Comprehensive Screening of Salinomycin in Feed and Its Residues in Poultry Tissues Using Microbial Inhibition Tests Coupled to Enzyme-Linked Immunosorbent Assay (ELISA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material
2.2. Methods
2.3. Procedure of Tube Tests Premi®Test and Explorer 2.0
2.3.1. Principle
2.3.2. Preparation of the Samples
2.3.3. Screening of the Samples
2.3.4. Reading the Results of the Premi®Test
2.3.5. Reading the Results of the Explorer 2.0 Test
2.4. Procedure of Plate Test STAR
2.4.1. Principle
2.4.2. Preparation of Test Plates
2.4.3. Preparation and Screening of the Samples
2.4.4. Reading the Results
2.4.5. Verification of the Sensitivity of Bacterial Strains to Control Antibiotic Solutions
2.4.6. Determining the Sensitivity of the Used Methods to Salinomycin
2.5. ELISA
2.5.1. Principle
2.5.2. Preparation of the Samples
2.5.3. Screening of the Samples
2.6. Data Analysis
3. Results
3.1. Premi®Test, Explorer 2.0 Test
3.2. STAR
3.3. ELISA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dasenaki, M.E.; Thomaidis, N.S. Multi-Residue Methodology for the Determination of 16 Coccidiostats in Animal Tissues and Eggs by Hydrophilic Interaction Liquid Chromatography—Tandem Mass Spectrometry. Food Chem. 2019, 275, 668–680. [Google Scholar] [CrossRef]
- Huet, A.-C.; Bienenmann-Ploum, M.; Vincent, U.; Delahaut, P. Screening Methods and Recent Developments in the Detection of Anticoccidials. Anal. Bioanal. Chem. 2013, 405, 7733–7751. [Google Scholar] [CrossRef] [PubMed]
- Mund, M.D.; Khan, U.H.; Tahir, U.; Mustafa, B.-E.; Fayyaz, A. Antimicrobial Drug Residues in Poultry Products and Implications on Public Health: A Review. Int. J. Food Prop. 2017, 20, 1433–1446. [Google Scholar] [CrossRef]
- Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2003; Volume 268.
- Radičević, T.; Janković, S.; Stefanović, S.; Nikolić, D.; Đinović-Stojanović, J.; Spirić, D. Coccidiostats in Unmedicated Feedingstuffs for Poultry. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012080. [Google Scholar] [CrossRef]
- FVE Position Paper on Coccidiostats or Anticoccidials—FVE—Federation of Veterinarians of Europe. Available online: https://fve.org/cms/wp-content/uploads/FVE-position-paper-on-coccidiostats-or-anticoccidials.pdf (accessed on 2 March 2024).
- Story, P.; Doube, A. A Case of Human Poisoning by Salinomycin, an Agricultural Antibiotic. N. Z. Med. J. 2004, 117, U799. [Google Scholar]
- Tefas, L.R.; Barbălată, C.; Tefas, C.; Tomuță, I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021, 13, 1120. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Lourdes Bastos, M.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Safety and Efficacy of Sacox® microGranulate (Salinomycin Sodium) for Chickens for Fattening and Chickens Reared for Laying. EFSA J. 2017, 15, e04670. [Google Scholar] [CrossRef]
- Pratiwi, R.; Ramadhanti, S.P.; Amatulloh, A.; Megantara, S.; Subra, L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023, 12, 3422. [Google Scholar] [CrossRef]
- Tuck, S.; Furey, A.; Danaher, M. Analysis of Anthelmintic and Anticoccidial Drug Residues in Animal-Derived Foods. In Chemical Analysis of Non-Antimicrobial Veterinary Drug Residues in Food; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 245–309. ISBN 978-1-118-69678-1. [Google Scholar]
- Elliott, C.T.; Kennedy, D.G.; McCaughey, W.J. Critical Review. Methods for the Detection of Polyether Ionophore Residues in Poultry. Analyst 1998, 123, 45R–56R. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2009; Volume 015.
- Regulation (EC) No 470/2009 of the European Parliament and of the Council of 6 May 2009 Laying down Community Procedures for the Establishment of Residue Limits of Pharmacologically Active Substances in Foodstuffs of Animal Origin, Repealing Council Regulation (EEC) No 2377/90 and Amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No 726/2004 of the European Parliament and of the Council (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2009; Volume 152.
- Annual Report 2008|EFSA. Available online: https://www.efsa.europa.eu/en/corporate/pub/ar08 (accessed on 20 March 2024).
