef]
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent packaging: Concepts and applications. J. Food Sci. 2005, 70, R1–R10. [Google Scholar] [CrossRef]
- Almasi, H.; Forghani, S.; Moradi, M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag. Shelf Life 2022, 32, 100839. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, Q.; Li, H.; Huang, G.; Ouyang, Q.; Zhao, J. Non-destructively sensing pork’s freshness indicator using near infrared multispectral imaging technique. J. Food Eng. 2015, 154, 69–75. [Google Scholar] [CrossRef]
- Sazonova, S.; Galoburda, R.; Gramatina, I. Effect of high pressure processing on microbial load in pork. Res. Rural Dev. 2017, 1, 237–243. [Google Scholar]
- Bodner-Montville, J.; Ahuja, J.K.; Ingwersen, L.A.; Haggerty, E.S.; Enns, C.W.; Perloff, B.P. USDA food and nutrient database for dietary studies: Released on the web. J. Food Compos. Anal. 2006, 19, S100–S107. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Holman, B.W.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Zhuang, Q.; Peng, Y.; Yang, D.; Nie, S.; Guo, Q.; Wang, Y.; Zhao, R. UV-fluorescence imaging for real-time non-destructive monitoring of pork freshness. Food Chem. 2022, 396, 133673. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Shukla, V.; Lalawmpuii, H.; Kumar, S. Indicator sensors for monitoring meat quality: A review. J. Pharmacogn. Phytochem. 2018, 7, 809–812. [Google Scholar]
- Pereira, P.F.; de Sousa Picciani, P.H.; Calado, V.; Tonon, R.V. Electrical gas sensors for meat freshness assessment and quality monitoring: A review. Trends Food Sci. Technol. 2021, 118, 36–44. [Google Scholar] [CrossRef]
- Zhai, X.; Zou, X.; Shi, J.; Huang, X.; Sun, Z.; Li, Z.; Sun, Y.; Li, Y.; Wang, X.; Holmes, M. Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sens. Actuators B Chem. 2020, 302, 127130. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Luo, X.; Zaitoon, A.; Lim, L.T. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2489–2519. [Google Scholar] [CrossRef] [PubMed]
- Jamróz, E.; Kulawik, P.; Guzik, P.; Duda, I. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 C. Food Hydrocoll. 2019, 97, 105211. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, L.-T. Colorimetric array indicator for NH3 and CO2 detection. Sens. Actuators B Chem. 2018, 255, 3216–3226. [Google Scholar] [CrossRef]
- Conway, E.J. Microdiffusion Analysis and Volumetric Error; Crosby Lockwood & Son Ltd.: London, UK, 1947. [Google Scholar]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Corradini, M.G. Shelf life of food products: From open labeling to real-time measurements. Annu. Rev. Food Sci. Technol. 2018, 9, 251–269. [Google Scholar] [CrossRef]
- Balamatsia, C.; Paleologos, E.; Kontominas, M.; Savvaidis, I. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 C: Possible role of biogenic amines as spoilage indicators. Antonie Van Leeuwenhoek 2006, 89, 9–17. [Google Scholar] [CrossRef]
