Assessment of Variability Sources in Grape Ripening Parameters by Using FTIR and Multivariate Modelling
Abstract
:1. Introduction
2. Material and Methods
2.1. Vineyard and Maturity Control
2.2. Samples and Sampling
2.3. Determination of Total Soluble Solids and pH in Individual Berries
2.4. Mid-Infrared Spectroscopic Analysis
2.5. Data Analysis
2.5.1. Spectral Data Pre-Processing
2.5.2. Principal Component Analysis (PCA)
2.5.3. Partial Least Squares (PLS) Regression
2.5.4. ANOVA–Simultaneous Component Analysis (ASCA)
2.5.5. Multivariate Statistical Process Control (MSPC) Charts
3. Results and Discussion
3.1. Optimization of the Analytical Strategy
3.2. pH and Total Soluble Solids Prediction
3.3. ANOVA–Simultaneous Component Analysis (ASCA)
3.4. Sub-ASCA (ANOVA–Simultaneous Component Analysis) Models
3.5. ANOVA–Simultaneous Component Analysis (ASCA) Model with Reference Parameters
3.6. Process Control Charts for Ripening Monitoring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribereau-Gayon, P.; Dubourdieu, D.; Doneche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006; Volume 1, pp. 1–497. [Google Scholar] [CrossRef]
- Orlandi, G.; Calvini, R.; Foca, G.; Pigani, L.; Vasile Simone, G.; Ulrici, A. Data Fusion of Electronic Eye and Electronic Tongue Signals to Monitor Grape Ripening. Talanta 2019, 195, 181–189. [Google Scholar] [CrossRef]
- Shahood, R.; Torregrosa, L.; Savoi, S.; Romieu, C. First Quantitative Assessment of Growth, Sugar Accumulation and Malate Breakdown in a Single Ripening Berry. OENO One 2020, 54, 1077–1092. [Google Scholar] [CrossRef]
- Kader, A.A. Fruit Maturity, Ripening, and Quality Relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Robinson, S.P.; Davies, C. Molecular Biology of Grape Berry Ripening. Aust. J. Grape Wine Res. 2000, 6, 175–188. [Google Scholar] [CrossRef]
- Haselgrove, L.; Botting, D.; van Heeswijck, R.; Høj, P.B.; Dry, P.R.; Ford, C.; Iland, P.G. Canopy Microclimate and Berry Composition: The Effect of Bunch Exposure on the Phenolic Composition of Vitis Vinifera L. Cv. Shiraz Grape Berries. Aust. J. Grape Wine Res. 2000, 6, 141–149. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Esteruelas, M.; Fort, F.; Canals, J.M.; de Freitas, V.; Zamora, F. Influence of the Heterogeneity of Grape Phenolic Maturity on Wine Composition and Quality. Food Chem. 2011, 124, 767–774. [Google Scholar] [CrossRef]
- Urretavizcaya, I.; Santesteban, L.G.; Tisseyre, B.; Guillaume, S.; Miranda, C.; Royo, J.B. Oenological Significance of Vineyard Management Zones Delineated Using Early Grape Sampling. Precis. Agric. 2014, 15, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Filippo, S.; Gennaro, D. Technology in Precision Viticulture: A State of the Art Review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Jasse, A.; Berry, A.; Aleixandre-Tudo, J.L.; Poblete-Echeverría, C. Intra-Block Spatial and Temporal Variability of Plant Water Status and Its Effect on Grape and Wine Parameters. Agric. Water Manag. 2021, 246, 106696. [Google Scholar] [CrossRef]
- Schorn-García, D.; Cavaglia, J.; Giussani, B.; Busto, O.; Aceña, L.; Mestres, M.; Boqué, R. ATR-MIR Spectroscopy as a Process Analytical Technology in Wine Alcoholic Fermentation—A Tutorial. Microchem. J. 2021, 166, 106215. [Google Scholar] [CrossRef]
- Bureau, S.; Cozzolino, D.; Clark, C.J. Contributions of Fourier-Transform Mid Infrared (FT-MIR) Spectroscopy to the Study of Fruit and Vegetables: A Review. Postharvest Biol. Technol. 2019, 148, 1–14. [Google Scholar] [CrossRef]
- dos Santos, C.A.T.; Páscoa, R.N.M.J.; Lopes, J.A. A Review on the Application of Vibrational Spectroscopy in the Wine Industry: From Soil to Bottle. TrAC Trends Anal. Chem. 2017, 88, 100–118. [Google Scholar] [CrossRef]
