Ultrasonic Treatment Enhances the Antioxidant and Immune-Stimulatory Properties of the Polysaccharide from Sinopodophyllum hexandrum Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Ultrasonic Treatment
2.3. Structural Characterization
2.3.1. Determination of Molecular Weight of the Polysaccharide
2.3.2. Nuclear Magnetic Resonance (NMR)
2.3.3. Fourier Transform Infrared Spectroscopy (FT–IR)
2.3.4. Circular dichroism (CD) Spectra
2.3.5. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) Tests
2.4. In Vivo Antioxidant Test
2.5. Cell Test
2.5.1. Viability Test
2.5.2. Nitric Oxide (NO) Secretion Test
2.5.3. Neutral Red Phagocytosis Test
2.5.4. RT–qPCR Test
2.5.5. Flow Cytometry Test
2.5.6. Antigen Uptake Capacity Test
3. Results and Discussion
3.1. Ultrasonic Treatment
3.2. Structural Characterization Test
3.2.1. Nuclear Magnetic Resonance (NMR)
3.2.2. Molecular Weight Analysis of the Polysaccharide
3.2.3. Fourier Transform Infrared Spectroscopy Analysis (FT–IR)
3.2.4. CD Spectra Analysis
3.2.5. AFM and SEM analysis
3.3. In Vivo Antioxidant Test
3.3.1. Organ Index
3.3.2. Antioxidant Test Analysis
3.4. Cell Test
3.4.1. Analysis of Viability Test
3.4.2. Analysis of NO Secretion Test
3.4.3. Analysis of Phagocytosis Test
3.4.4. IL-6 and IL-1β mRNA Expression
3.4.5. Expression of Surface Costimulatory Molecules (CD80+, CD86+)
3.4.6. Analysis of Antigen Uptake Capacity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, L.; Zhang, J.; Zhang, T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021, 340, 127933. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Yang, T.; Yang, J.; Qiu, Z.-C.; Ding, X.-Y.; Wang, Y.-H. Wild plants used by the Lhoba people in Douyu Village, characterized by high mountains and valleys, in southeastern Tibet, China. J. Ethnobiol. Ethnomed. 2021, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Khaled, M.; Jiang, Z.-Z.; Zhang, L.-Y. Deoxypodophyllotoxin: A promising therapeutic agent from herbal medicine. J. Ethnopharmacol. 2013, 149, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, X.; Miao, J.; Jing, S.; Li, X.; Huang, L.; Gao, W. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi. Int. J. Biol. Macromol. 2017, 102, 847–856. [Google Scholar] [CrossRef]
- Krylova, N.V.; Silchenko, A.S.; Pott, A.B.; Ermakova, S.P.; Iunikhina, O.V.; Rasin, A.B.; Kompanets, G.G.; Likhatskaya, G.N.; Shchelkanov, M.Y. In Vitro Anti-Orthohantavirus Activity of the High-and Low-Molecular-Weight Fractions of Fucoidan from the Brown Alga Fucus evanescens. Mar. Drugs 2021, 19, 577. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bai, J.; Bu, X.; Yin, Y.; Wang, L.; Yang, Y.; Xu, Y. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr. Polym. 2021, 259, 117729. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Lin, S.; Zhang, Q.; Chen, H.; Lan, W.; Li, H.; He, J.; Qin, W. Effect of extraction methods on the properties and antioxidant activities of Chuanminshen violaceum polysaccharides. Int. J. Biol. Macromol. 2016, 93, 179–185. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Li, D.Q.; Wang, J.; Hou, Y.; Hou, M. Effect and mechanism of low-dose chidamide on the treatment of primary immune thrombocytopenia. Zhonghua Xue Ye Xue Za Zhi 2020, 41, 292–296. (In Chinese) [Google Scholar]
- Huang, S.; Chen, F.; Cheng, H.; Huang, G. Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale. Int. J. Biol. Macromol. 2020, 157, 385–393. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, Z.; Chen, F.; Zhang, Z.; Gao, W. Optimization of ultrasonic-assisted extraction of polysaccharides from Hemerocallis citrina and the antioxidant activity study. J. Food Sci. 2021, 86, 3082–3096. [Google Scholar] [CrossRef]