- Alexandrakis, D.; Downey, G.; Scannell, A.G. Rapid non-destructive detection of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-infrared spectroscopy and multivariate statistics. Food Bioprocess Technol. 2012, 5, 338–347. [Google Scholar] [CrossRef]
- Katiyo, W.; de Kock, H.L.; Coorey, R.; Buys, E.M. Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT 2020, 128, 109468. [Google Scholar] [CrossRef]
- Zhao, F.; Wei, Z.; Zhou, G.; Kristiansen, K.; Wang, C. Effects of different storage temperatures on bacterial communities and functional potential in pork meat. Foods 2022, 11, 2307. [Google Scholar] [CrossRef]
- Chen, H.-Z.; Zhang, M.; Bhandari, B.; Yang, C.-H. Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT 2019, 99, 43–49. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nurfawaidi, A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.A.; Giteru, S.G.; Holman, B.W.; Hopkins, D.L. Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3620–3666. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, H.; Baek, S.; Han, S.; Kim, D.; Chung, S.; Yoon, J.-Y.; Seo, J. Colorimetric array freshness indicator and digital color processing for monitoring the freshness of packaged chicken breast. Food Packag. Shelf Life 2019, 22, 100408. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Park, S.-J.; Kim, J.-S.; Shin, H.-S. Development of freshness indicator for monitoring chicken breast quality and freshness during storage. Food Sci. Biotechnol. 2022, 31, 377–385. [Google Scholar] [CrossRef]
- Florek, M.; Litwinczuk, A.; Skalecki, P.; Ryszkowska-Siwko, M. Changes of physicochemical properties of bullocks and heifers meat during 14 days of ageing under vacuum. Pol. J. Food Nutr. Sci. 2007, 57, 281–287. [Google Scholar]
- Gómez, M.; Lorenzo, J.M. Effect of packaging conditions on shelf-life of fresh foal meat. Meat Sci. 2012, 91, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, X.; Xiao, Z.; Bi, W. Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork. LWT-Food Sci. Technol. 2015, 63, 519–526. [Google Scholar] [CrossRef]
- Lee, E.-J.; Shin, H.-S. Development of a freshness indicator for monitoring the quality of beef during storage. Food Sci. Biotechnol. 2019, 28, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Q.; Hao, M.; Yang, J.; Mo, H.-Z. Effects of glycinin basic polypeptide on sensory and physicochemical properties of chilled pork. Food Sci. Biotechnol. 2016, 25, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Crowley, K.; Pacquit, A.; Hayes, J.; Lau, K.T.; Diamond, D. A gas-phase colorimetric sensor for the detection of amine spoilage products in packaged fish. In Proceedings of the SENSORS, Irvine, CA, USA, 31 October–3 November 2005; IEEE: New York, NY, USA, 2005; p. 4. [Google Scholar]
