Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Morphological Parameters and Fruit Quality Analyses
2.3. Antioxidant Compounds Extraction and Analyses
2.4. HPLC/DAD/TOF
2.5. Gas Chromatography/Mass-Spectrometry
2.6. Sensory Test
2.7. Statistics
3. Results
3.1. Morphological Parameters
3.2. Fruit Quality Analyses
3.3. Antioxidant Compounds Extraction and Analyses
HPLC/DAD/TOF
3.4. GC/MS
3.5. Sensory Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Ballelli, S.; Banfi, E. An Updated Checklist of the Vascular Flora Native to Italy. Plant Biosyst. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Albano, A.; Alessandrini, A.; Bacchetta, G.; Ballelli, S.; et al. An Updated Checklist of the Vascular Flora Alien to Italy. Plant Biosyst. 2018, 152, 556–592. [Google Scholar] [CrossRef]
- Bartolucci, F.; Galasso, G.; Peruzzi, L.; Conti, F. Report 2020 on Plant Biodiversity in Italy: Native and Alien Vascular Flora. Nat. Hist. Sci. 2021, 8, 41–54. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; de Haan, S.; Jones, A.D.; Creed-Kanashiro, H.; Tello, M.; Carrasco, M.; Meza, K.; Plasencia Amaya, F.; Cruz-Garcia, G.S.; Tubbeh, R. The Biodiversity of Food and Agriculture (Agrobiodiversity) in the Anthropocene: Research Advances and Conceptual Framework. Anthropocene 2019, 25, 100192. [Google Scholar] [CrossRef]
- Labianca, M. Towards the New Common Agricultural Policy for Biodiversity: Custodian Farmers for Sustainable Agricultural Practices in the Apulia Region (South of Italy). Belgeo 2022. 4, 57113. [CrossRef]
- Ministero delle Politiche Agricole e Forestali. Linee Guida per La Conservazione e La Caratterizzazione Della Biodiversità Vegetale Di Interesse per l’agricoltura; Gigli, M., Ed.; INEA: Roma, Italy, 2013; pp. XVI–XVII. [Google Scholar]
- Cogill, B. Contributions of Indigenous Vegetables and Fruits to Dietary Diversity and Quality. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposium on Promoting the Future of Indigenous Vegetables Worldwide, Brisbane, Australia, 17 August 2014; ISHS Acta Horticulturae: Leuven, Belgium, 2014. [Google Scholar]
- Zimmerer, K.S.; De Haan, S. Agrobiodiversity and a Sustainable Food Future. Nat. Plants 2017, 3, 17047. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Cantini, C.; Guarnieri, M.; Nepi, M.; Hausman, J.-F.; Guerriero, G.; Romi, M.; Cai, G. Nutraceutical Characteristics of Ancient Malus x domestica Borkh. Fruits Recovered across Siena in Tuscany. Medicines 2019, 6, 27. [Google Scholar] [CrossRef]
- Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and in Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef] [PubMed]
- Draga, S.; Palumbo, F.; Miracolo Barbagiovanni, I.; Pati, F.; Barcaccia, G. Management of Genetic Erosion: The (Successful) Case Study of the Pear (Pyrus communis L.) Germplasm of the Lazio Region (Italy). Front. Plant Sci. 2023, 13, 1099420. [Google Scholar] [CrossRef] [PubMed]
- Bergonzoni, L.; Alessandri, S.; Domenichini, C.; Dondini, L.; Caracciolo, G.; Pietrella, M.; Baruzzi, G.; Tartarini, S. Characterization of Red-Fleshed Pear Accessions from Emilia-Romagna Region. Sci. Hortic. 2023, 312, 111857. [Google Scholar] [CrossRef]
- Ferradini, N.; Lancioni, H.; Torricelli, R.; Russi, L.; Ragione, I.D.; Cardinali, I.; Marconi, G.; Gramaccia, M.; Concezzi, L.; Achilli, A.; et al. Characterization and Phylogenetic Analysis of Ancient Italian Landraces of Pear. Front. Plant Sci. 2017, 8, 751. [Google Scholar] [CrossRef] [PubMed]