- Commission Regulation (EC) No 124/2009 of 10 February 2009 Setting Maximum Levels for the Presence of Coccidiostats or Histomonostats in Food Resulting from the Unavoidable Carry-Over of These Substances in Non-Target Feed (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2009; Volume 040.
- Commission Implementing Regulation (EU) 2017/1914 of 19 October 2017 Concerning the Authorisation of Salinomycin Sodium (Sacox 120 microGranulate and Sacox 200 microGranulate) as a Feed Additive for Chickens for Fattening and Chickens Reared for Laying and Repealing Regulations (EC) No 1852/2003 and (EC) No 1463/2004 (Holder of Authorisation Huvepharma NV) (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2017; Volume 271.
- Tkacikova, S.; Kožárová, I.; Mačanga, J.; Levkut, M. Determination of Lasalocid Residues in the Tissues of Broiler Chickens by Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A 2012, 29, 761–769. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) 2022/1644 of 7 July 2022 Supplementing Regulation (EU) 2017/625 of the European Parliament and of the Council with Specific Requirements for the Performance of Official Controls on the Use of Pharmacologically Active Substances Authorised as Veterinary Medicinal Products or as Feed Additives and of Prohibited or Unauthorised Pharmacologically Active Substances and Residues Thereof (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2022; Volume 248.
- Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to Be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2021; Volume 180.
- Commission Implementing Regulation (EU) 2022/1646 of 23 September 2022 on Uniform Practical Arrangements for the Performance of Official Controls as Regards the Use of Pharmacologically Active Substances Authorised as Veterinary Medicinal Products or as Feed Additives and of Prohibited or Unauthorised Pharmacologically Active Substances and Residues Thereof, on Specific Content of Multi-Annual National Control Plans and Specific Arrangements for Their Preparation (Text with EEA Relevance); European Parliament, Council of the European Union: Washington, DC, USA, 2022; Volume 248.
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast Screening Methods to Detect Antibiotic Residues in Food Samples. TrAC Trends Anal. Chem. 2010, 29, 1038–1049. [Google Scholar] [CrossRef]
- Mata, L.; Sanz, D.; Razquin, P. Validation of the Explorer® 2.0 Test Coupled to e-Reader® for the Screening of Antimicrobials in Muscle from Different Animal Species. Food Addit. Contam. Part A 2014, 31, 1496–1505. [Google Scholar] [CrossRef]
- Vahedi Nouri, N.; Salehi, A. Investigation of the Antibiotic Residues of Broiler Meat in Northern Iran. JSFA Rep. 2024, 4, 33–38. [Google Scholar] [CrossRef]
- Gaudin, V.; Hedou, C.; Rault, A.; Verdon, E. Validation of a Five Plate Test, the STAR Protocol, for the Screening of Antibiotic Residues in Muscle from Different Animal Species According to European Decision 2002/657/EC. Food Addit. Contam. Part A 2010, 27, 935–952. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- Gondová, Z.; Kožárová, I.; Poláková, Z.; Mad’arová, M. Comparison of Four Microbiological Inhibition Tests for the Screening of Antimicrobial Residues in the Tissues of Food-Producing Animals. Ital. J. Anim. Sci. 2014, 13, 3521. [Google Scholar] [CrossRef]
- Kožárová, I.; Juščáková, D.; Šimková, J.; Milkovičová, M.; Kožár, M. Effective Screening of Antibiotic and Coccidiostat Residues in Food of Animal Origin by Reliable Broad-Spectrum Residue Screening Tests. Ital. J. Anim. Sci. 2020, 19, 487–501. [Google Scholar] [CrossRef]