- Bertinetto, C.; Engel, J.; Jansen, J. ANOVA Simultaneous Component Analysis: A Tutorial Review. Anal. Chim. Acta X 2020, 6, 100061. [Google Scholar] [CrossRef] [PubMed]
- de Luca, S.; de Filippis, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. Characterization of the Effects of Different Roasting Conditions on Coffee Samples of Different Geographical Origins by HPLC-DAD, NIR and Chemometrics. Microchem. J. 2016, 129, 348–361. [Google Scholar] [CrossRef]
- Babellahi, F.; Amodio, M.L.; Marini, F.; Chaudhry, M.M.A.; de Chiara, M.L.v; Mastrandrea, L.; Colelli, G. Using Chemometrics to Characterise and Unravel the near Infra-Red Spectral Changes Induced in Aubergine Fruit by Chilling Injury as Influenced by Storage Time and Temperature. Biosyst. Eng. 2020, 198, 137–146. [Google Scholar] [CrossRef]
- Amigo, J.M.; del Olmo, A.; Engelsen, M.M.; Lundkvist, H.; Engelsen, S.B. Staling of White Wheat Bread Crumb and Effect of Maltogenic α-Amylases. Part 2: Monitoring the Staling Process by Using near Infrared Spectroscopy and Chemometrics. Food Chem. 2019, 297, 124946. [Google Scholar] [CrossRef] [PubMed]
- Borraz-Martínez, S.; Boqué, R.; Simó, J.; Mestre, M.; Gras, A. Development of a Methodology to Analyze Leaves from Prunus Dulcis Varieties Using near Infrared Spectroscopy. Talanta 2019, 204, 320–328. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Jiménez-Pulido, I.J.; Rico, D.; Martinez-Villaluenga, C.; Pérez-Jiménez, J.; de Luis, D.; Martín-Diana, A.B. Sprouting and Hydrolysis as Biotechnological Tools for Development of Nutraceutical Ingredients from Oat Grain and Hull. Foods 2022, 11, 2769. [Google Scholar] [CrossRef]
- Cavaglia, J.; Giussani, B.; Mestres, M.; Puxeu, M.; Busto, O.; Ferré, J.; Boqué, R. Early Detection of Undesirable Deviations in Must Fermentation Using a Portable FTIR-ATR Instrument and Multivariate Analysis. J. Chemom. 2019, 33, e3162. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Rinnan, Å.; Norgaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Data Pre-Processing. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.-W., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2009; pp. 29–50. ISBN 978-0-12-374136-3. [Google Scholar]
- Cavaglia, J.; Schorn-García, D.; Giussani, B.; Ferré, J.; Busto, O.; Aceña, L.; Mestres, M.; Boqué, R. ATR-MIR Spectroscopy and Multivariate Analysis in Alcoholic Fermentation Monitoring and Lactic Acid Bacteria Spoilage Detection. Food Control 2020, 109, 106947. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Technometrics Computer Aided Design of Experiments. Technometric 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Gallagher, N.B.; O’sullivan, D. Selection of Representative Learning and Test Sets Using the Onion Method. Eig. Res. Inc. Available online: https://eigenvector.com/wp-content/uploads/2020/01/Onion_SampleSelection.pdf (accessed on 23 February 2022).
- Fearn, T. Assessing Calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12–13. [Google Scholar] [CrossRef]
- Smilde, A.K.; Jansen, J.J.; Hoefsloot, H.C.J.; Lamers, R.J.A.N.; van der Greef, J.; Timmerman, M.E. ANOVA-Simultaneous Component Analysis (ASCA): A New Tool for Analyzing Designed Metabolomics Data. Bioinformatics 2005, 21, 3043–3048. [Google Scholar] [CrossRef]
- Nomikos, P.; MacGregor, J.F. Monitoring Batch Processes Using Multiway Principal Component Analysis. AIChE J. 1994, 40, 1361–1375. [Google Scholar] [CrossRef]
- Nomikos, P.; MacGregor, J.F. Multi-Way Partial Least Squares in Monitoring Batch Processes. Chemom. Intell. Lab. Syst. 1995, 30, 97–108. [Google Scholar] [CrossRef]