- Livraghi Verdesca Zain, G. Tre Santi e Una Campagna. Culti Magico-Religiosi Nel Salento Di Fine Ottocento; Laterza: Bari, Italy, 1994. [Google Scholar]
- Cordella, M.F. La Cucina Salentina: Fra i Piatti Della Tradizione. L’Idomeneo 2015, 20, 213–224. [Google Scholar]
- Savino, V.N.; Palasciano, M.; Lipari, E.; Mazzeo, A.; Pacucci, C.; Todisco, M.C.; Losciale, P.; Gaeta, L.; Minonne, F.; Biscotti, N. Atlante Dei Frutti Antichi Di Puglia, 1st ed.; Lillo, A., Ed.; CRSFA Centro di Ricerca e Formazione in Agricoltura Basile Caramia: Locorotondo, BA, Italy, 2018. [Google Scholar]
- Regione Puglia. Bollettino Ufficiale Della Regione Puglia-n. 160 Del 23-12-2021; Regione Puglia: Bari, Italy, 2021. [Google Scholar]
- Musacchi, S.; Iglesias, I.; Neri, D. Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review. Agronomy 2021, 11, 1765. [Google Scholar] [CrossRef]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic Compounds and Antioxidant Activity from Red Grape Marc Extracts. Bioresour. Technol. 2003, 87, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Frontini, A.; De Bellis, L.; Luvisi, A.; Blando, F.; Allah, S.M.; Dimita, R.; Mininni, C.; Accogli, R.; Negro, C. The Green Leaf Volatile (Z)-3-Hexenyl Acetate Is Differently Emitted by Two Varieties of Tulbaghia violacea Plants Routinely and after Wounding. Plants 2022, 11, 3305. [Google Scholar] [CrossRef] [PubMed]
- NIST (National Institute of Standards and Technology). Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101; NIST (National Institute of Standards and Technology): Gaithersburg, MD, USA, 2022. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Li, Z.G.; Tian, W.L.; Fang, X.M.; Su, S.K.; Peng, W.J. Differential Volatile Organic Compounds in Royal Jelly Associated with Different Nectar Plants. J. Integr. Agric. 2016, 15, 1157–1165. [Google Scholar] [CrossRef]
- Min Allah, S.; Dimita, R.; Negro, C.; Luvisi, A.; Gadaleta, A.; Mininni, C.; De Bellis, L. Quality Evaluation of Mustard Microgreens Grown on Peat and Jute Substrate. Horticulturae 2023, 9, 598. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.R-project.org/ (accessed on 1 October 2020).
- Kolniak-Ostek, J.; Oszmiański, J. Characterization of Phenolic Compounds in Different Anatomical Pear (Pyrus communis L.) Parts by Ultra-Performance Liquid Chromatography Photodiode Detector-Quadrupole/Time of Flight-Mass Spectrometry (UPLC-PDA-Q/TOF-MS). Int. J. Mass Spectrom. 2015, 392, 154–163. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Areche, C.; Sepúlveda, B. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC-Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.C.; Ribeiro, C.; Simôes, R.; Alegria, M.J.; Mateus, N.; de Freitas, V.; Pérez-Gregorio, R.; Soares, S. Characterization of the Effect of a Novel Production Technique for ‘Not from Concentrate’ Pear and Apple Juices on the Composition of Phenolic Compounds. Plants 2023, 12, 3397. [Google Scholar] [CrossRef] [PubMed]
- The Good Scents Company. Providing Information for the Flavor, Fragrance, Food and Cosmetic Industries. Available online: http://www.thegoodscentscompany.com/ (accessed on 7 March 2024).
- Lee, B.R.; Cho, J.H.; Wi, S.G.; Yang, U.; Jung, W.J.; Lee, S.H. The Sucrose-to-Hexose Ratio Is a Significant Determinant for Fruit Maturity and Is Modulated by Invertase and Sucrose Re-Synthesis during Fruit Development and Ripening in Asian Pear (Pyrus pyrifolia Nakai) Cultivars. Hortic. Sci. Technol 2021, 39, 141–151. [Google Scholar] [CrossRef]