- Chen, G.-L.; Fang, Y.-Y. The LC-MS/MS Methods for the Determination of Specific Antibiotics Residues in Food Matrices. In Mass Spectrometry in Food Safety: Methods and Protocols; Zweigenbaum, J., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 309–355. ISBN 978-1-61779-136-9. [Google Scholar]
- Delatour, T.; Racault, L.; Bessaire, T.; Desmarchelier, A. Screening of Veterinary Drug Residues in Food by LC-MS/MS. Background and Challenges. Food Addit. Contam. Part A 2018, 35, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Mokh, S.; El Hawari, K.; Rahim, H.A.; Al Iskandarani, M.; Jaber, F. Antimicrobial Residues Survey by LC-MS in Food-Producing Animals in Lebanon. Food Addit. Contam. Part B 2020, 13, 121–129. [Google Scholar] [CrossRef]
- Oyedeji, A.O.; Msagati, T.A.M.; Williams, A.B.; Benson, N.U. Detection and Quantification of Multiclass Antibiotic Residues in Poultry Products Using Solid-Phase Extraction and High-Performance Liquid Chromatography with Diode Array Detection. Heliyon 2021, 7, e08469. [Google Scholar] [CrossRef]
- Tkáciková, S.; Kozárová, I.; Máté, D. Liquid Chromatography Tandem Mass Spectrometry Determination of Maduramycin Residues in the Tissues of Broiler Chickens. Food Addit. Contam. Part A 2010, 27, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Kaw, C.H.; Hefle, S.L.; Taylor, S.L. Sandwich Enzyme-Linked Immunosorbent Assay (ELISA) for the Detection of Lupine Residues in Foods. J. Food Sci. 2008, 73, T135–T140. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.; Taylor, S.L.; Goodman, R.E. Development of a Sandwich Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Buckwheat Residues in Food. J. Food Sci. 2010, 75, T110–T117. [Google Scholar] [CrossRef]
- Reig, M.; Toldra, F. Patents for ELISA Tests to Detect Antibiotic Residues in Foods of Animal Origin. Recent Pat. Food Nutr. Agric. 2011, 3, 110–114. [Google Scholar] [PubMed]
- Stead, S.; Sharman, M.; Tarbin, J.A.; Gibson, E.; Richmond, S.; Stark, J.; Geijp, E. Meeting Maximum Residue Limits: An Improved Screening Technique for the Rapid Detection of Antimicrobial Residues in Animal Food Products. Food Addit. Contam. 2004, 21, 216–221. [Google Scholar] [CrossRef] [PubMed]
- R–25. 2013; Screening Test for Determination of Antibiotic Residues Using Five Bacterial Strains (STAR Method). List of Official Methods for Laboratory Diagnostics of Food and Feed. The State Veterinary and Food Administration of the Slovak Republic: Bratislava, Slovak Republic, 2013.
- Withdrawal Period|European Medicines Agency. Available online: https://www.ema.europa.eu/en/glossary/withdrawal-period (accessed on 21 March 2024).
- Serrano, M.J.; Mata, L.; García-Gonzalo, D.; Antón, A.; Razquin, P.; Condón, S.; Pagán, R. Optimization and Validation of a New Microbial Inhibition Test for the Detection of Antimicrobial Residues in Living Animals Intended for Human Consumption. Foods 2021, 10, 1897. [Google Scholar] [CrossRef] [PubMed]
- Poláková, Z.; Kožárová, I. História Vývoja Skríningových Metód. In Proceedings of the Hygiena a Technologie Potravin XLIV; Veterinárni a Farmaceutická Univerzita Brno: Brno, Czech Republic, 2014; p. 43. [Google Scholar]
- Picó, Y.; Barceló, D. The Expanding Role of LC-MS in Analyzing Metabolites and Degradation Products of Food Contaminants. TrAC Trends Anal. Chem. 2008, 27, 821–835. [Google Scholar] [CrossRef]