- Prietto, L.; Mirapalhete, T.C.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Lim, L.-T.; Dias, A.R.G.; da Rosa Zavareze, E. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT 2017, 80, 492–500. [Google Scholar] [CrossRef]
- Ran, R.; Wang, L.; Su, Y.; He, S.; He, B.; Li, C.; Wang, C.; Liu, Y.; Chen, S. Preparation of pH-indicator films based on soy protein isolate/bromothymol blue and methyl red for monitoring fresh-cut apple freshness. J. Food Sci. 2021, 86, 4594–4610. [Google Scholar] [CrossRef]
Storage Time (h) | |||||||
---|---|---|---|---|---|---|---|
0 | 6 | 12 | 18 | 24 | 30 | 36 | |
TBC (log CFU/g) | 3.95 ± 0.10 a | 5.65 ± 0.05 b | 6.12 ± 0.04 c | 6.90 ± 0.01 d | 7.45 ± 0.01 e | 8.19 ± 0.04 f | 8.54 ± 0.03 g |
TVB-N (mg/100 g) | 6.30 ± 0.01 a | 9.10 ± 0.70 ab | 11.90 ± 0.70 bc | 14.35 ± 1.05 cd | 16.80 ± 0.01 de | 19.25 ± 0.35 e | 25.20 ± 2.80 f |
pH | 6.11 ± 0.01 bc | 6.03 ± 0.01 a | 6.07 ± 0.01 b | 6.12 ± 0.01 c | 6.16 ± 0.02 d | 6.33 ± 0.01 e | 6.45 ± 0.01 f |
Storage Time (Day) | |||||
---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | |
TBC (log CFU/g) | 4.06 ± 0.01 a | 5.87 ± 0.02 b | 6.93 ± 0.01 c | 8.35 ± 0.07 d | 8.59 ± 0.07 e |
TVB-N (mg/100 g) | 6.30 ± 0.70 a | 8.05 ± 1.05 a | 16.80 ± 2.80 b | 22.75 ± 0.35 c | 24.50 ± 0.00 c |
pH | 6.17 ± 0.02 a | 6.22 ± 0.02 b | 6.31 ± 0.01 c | 6.49 ± 0.01 d | 6.50 ± 0.02 d |
Storage Time (Day) | ||||||
---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | |
TBC (log CFU/g) | 3.90 ± 0.05 a | 4.75 ± 0.01 b | 6.18 ± 0.02 c | 6.85 ± 0.09 d | 7.03 ± 0.08 d | 7.50 ± 0.07 e |
TVB-N (mg/100 g) | 6.35 ± 1.05 a | 8.85 ± 0.70 ab | 10.25 ± 1.05 b | 16.80 ± 2.80 c | 21.35 ± 0.35 d | 24.50 ± 0.80 e |
pH | 6.11 ± 0.02 c | 5.90 ± 0.01 a | 6.03 ± 0.04 b | 6.35 ± 0.02 d | 6.53 ± 0.02 e | 6.61 ± 0.01 f |
Parameter | L* | a* | b* | ΔE | TBC | TVB-N | pH | |
---|---|---|---|---|---|---|---|---|
25 °C | L* | 1 | 0.806 * p = 0.029 | 0.181 p = 0.698 | −0.747 p = 0.054 | −0.754 p = 0.050 | −0.839 * p = 0.018 | −0.904 ** p = 0.005 |
a* | 0.806 * p = 0.029 | 1 | −0.130 p = 0.781 | −0.993 ** p = 0.000 | −0.991 ** p = 0.000 | −0.975 ** p = 0.000 | −0.829 * p = 0.021 | |
b* | 0.181 p = 0.698 | −0.130 p = 0.781 | 1 | 0.234 p = 0.613 | 0.248 p = 0.591 | −0.003 p = 0.994 | −0.406 p = 0.367 | |
ΔE | −0.747 p = 0.054 | −0.993 p = 0.000 | 0.234 p = 0.613 | 1 | 0.998 ** p = 0.000 | 0.959 ** p = 0.001 | 0.764* p = 0.046 | |
TBC | −0.754 p = 0.050 | −0.991 ** p = 0.000 | 0.248 p = 0.591 | 0.998 ** p = 0.000 | 1 | 0.953 ** p = 0.001 | 0.762 * p = 0.047 | |
TVB-N | −0.839 * p = 0.018 | −0.975 ** p = 0.001 | −0.003 p = 0.994 | 0.959 ** p = 0.001 | 0.953 ** p = 0.001 | 1 | 0.897 ** p = 0.006 | |
pH | −0.904 ** p = 0.005 | −0.829 * p = 0.021 | −0.406 p = 0.367 | 0.764 * p = 0.046 | 0.762 * p = 0.047 | 0.897 ** p = 0.006 | 1 |
Parameter | L* | a* | b* | ΔE | TBC | TVB-N | pH | |
---|---|---|---|---|---|---|---|---|