- Gorla, G.; Mestres, M.; Boqué, R.; Riu, J.; Spanu, D.; Giussani, B. ATR-MIR Spectroscopy to Predict Commercial Milk Major Components: A Comparison between a Handheld and a Benchtop Instrument. Chemom. Intell. Lab. Syst. 2020, 200, 103995. [Google Scholar] [CrossRef]
- García Barceló, J. Técnicas Análiticas para Vinos; Gab: Moja-Olèrdola, Spain, 1990. [Google Scholar]
- Shah, N.; Cynkar, W.; Smith, P.; Cozzolino, D. Use of Attenuated Total Reflectance Midinfrared for Rapid and Real-Time Analysis of Compositional Parameters in Commercial White Grape Juice. J. Agric. Food Chem. 2010, 58, 3279–3283. [Google Scholar] [CrossRef]
- Musingarabwi, D.M.; Nieuwoudt, H.H.; Young, P.R.; Eyéghè-Bickong, H.A.; Vivier, M.A. A Rapid Qualitative and Quantitative Evaluation of Grape Berries at Various Stages of Development Using Fourier-Transform Infrared Spectroscopy and Multivariate Data Analysis. Food Chem. 2016, 190, 253–262. [Google Scholar] [CrossRef]
- Dokoozlian, N.K.; Kliewer, W.M. Influence of Light on Grape Berry Growth and Composition Varies during Fruit Development. J. Am. Soc. Hortic. Sci. 1996, 121, 869–874. [Google Scholar] [CrossRef]
- Coombe, B.G.; McCarthy, M.G. Dynamics of Grape Berry Growth and Physiology of Ripening. Aust. J. Grape Wine Res. 2000, 6, 131–135. [Google Scholar] [CrossRef]
- Pagay, V.; Cheng, L. Variability in Berry Maturation of Concord and Cabernet Franc in a Cool Climate. Am. J. Enol. Vitic. 2010, 61, 61–67. [Google Scholar] [CrossRef]
- Tarter, M.E.; Keuter, S.E. Effect of Rachis Position on Size and Maturity of Cabernet Sauvignon Berries. Am. J. Enol. Vitic. 2005, 56, 86–89. [Google Scholar] [CrossRef]
- González-Caballero, V.; Sánchez, M.-T.; Fernández-Novales, J.; López, M.-I.; Pérez-Marín, D. On-vine monitoring of grape ripening using near-infrared spectroscopy. Food Anal. Methods 2012, 5, 1377–1385. [Google Scholar] [CrossRef]
- Moura, J.C.M.S.; Bonine, C.A.V.; de Oliveira Fernandes Viana, J.; Dornelas, M.C.; Mazzafera, P. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. J. Integr. Plant Biol. 2010, 52, 360–376. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.E.J.; Gilmore, A.M.; Boss, P.K.; Pagay, V.; Jeffery, D.W. Machine Learning for Classifyi ng and Predicting Grape Maturity Indices Using Absorbance and Fluorescence Spectra. Food Chem. 2023, 403, 134321. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Nunziatini, G.; Rombolà, A.D.; Gottardi, F.; Versari, A. Relationship between sensory and Nir Spectroscopy in consumer preference of table grape (CV Italia). Postharvest Biol. Technol. 2013, 83, 47–53. [Google Scholar] [CrossRef]
- Zhang, P.; Barlow, S.; Krstic, M.; Herderich, M.; Fuentes, S.; Howell, K. Within-vineyard, within-vine, and within-bunch variability of the rotundone concentration in berries of vitis vinifera l. cv. Shiraz. J. Agric. Food Chem. 2015, 63, 4276–4283. [Google Scholar] [CrossRef]
- Reshef, N.; Fait, A.; Agam, N. Grape berry position affects the diurnal dynamics of its metabolic profile. Plant Cell Environ. 2019, 42, 1897–1912. [Google Scholar] [CrossRef]
- Doumouya, S.; Lahaye, M.; Maury, C.; Siret, R. Physical and physiological heterogeneity within the grape bunch: Impact on mechanical properties during maturation. Am. J. Enol. Vitic. 2014, 65, 170–178. [Google Scholar] [CrossRef]
- Agati, G.; Traversi, M.L.; Cerovic, Z.G. Chlorophyll fluorescence imaging for the noninvasive assessment of anthocyanins in whole grape (vitis vinifera L.) bunches. Photochem. Photobiol. 2008, 84, 1431–1434. [Google Scholar] [CrossRef] [PubMed]
- Cavaglia, J.; Schorn-García, D.; Giussani, B.; Ferré, J.; Busto, O.; Aceña, L.; Mestres, M.; Boqué, R. Monitoring Wine Fermentation Deviations Using an ATR-MIR Spectrometer and MSPC Charts. Chemom. Intell. Lab. Syst. 2020, 201, 104011. [Google Scholar] [CrossRef]