- Cascia, G.; Bulley, S.M.; Punter, M.; Bowen, J.; Rassam, M.; Schotsmans, W.C.; Larrigaudière, C.; Johnston, J.W. Investigation of Ascorbate Metabolism during Inducement of Storage Disorders in Pear. Physiol. Plant. 2013, 147, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Arzani, K. Postharvest Physicochemical Changes and Properties of Asian (Pyrus serotina Rehd.) & European (Pyrus communis L.) Pear Cultivars. Hort. Environ. Biotechnol. 2008, 49, 244–252. [Google Scholar]
- Lindo-García, V.; Muñoz, P.; Larrigaudière, C.; Munné-Bosch, S.; Giné-Bordonaba, J. Interplay between Hormones and Assimilates during Pear Development and Ripening and Its Relationship with the Fruit Postharvest Behaviour. Plant Sci. 2020, 291, 110339. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, I.; Wrolstad, R.E. Variation of Sugars and Acids During Ripening of Pears and in the Production and Storage of Pear Concentrate. J. Food Sci. 1980, 45, 499–501. [Google Scholar] [CrossRef]
- Iqbal, K.; Khan, A.; Khattak, M.M.A.K. Biological Significance of Ascorbic Acid (Vitamin C) in Human Health—A Review. Pak. J. Nutr. 2004, 3, 5–13. [Google Scholar] [CrossRef]
- Gundewadi, G.; Reddy, V.R.; Bhimappa, B. Physiological and Biochemical Basis of Fruit Development and Ripening—A Review. J. Hill Agric. 2018, 9, 7. [Google Scholar] [CrossRef]
- Kaur, S.; Singh Gill, M.; Gill, P.P.S.; Jawandha, S.K.; Prem Singh, N. Influence of Harvest Date on Storage Quality of Asian Pear (Pyrus Pyrifolia) Fruit. Erwerbs-Obstbau 2023, 65, 1331–1339. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, G.; Han, Z.; Li, Q.; Chen, Y.; Li, D. Effect of Ozone on the Antioxidant Capacity of “Qiushui” Pear (Pyrus pyrifolia Nakai cv. Qiushui) during Postharvest Storage. J. Food Qual. 2013, 36, 190–197. [Google Scholar] [CrossRef]
- Wang, J.; Lv, M.; He, H.; Jiang, Y.; Yang, J.; Ji, S. Glycine Betaine Alleviated Peel Browning in Cold-Stored ‘Nanguo’ Pears during Shelf Life by Regulating Phenylpropanoid and Soluble Sugar Metabolisms. Sci. Hortic. 2020, 262, 109100. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial Activity and Mechanism of Action of Chlorogenic Acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Thakur, K.; Sharma, V.; Saini, M.; Sharma, D.; Vishwas, S.; Kakoty, V.; Pal, R.S.; Chaitanya, M.V.N.L.; Babu, M.R.; et al. Exploring the Multifaceted Potential of Chlorogenic Acid: Journey from Nutraceutical to Nanomedicine. S. Afr. J. Bot. 2023, 159, 658–677. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Commisso, M.; Bianconi, M.; Poletti, S.; Negri, S.; Munari, F.; Ceoldo, S.; Guzzo, F. Metabolomic Profiling and Antioxidant Activity of Fruits Representing Diverse Apple and Pear Cultivars. Biology 2021, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Hudina, M.; Stampar, F. Effect of Fruit Bagging on Quality of “Conference” Pear (Pyrus communis L.). Eur. J. Hort. Sci. 2011, 76, 176–181. [Google Scholar]
- Preti, R.; Tarola, A.M. Study of Polyphenols, Antioxidant Capacity and Minerals for the Valorisation of Ancient Apple Cultivars from Northeast Italy. Eur. Food Res. Technol. 2021, 247, 273–283. [Google Scholar] [CrossRef]
- De Oliveira, L.D.L.; De Carvalho, M.V.; Melo, L. Health Promoting and Sensory Properties of Phenolic Compounds in Food. Rev. Ceres. 2014, 61, 764–779. [Google Scholar] [CrossRef]