- Hriciková, S.; Kožárová, I.; Koréneková, B.; Marcinčák, S. The Effect of the Supplementation of Humic Substances and Fermented Products in the Feed on the Content of Salinomycin Residues in Poultry Tissues. Foods 2024, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Qian, C.; Jiang, H.; Yang, H. Development of an Enzyme-Linked Immunosorbent Assay for the Determination of Maduramicin in Broiler Chicken Tissues. J. Agric. Food Chem. 2001, 49, 2697–2701. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, S.; Ding, S.; He, F.; Xiao, X. Monoclonal Antibody-Based Immunoassay for the Detection of Maduramicin in Chicken Tissues. Anal. Lett. 2009, 42, 2793–2806. [Google Scholar] [CrossRef]
- Beier, R.C.; Feldman, S.F.; Dutko, T.J.; Petersen, H.D.; Stanker, L.H. Immunoassay and HPLC Detection of Halofuginone in Chicken Liver Samples Obtained from Commercial Slaughterhouses: A Combined Study. Food Agric. Immunol. 2002, 14, 29–40. [Google Scholar] [CrossRef]
- Huet, A.-C.; Mortier, L.; Daeseleire, E.; Fodey, T.; Elliott, C.; Delahaut, P. Screening for the Coccidiostats Halofuginone and Nicarbazin in Egg and Chicken Muscle: Development of an ELISA. Food Addit. Contam. 2005, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Gaudin, V.; Laurentie, M. Application of Total Error Approach to Assess the Performance of a Biological Method (ELISA) to Detect Nicarbazin Residues in Eggs. J. Chromatogr. B 2009, 877, 2358–2362. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Satake, A.; Kido, Y.; Tsuji, A. Monoclonal-Based Enzyme-Linked Immunosorbent Assay and Immunochromatographic Rapid Assay for Salinomycin. Anal. Chim. Acta 2001, 437, 31–38. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, X.; Song, M.; Jiang, H.; Ding, S.; Shen, J.; Li, J. An Enzyme-Linked Immunosorbent Assay to Detect Salinomycin Residues Based on Immunomagnetic Bead Clean-Up. Food Anal. Methods 2017, 10, 3042–3051. [Google Scholar] [CrossRef]
- The European Food Safety Authority (EFSA); Brocca, D.; Salvatore, S. Report for 2021 on the Results from the Monitoring of Veterinary Medicinal Product Residues and Other Substances in Live Animals and Animal Products; EFSA: Parma, Italy, 2023; Volume 20, p. 7886E. [Google Scholar] [CrossRef]
- Food Consumption in the SR in 2022. Available online: https://slovak.statistics.sk/wps/portal/88fb53c5-84e2-4237-bd72-d72ff5d58a2d/!ut/p/z1/jVJLU8IwEP4tHDiGbPPuMYrWOuBMwWLNxUlKi7XSAq34-PUWRmf0YGVnstnsfF_2iQ1OsKnsvljZtqgr-9y97414iGSozs48DSD5GMLreBwFc98DBvjuCDgP9BWTEwA1CTiE-iqe-RGloCk2p_DhD9FwGr8HYPq_v8amcOvRa7oewUgqCVRKxQjzBaf0UH7xtN0ajU1aV2321uKkdo19RFmFiipHtmyH0Bn1bt21bF9lqNns7P59CPsma8vuljnJpIMUSSEFYkI55FJrkVAKKPV963P3OwuPKCkY8ZjyCe3sniyaEm1e3BA69VyUNi2y78A_PUrljtOUI8UyghihErmlJKg7ec6XXFmyPAQhu-n5dIXNxraPh-pqnJxEvcPm2GYdRdF8slhAsCCXEFIvgJs4BpjJfwC34gvQt0f_TXLelHizjuPkY5JPW-7E7CLXejD4BKnvrXs!/dz/d5/L0lHSkovd0RNQURrQUVnQSEhLzROVkUvZW4!/ (accessed on 21 March 2024).
- Food Consumption in the SR in 2015. Available online: http://www.slpk.sk/eldo/susr/publikacia_spotr_potr_2015_portal.pdf (accessed on 21 March 2024).
Sampling | Matrix | Premi®Test | Explorer 2.0 Test |
---|---|---|---|
A | Breast | + | + |
Thigh upper | + | + | |
Thigh lower | + | + | |
Heart | + | + | |
Liver | + | + | |
Gizzard | + | + | |
Kidney | + | + | |
Lungs | + | + | |
Spleen | + | + | |
Skin | + | + | |
Fat | + | + | |
B | Breast | - | - |
Thigh upper | - | - | |
Thigh lower | - | - | |
Heart | - | - | |
Liver | - | - | |
Gizzard | - | - | |
Kidney | - | - | |
Lungs | - | - | |
Spleen | - | - | |
Skin | - | - | |
Fat | - | - | |
Feed | BR2 | + | + |
BR3 | - | - |
Sampling | Matrix | STAR | ||||
---|---|---|---|---|---|---|
B. stearothermophilus ATCC 10149 | B. subtilis BGA | B. cereus ATCC 11778 | E. coli ATCC 11303 | K. rhizophila ATCC 9341 | ||
A | Breast | 3.63 ± 0.28 | - | - | - | 2.34 ± 0.51 |
Thigh upper | 4.97 ± 0.59 | - | - | - | 2.09 ± 0.50 | |