Sampling Point | ABV | pH | TPC | ORAC |
---|---|---|---|---|
T1 | 9.6 ± 1.5 a | 3.15 ± 0.08 ab | * | * |
T2 | 11.0 ± 1.1 b | 3.10 ± 0.10 a | 10.3 ± 0.6 a | 437 ± 89 a |
T3 | 12.1 ± 0.4 c | 3.28 ± 0.08 b | 16.8 ± 1.4 c | 620 ± 125 b |
T4 | 12.4 ± 0.4 c | 3.33 ± 0.13 b | 16.2 ± 1.4 c | 614 ± 125 b |
TSS (°Brix) | TSS (°Brix)RS | pH | |||||||
---|---|---|---|---|---|---|---|---|---|
RMSEP | R2Pred | LV | RMSEP | R2Pred | LV | RMSEP | R2Pred | LV | |
CV random | 0.3 | 0.982 | 3 | 0.3 | 0.981 | 2 | 0.07 | 0.683 | 9 |
KS (½ cal–½ val) | 0.3 | 0.984 | 3 | 0.3 | 0.962 | 2 | 0.06 | 0.623 | 9 |
KS (⅔ cal–⅓ val) | 0.3 | 0.984 | 3 | 0.3 | 0.979 | 2 | 0.06 | 0.608 | 9 |
Onion (½ cal–½ val) | 0.3 | 0.985 | 3 | 0.4 | 0.980 | 2 | 0.07 | 0.687 | 9 |
Onion (⅔ cal–⅓ val) | 0.3 | 0.986 | 3 | 0.4 | 0.971 | 2 | 0.07 | 0.591 | 9 |
Term | % Effect | p-Value |
---|---|---|
Maturity (sampling date) | 28.98 | 0.0001 |
Position in the plant | 5.83 | 0.0001 |
Position in the bunch | 2.21 | 0.0268 |
Instrumental replicate | 0.11 | 0.9116 |
Maturity × Position in the plant | 9.52 | 0.0001 |
Maturity × Position in the bunch | 5.84 | 0.0001 |
Maturity × Instrumental replicate | 0.10 | 1.0000 |
Position in the plant × Position in the bunch | 2.14 | 0.0224 |
Position in the plant × Instrumental replicate | 0.15 | 0.9969 |
Position in the bunch × Instrumental replicate | 0.11 | 0.9987 |
% Effect | |||||
---|---|---|---|---|---|
Sampling Times | T1 | T2 | T3 | T4 | T5 |
Position in the plant | 7.41 | 40.75 * | 3.67 | 36.57 * | 11.92 * |
Position in the bunch | 22.00 * | 19.90 * | 5.52 | 2.32 | 5.27 |
Instrumental replicate | 0.23 | 0.14 | 0.57 | 0.28 | 0.38 |
Position in the plant × Position in the bunch | 46.95 * | 11.18 * | 28.98 * | 4.61 | 23.97 * |
Position in the plant × Instrumental replicate | 0.44 | 0.47 | 1.18 | 0.23 | 0.51 |
Position in the bunch × Instrumental replicate | 0.47 | 0.61 | 0.95 | 0.52 | 0.54 |
Residual | 22.50 | 26.95 | 59.14 | 55.48 | 57.42 |
Term | % Effect | p-Value |
---|---|---|
Maturity (sampling date) | 40.49 | 0.0001 |
Position in the plant | 4.03 | 0.0300 |
Position in the bunch | 3.10 | 0.0657 |
Maturity × Position in the plant | 9.07 | 0.0563 |
Maturity × Position in the bunch | 3.38 | 0.7729 |
Position in the plan × Position in the bunch | 2.67 | 0.3663 |
Residuals | 37.25 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schorn-García, D.; Giussani, B.; García-Casas, M.J.; Rico, D.; Martin-Diana, A.B.; Aceña, L.; Busto, O.; Boqué, R.; Mestres, M. Assessment of Variability Sources in Grape Ripening Parameters by Using FTIR and Multivariate Modelling. Foods 2023, 12, 962. https://doi.org/10.3390/foods12050962
Schorn-García D, Giussani B, García-Casas MJ, Rico D, Martin-Diana AB, Aceña L, Busto O, Boqué R, Mestres M. Assessment of Variability Sources in Grape Ripening Parameters by Using FTIR and Multivariate Modelling. Foods. 2023; 12(5):962. https://doi.org/10.3390/foods12050962
Chicago/Turabian StyleSchorn-García, Daniel, Barbara Giussani, María Jesús García-Casas, Daniel Rico, Ana Belén Martin-Diana, Laura Aceña, Olga Busto, Ricard Boqué, and Montserrat Mestres. 2023. "Assessment of Variability Sources in Grape Ripening Parameters by Using FTIR and Multivariate Modelling" Foods 12, no. 5: 962. https://doi.org/10.3390/foods12050962
APA StyleSchorn-García, D., Giussani, B., García-Casas, M. J., Rico, D., Martin-Diana, A. B., Aceña, L., Busto, O., Boqué, R., & Mestres, M. (2023). Assessment of Variability Sources in Grape Ripening Parameters by Using FTIR and Multivariate Modelling. Foods, 12(5), 962. https://doi.org/10.3390/foods12050962