- Diehl, D.C.; Sloan, N.L.; Bruhn, C.M.; Simonne, A.H.; Brecht, J.K.; Mitcham, E.J. Exploring Produce Industry Attitudes: Relationships between Postharvest Handling, Fruit Flavor, and Consumer Purchasing. Horttechnology 2013, 23, 642–650. [Google Scholar] [CrossRef]
- Yi, X.K.; Liu, G.F.; Rana, M.M.; Zhu, L.W.; Jiang, S.L.; Huang, Y.F.; Lu, W.M.; Wei, S. Volatile Profiling of Two Pear Genotypes with Different Potential for White Pear Aroma Improvement. Sci. Hortic. 2016, 209, 221–228. [Google Scholar] [CrossRef]
- Scutareanu, P.; Bruin, J.; Posthumus, M.A.; Drukker, B. Constitutive and Herbivore-Induced Volatiles in Pear, Alder and Hawthorn Trees. Chemoecology 2003, 13, 63–74. [Google Scholar] [CrossRef]
- Zierer, B.; Schieberle, P.; Granvogl, M. Aroma-Active Compounds in Bartlett Pears and Their Changes during the Manufacturing Process of Bartlett Pear Brandy. J. Agric. Food Chem. 2016, 64, 9515–9522. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yin, H.; Wu, X.; Shi, X.; Qi, K.; Zhang, S. Comparative Analysis of the Volatile Organic Compounds in Mature Fruits of 12 Occidental Pear (Pyrus communis L.) Cultivars. Sci. Hortic. 2018, 240, 239–248. [Google Scholar] [CrossRef]
- Mahmoud, E.; Ramadan, M.; Ismail, M.; Fadel, M.; Abass, M. Production of Flavors from Agro Waste of Ocimumbasilicum L. by Different Microorganisms Using Solid-State Fermentation. Egypt. J. Chem. 2022, 65, 259–273. [Google Scholar] [CrossRef]
- Jou, Y.J.; Hua, C.H.; Lin, C.S.; Wang, C.Y.; Wan, L.; Lin, Y.J.; Huang, S.H.; Lin, C.W. Anticancer Activity of γ-Bisabolene in Human Neuroblastoma Cells via Induction of P53-Mediated Mitochondrial Apoptosis. Molecules 2016, 21, 601. [Google Scholar] [CrossRef] [PubMed]
- Wendt, L.M.; Ludwig, V.; Thewes, F.R.; Soldateli, F.J.; Batista, C.B.; Fukui, C.M.; Gonçalves dos Santos, G.; Katsurayama, J.M.; Brackmann, A.; Both, V. Effect of Dynamic Controlled Atmosphere on Volatile Compound Profile and Quality of Pears. Sci. Hortic. 2024, 328, 112910. [Google Scholar] [CrossRef]
- Qin, G.; Tao, S.; Cao, Y.; Wu, J.; Zhang, H.; Huang, W.; Zhang, S. Evaluation of the Volatile Profile of 33 Pyrus ussuriensis Cultivars by HS-SPME with GC-MS. Food Chem. 2012, 134, 2367–2382. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; El-Tantawi, M.E.; Kirollos, F.N.; Hammam, W.E. Chemical Composition, in Vitro Cytotoxic and Antimicrobial Activities of Volatile Constituents from Pyrus communis L. and Malus domestica Borkh. Fruits Cultivated in Egypt. J. Essent. Oil-Bear. Plants 2018, 21, 1642–1651. [Google Scholar] [CrossRef]
Cultivar | Length (cm) | Diameter (cm) | Fresh Weight (g) |
---|---|---|---|
Petrucina | 5.3 ± 1.3 b | 4.3 ± 0.7 b | 39.2 ± 5.1 b |
Conference | 12.0 ± 0.6 a | 6.8 ± 0.4 a | 261.3 ± 33.5 a |
Cultivar | Stage | Dry Weight (%) | Total Soluble Solids (°Brix) | Total Titratable Acidity (g Malic Acid/L) | Firmness (N) |
---|---|---|---|---|---|
Petrucina | t0 | 15.1 ± 1.1 ab | 14.5 ± 0.2 d | 1.8 ± 0.1 a | 45.1 ± 6.6 a |
t7 | 18.2 ± 1.5 a | 17.0 ± 0.3 b | 1.6 ± 0.1 b | 26.3 ± 4.4 bc | |
t14 | 18.8 ± 1.9 a | 19.5 ± 0.6 a | 1.2 ± 0.1 c | 16.7 ± 2.3 cd | |
Conference | t0 | 11.2 ± 0.9 c | 10.2 ± 0.1 f | 1.5 ± 0.1 b | 44.3 ± 4.9 a |
t7 | 14.1 ± 1.2 bc | 13.2 ± 0.2 e | 1.2 ± 0.2 c | 32.1 ± 4.1 b | |
t14 | 15.6 ± 1.5 ab | 15.5 ± 0.4 c | 0.9 ± 0.1 d | 9.0 ± 2.0 d |