- Gao, X.; Feng, T.; Liu, E.; Shan, P.; Zhang, Z.; Liao, L.; Ma, H. Ougan juice debittering using ultrasound-aided enzymatic hydrolysis: Impacts on aroma and taste. Food Chem. 2021, 345, 128767. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, E.; Zhang, J.; Yang, L.; Huang, Q.; Chen, S.; Ma, H.; Ho, C.T.; Liao, L. Accelerating aroma formation of raw soy sauce using low intensity sonication. Food Chem. 2020, 329, 127118. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Guo, Y.; Duan, S.; Wei, H.; Liu, Y.; Wang, L.; Huo, X.; Yang, Y. Effects of ultrasonic irradiation on the characterization and bioactivities of the polysaccharide from blackcurrant fruits. Ultrason. Sonochem. 2018, 49, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, J.-L.; Bai, Z.; Du, J.; Shi, Y.; Wang, Y.; Wang, Y.; Liu, Y.; Yu, Z.; Li, M.-Y. Polysaccharide from dandelion enriched nutritional composition, antioxidant capacity, and inhibited bioaccumulation and inflammation in Channa asiatica under hexavalent chromium exposure. Int. J. Biol. Macromol. 2022, 201, 557–568. [Google Scholar] [CrossRef]
- Li, Y.-J.; Lin, D.-D.; Jiao, B.; Xu, C.-T.; Qin, J.-K.; Ye, G.-J.; Su, G.-F. Purification, antioxidant and hepatoprotective activities of polysaccharide from Cissus pteroclada Hayata. Int. J. Biol. Macromol. 2015, 77, 307–313. [Google Scholar] [CrossRef]
- Sun, Y.; Diao, F.; Niu, Y.; Li, X.; Zhou, H.; Mei, Q.; Li, Y. Apple polysaccharide prevents from colitis-associated carcinogenesis through regulating macrophage polarization. Int. J. Biol. Macromol. 2020, 161, 704–711. [Google Scholar] [CrossRef]
- Gu, Y.; Qiu, Y.; Wei, X.; Li, Z.; Hu, Z.; Gu, Y.; Zhao, Y.; Wang, Y.; Yue, T.; Yuan, Y. Characterization of selenium-containing polysaccharides isolated from selenium-enriched tea and its bioactivities. Food Chem. 2020, 316, 126371. [Google Scholar] [CrossRef]
- Zhou, S.; Rahman, A.; Li, J.; Wei, C.; Chen, J.; Linhardt, R.J.; Ye, X.; Chen, S. Extraction Methods Affect the Structure of Goji (Lycium barbarum) Polysaccharides. Molecules 2020, 25, 936. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zou, L.; Luo, X.; Qiu, L.; Wei, Q.; Luo, D.; Wu, Y.; Jiao, Y. Structural characterization and immunomodulating activities of a novel polysaccharide from Nervilia fordii. Int. J. Biol. Macromol. 2018, 114, 520–528. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, L.; Yang, J.; Li, S.; Tang, F.; Li, H.; Zhang, X.; Wu, D.; Feng, Y.; Liu, Q.; et al. Enhancement of immune responses using ovalbumin-conjugated Eucommia ulmoides leaf polysaccharides encapsulated in a cubic liquid-crystalline phase delivery system. J. Sci. Food Agric. 2022, 102, 6757–6770. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, L.; Bai, R.; Zheng, X.; Ma, Y.; Gao, X.; Sun, B.; Hu, F. Structural characterization of a pectic polysaccharide from Codonopsis pilosula and its immunomodulatory activities In Vivo and In Vitro. Int. J. Biol. Macromol. 2017, 104, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, J.; Ren, P.; Zhang, Y.; Onyango, S.O. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide. Ultrason. Sonochem. 2021, 70, 105355. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Huang, G. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide. Int. J. Biol. Macromol. 2018, 114, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhou, X.; Huang, G. Preparation, structure, and properties of tea polysaccharide. Chem. Biol. Drug Des. 2022, 99, 75–82. [Google Scholar] [CrossRef]