8 °C | L* | 1 | 0.994 ** p = 0.001 | 0.181 p = 0.771 | −0.969 ** p = 0.007 | −0.986 ** p = 0.002 | −0.986 ** p = 0.002 | −0.968 ** p = 0.007 |
a* | 0.994 ** p = 0.001 | 1 | 0.190 p = 0.759 | −0.979 ** p = 0.004 | −0.975 ** p = 0.005 | −0.967 ** p = 0.007 | −0.955 * p = 0.011 | |
b* | 0.181 p = 0.771 | 0.190 p = 0.759 | 1 | 0.003 p = 0.997 | −0.046 p = 0.941 | −0.290 p = 0.636 | −0.290 p = 0.636 | |
ΔE | −0.969 ** p = 0.007 | −0.979 ** p = 0.004 | 0.003 p = 0.997 | 1 | 0.978 ** p = 0.004 | 0.915 * p = 0.029 | 0.910 * p = 0.032 | |
TBC | −0.986 ** p = 0.002 | −0.975 ** p = 0.005 | −0.046 p = 0.941 | 0.978 ** p = 0.004 | 1 | 0.962 ** p = 0.009 | 0.961 ** p = 0.009 | |
TVB-N | −0.986 ** p = 0.002 | −0.967 * p = 0.007 | −0.290 p = 0.636 | 0.915 * p = 0.029 | 0.962 ** p = 0.009 | 1 | 0.982 ** p = 0.003 | |
pH | −0.968 ** p = 0.007 | −0.955 * p = 0.011 | −0.290 p = 0.636 | 0.910 * p = 0.032 | 0.961 ** p = 0.009 | 0.982 ** p = 0.003 | 1 |
Parameter | L* | a* | b* | ΔE | TBC | TVB-N | pH | |
---|---|---|---|---|---|---|---|---|
4 °C | L* | 1 | 0.686 p = 0.132 | −0.046 p = 0.931 | −0.600 p = 0.208 | −0.826 * p = 0.043 | −0.935 ** p = 0.006 | −0.987 ** p = 0.000 |
a* | 0.686 p = 0.132 | 1 | −0.752 p = 0.084 | −0.993 ** p = 0.000 | −0.963 ** p = 0.002 | −0.863 * p = 0.027 | −0.666 p = 0.149 | |
b* | −0.046 p = 0.931 | −0.752 p = 0.084 | 1 | 0.824 * p = 0.044 | 0.571 p = 0.237 | 0.350 p = 0.497 | 0.022 p = 0.967 | |
ΔE | −0.600 p = 0.208 | −0.993 ** p = 0.000 | 0.824 * p = 0.044 | 1 | 0.926 ** p = 0.008 | 0.810 p = 0.051 | 0.578 p = 0.229 | |
TBC | −0.826 * p = 0.043 | −0.973 ** p = 0.002 | 0.571 p = 0.237 | 0.926 ** p = 0.008 | 1 | 0.913 * p = 0.011 | 0.793 p = 0.060 | |
TVB-N | −0.935 ** p = 0.006 | −0.863 * p = 0.027 | 0.350 p = 0.497 | 0.843 * p = 0.074 | 0.913 * p = 0.011 | 1 | 0.936 * p = 0.006 | |
pH | −0.987 ** p = 0.000 | −0.666 p = 0.149 | 0.022 p = 0.967 | 0.578 p = 0.229 | 0.793 p = 0.060 | 0.936 ** p = 0.006 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-Y.; Lim, K.-J.; Lee, Y.-H.; Shin, H.-S. Development of a Freshness Indicator for Assessing the Quality of Packaged Pork Products during Refrigerated Storage. Foods 2024, 13, 2097. https://doi.org/10.3390/foods13132097
Lee G-Y, Lim K-J, Lee Y-H, Shin H-S. Development of a Freshness Indicator for Assessing the Quality of Packaged Pork Products during Refrigerated Storage. Foods. 2024; 13(13):2097. https://doi.org/10.3390/foods13132097
Chicago/Turabian StyleLee, Ga-Young, Kyung-Jik Lim, Yoon-Hee Lee, and Han-Seung Shin. 2024. "Development of a Freshness Indicator for Assessing the Quality of Packaged Pork Products during Refrigerated Storage" Foods 13, no. 13: 2097. https://doi.org/10.3390/foods13132097
APA StyleLee, G.-Y., Lim, K.-J., Lee, Y.-H., & Shin, H.-S. (2024). Development of a Freshness Indicator for Assessing the Quality of Packaged Pork Products during Refrigerated Storage. Foods, 13(13), 2097. https://doi.org/10.3390/foods13132097