Variety | DPPH (EC50, µg FW) | ABTS (µmol TE/100 g FW) | FRAP (µmol TE/100 g FW) | |
---|---|---|---|---|
Petrucina | t0 | 135.4 ± 5.4 d | 177.0 ± 7.6 a | 231.1 ± 5.3 a |
t7 | 141.4 ± 4.2 d | 197.4 ± 6.5 a | 243.3 ± 8.7 a | |
t14 | 156.1 ± 3.1 d | 197.2 ± 9.4 a | 233.9 ± 4.8 a | |
Conference | t0 | 238.1 ± 12.1 c | 128.4 ± 7.3 b | 174.6 ± 8.8 b |
t7 | 282.6 ± 8.5 b | 79.2 ± 5.8 c | 98.9 ± 5.3 c | |
t14 | 340.0 ± 13.6 a | 66.8 ± 2.1 c | 74.4 ± 12.7 d |
N | RT | Name | m/z Exp | m/z Calc | Δ ppm | [M-H]− | Ref. | Pet | Con |
---|---|---|---|---|---|---|---|---|---|
1 | 0.589 | Quinic acid | 191.0213 | 191.0197 | 5.49 | C7H11O6 | [27,28,29] | + | + |
2 | 2.598 | Hydroxybenzoic acid | 137.0244 | 137.0244 | 0.59 | C7H5O3 | [28] | + | − |
3 | 4.006 | Caffeoylquinic acid | 353.0886 | 353.0878 | −1.35 | C16H17O9 | [27,28,29,30] | + | + |
4 | 4.535 | Procyanidin dimer | 577.1348 | 577.1351 | 0.97 | C30H25O12 | [27,28,29,30] | + | + |
5 | 4.987 | Coumaroylquinic acid | 337.0926 | 337.0929 | 2.57 | C16H17O8 | [27,28,29] | + | − |
6 | 5.31 | (+)-Catechin | 289.0716 | 289.0718 | 0.35 | C15H13O6 | [26,27,28,29] | + | + |
7 | 7.14 | Feruloyl quinic acid | 367.1029 | 367.1035 | −1.19 | C17H20O9 | [26,27,28,29] | + | + |
8 | 7.423 | Gallocatechin-3-O-glucose | 481.0962 | 481.0988 | 0.22 | C21H21O13 | [28] | + | − |
No. | RI | Compound Name | Peak Area (%) | |
---|---|---|---|---|
Petrucina | Conference | |||
1 | 996 | Ethyl hexanoate | 0.7 | |
2 | 1011 | Hexyl acetate | 9.5 | 2.8 |
3 | 1093 | Ethyl 2,4-hexadienoate | 0.8 | |
4 | 1156 | 1-octene, 3-(methoxymethoxy)- | 3.0 | |
5 | 1187 | Butyl hexanoate | 2.6 | |
6 | 1196 | Ethyl octanoate | 1.0 | |
7 | 1227 | Hexyl 2-methyl butyrate | 0.5 | 1.1 |
8 | 1246 | Ethyl-(E)-2-octenoate | 0.6 | |
9 | 1376 | Copaene | 0.9 | |
10 | 1380 | Cyclohexanebutanol, 2-methyl-3-oxo-, cis- | 0.8 | |
11 | 1394 | Methyl (E,Z)-2,4-decadienoate 1 | 2.2 | 10.5 |
12 | 1428 | Unknown | 0.5 | |
13 | 1457 | Ethyl (E,Z)-2,4-decadienoate isomer 1 2 | 2.2 | 0.7 |
14 | 1463 | Unknown | 2.6 | 0.9 |
15 | 1471 | Ethyl (E,Z)-2,4-decadienoate isomer 2 2 | 21.4 | 8.1 |
16 | 1498 | α-bergamotene | 2.2 | 1.0 |
17 | 1510 | α-farnesene 3 | 40.9 | 65.9 |
18 | 1517 | α-himachalene | 0.8 | |
19 | 1534 | (+)-ledene | 0.5 | |
20 | 1549 | Unknown | 0.5 | |
21 | 1557 | Unknown | 0.4 | |
22 | 1562 | γ-bisabolene isomer 1 4 | 1.3 | 0.8 |
23 | 1595 | γ-bisabolene isomer 2 4 | 2.6 | |
24 | 1837 | Unknown | 0.8 | |
25 | 1928 | Methyl palmitate | 0.5 | |
26 | 1990 | Ethyl palmitate | 0.5 | |
27 | 2140 | Oleic acid | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frontini, A.; Negro, C.; Accogli, R.; Minonne, F.; Luvisi, A.; De Bellis, L. Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’). Foods 2024, 13, 1528. https://doi.org/10.3390/foods13101528
Frontini A, Negro C, Accogli R, Minonne F, Luvisi A, De Bellis L. Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’). Foods. 2024; 13(10):1528. https://doi.org/10.3390/foods13101528
Chicago/Turabian StyleFrontini, Alessandro, Carmine Negro, Rita Accogli, Francesco Minonne, Andrea Luvisi, and Luigi De Bellis. 2024. "Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’)" Foods 13, no. 10: 1528. https://doi.org/10.3390/foods13101528
APA StyleFrontini, A., Negro, C., Accogli, R., Minonne, F., Luvisi, A., & De Bellis, L. (2024). Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’). Foods, 13(10), 1528. https://doi.org/10.3390/foods13101528