Thigh lower | 4.46 ± 0.45 | - | - | - | 2.13 ± 0.42 | |
Heart | 7.69 ± 0.49 | - | - | - | 1.56 ± 0.36 | |
Liver | 11.38 ± 0.43 | 2.33 ± 0.85 | - | - | 3.71 ± 0.27 | |
Gizzard | 4.01 ± 0.20 | - | - | - | 1.07 ± 0.42 | |
Kidney | 7.72 ± 1.01 | - | - | - | 1.73 ± 0.41 | |
Lungs | 9.98 ± 0.95 | 2.87 ± 0.45 | - | - | 1.67 ± 0.29 | |
Spleen | 12.22 ± 0.12 | - | - | - | 4.23 ± 0.39 | |
Skin | 4.37 ± 0.18 | - | - | - | 0.95 ± 0.37 | |
Fat | 4.54 ± 0.48 | - | - | - | 1.04 ± 0.80 | |
B | Breast | 1.34 ± 0.69 | - | - | - | 0.77 ± 0.20 |
Thigh upper | 2.28 ± 0.20 | - | - | - | - | |
Thigh lower | 2.17 ± 0.15 | - | - | - | - | |
Heart | 2.45 ± 0.78 | - | - | - | 1.01 ± 0.26 | |
Liver | 3.78 ± 0.14 | - | - | - | 1.13 ± 0.38 | |
Gizzard | 1.85 ± 0.41 | - | - | - | - | |
Kidney | 3.71 ± 0.24 | - | - | - | 1.14 ± 0.13 | |
Lungs | 3.48 ± 0.27 | - | - | - | 1.10 ± 0.33 | |
Spleen | 3.55 ± 0.41 | - | - | - | 1.54 ± 0.14 | |
Skin | 1.43 ± 0.15 | - | - | - | 0.39 ± 0.14 | |
Fat | 1.11 ± 0.23 | - | - | - | - | |
Feed | BR2 | 16.75 ± 0.31 | - | 0.12 ± 0.06 | - | - |
BR3 | - | - | - | - | - |
Antibiotic | STAR | ||||
---|---|---|---|---|---|
B. stearothermophilus ATCC 10149 | B. subtilis BGA | B. cereus ATCC 11778 | E. coli ATCC 11303 | K. rhizophila ATCC 9341 | |
SM | 4.41 ± 0.58 | - | - | - | - |
CHTC | - | - | 8.67 ± 0.25 | - | - |
STM | - | 5.86 ± 0.36 | - | - | - |
TYL | - | - | - | - | 6.53 ± 0.33 |
CF | - | - | - | 8.47 ± 0.46 | - |
Standard (µg.L−1) | STAR | Premi® Test | Explorer 2.0 Test | ||||
---|---|---|---|---|---|---|---|
B. stearothermophilus ATCC 10149 | B. subtilis BGA | B. cereus ATCC 11778 | E. coli ATCC 11303 | K. rhizophila ATCC 9341 | |||
SAL 500 | 7.52 ± 0.39 | - | 1.37 ± 0.23 | - | - | + | + |
SAL 100 | 6.02 ± 0.41 | - | - | - | - | + | + |
SAL 75 | 2.24 ± 0.34 | - | - | - | - | + | + |
SAL 50 | 1.91 ± 0.49 | - | - | - | - | + | + |
Sampling | Matrix | ELISA Salinomycin Concentration (mg.kg−1) |
---|---|---|
A | Breast | 0.025 |
Thigh upper | 0.032 | |
Thigh lower | 0.035 | |
Heart | 0.045 | |
Liver | 0.241 | |
Gizzard | 0.059 | |
Kidney | 0.125 | |
Lungs | 0.134 | |
Spleen | 0.157 | |
Skin | 0.079 | |
Fat | 0.082 | |
B | Breast | 0.003 |
Thigh upper | 0.006 | |
Thigh lower | 0.004 | |
Heart | 0.013 | |
Liver | 0.076 | |
Gizzard | 0.010 | |
Kidney | 0.026 | |
Lungs | 0.015 | |
Spleen | 0.034 | |
Skin | 0.032 | |
Fat | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spišáková, D.; Kožárová, I.; Hriciková, S.; Marcinčák, S. Comprehensive Screening of Salinomycin in Feed and Its Residues in Poultry Tissues Using Microbial Inhibition Tests Coupled to Enzyme-Linked Immunosorbent Assay (ELISA). Foods 2024, 13, 1661. https://doi.org/10.3390/foods13111661
Spišáková D, Kožárová I, Hriciková S, Marcinčák S. Comprehensive Screening of Salinomycin in Feed and Its Residues in Poultry Tissues Using Microbial Inhibition Tests Coupled to Enzyme-Linked Immunosorbent Assay (ELISA). Foods. 2024; 13(11):1661. https://doi.org/10.3390/foods13111661
Chicago/Turabian StyleSpišáková, Daniela, Ivona Kožárová, Simona Hriciková, and Slavomír Marcinčák. 2024. "Comprehensive Screening of Salinomycin in Feed and Its Residues in Poultry Tissues Using Microbial Inhibition Tests Coupled to Enzyme-Linked Immunosorbent Assay (ELISA)" Foods 13, no. 11: 1661. https://doi.org/10.3390/foods13111661
APA StyleSpišáková, D., Kožárová, I., Hriciková, S., & Marcinčák, S. (2024). Comprehensive Screening of Salinomycin in Feed and Its Residues in Poultry Tissues Using Microbial Inhibition Tests Coupled to Enzyme-Linked Immunosorbent Assay (ELISA). Foods, 13(11), 1661. https://doi.org/10.3390/foods13111661