- Qi, K.; Xia, G.; Huang, G.; Huang, H. Extraction, chemical modification, and antioxidant activities of Daucus carota polysaccharide. Chem. Biol. Drug Des. 2021, 98, 1098–1103. [Google Scholar] [CrossRef]
- Kreisman, L.S.; Friedman, J.H.; Neaga, A.; Cobb, B.A. Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology 2007, 17, 46–55. [Google Scholar] [CrossRef]
- Sreeram, K. Studies on the nature of interaction of iron(III) with alginates. Biochim. Et Biophys. Acta (BBA)—Gen. Subj. 2004, 1670, 121–125. [Google Scholar] [CrossRef]
- Harris, T.N.; Rhoads, J.; Stokes, J.J. A study of the role of the thymus and spleen in the formation of antibodies in the rabbit. J. Immunol. 1950, 58, 27–32. [Google Scholar] [CrossRef]
- Zhuang, Y.; Ma, Q.; Guo, Y.; Sun, L. Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and d-galactose-induced aging mice. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 108, 554–562. [Google Scholar] [CrossRef]
- Liang, M.-F.; Liu, G.-H.; Zhao, Q.-Y.; Yang, S.-F.; Zhong, S.-X.; Cui, G.-L.; He, X.-H.; Zhao, X.; Guo, F.-X.; Wu, C.; et al. Effects of Taishan Robinia pseudoacacia Polysaccharides on immune function in chickens. Int. Immunopharmacol. 2013, 15, 661–665. [Google Scholar] [CrossRef]
- Wu, Q.; Er-Bu, A.; Liang, X.; He, C.; Yin, L.; Xu, F.; Zou, Y.; Yin, Z.; Yue, G.; Li, L.; et al. Isolation, structure identification, and immunostimulatory effects in vitro and in vivo of polysaccharides from Onosma hookeri Clarke var. longiforum Duthie. J. Sci. Food Agric. 2023, 103, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Feura, E.S.; Ahonen, M.J.R.; Schoenfisch, M.H. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv. Health Mater. 2018, 7, e1800155. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.D. Anatomy of a Discovery: M1 and M2 Macrophages. Front. Immunol. 2015, 6, 212. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Wang, Y.-H.; Peng, Y.-J.; Liu, F.-C.; Lin, G.-J.; Huang, S.-H.; Sytwu, H.-K.; Cheng, C.-P. Interleukin 26 Skews Macrophage Polarization Towards M1 Phenotype by Activating cJUN and the NF-κB Pathway. Cells 2020, 9, 938. [Google Scholar] [CrossRef]
- Wang, S.; Cao, M.; Xu, S.; Shi, J.; Mao, X.; Yao, X.; Liu, C. Luteolin Alters Macrophage Polarization to Inhibit Inflammation. Inflammation 2020, 43, 95–108. [Google Scholar] [CrossRef]
- Dong, M.; Jiang, Y.; Wang, C.; Yang, Q.; Jiang, X.; Zhu, C. Determination of the Extraction, Physicochemical Characterization, and Digestibility of Sulfated Polysaccharides in Seaweed-Porphyra haitanensis. Mar. Drugs 2020, 18, 539. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Gao, W.; Zhang, Z.; Zhang, Y.; Liu, T. Optimization of ultrasonic-assisted extraction process and physiological activity of polysaccharide from Dendranthema morifolium by response surface methodology. China Food Addit. 2022, 33, 100–109. [Google Scholar] [CrossRef]
- Bojanić, N.; Fišteš, A.; Rakić, D.; Kolar, S.; Ćurić, B.; Petrović, J. Study on the effects of smooth roll grinding conditions on reduction of wheat middlings using response surface methodology. J. Food Sci. Technol. 2021, 58, 1430–1440. [Google Scholar] [CrossRef]
- Es-Haghi, A.; Taghavizadeh Yazdi, M.E.; Sharifalhoseini, M.; Baghani, M.; Yousefi, E.; Rahdar, A.; Baino, F. Application of Response Surface Methodology for Optimizing the Therapeutic Activity of ZnO Nanoparticles Biosynthesized from Aspergillus niger. Biomimetics 2021, 6, 34. [Google Scholar] [CrossRef]
- Ji, Y.B.; Wang, F.L. Optimization of trypsin extraction technology of Allium cepa L. polysaccharide by response surface methodology and the antitumor effects through immunomodulation. Bioengineered 2021, 12, 382–391. [Google Scholar]
- Li, F.; Gao, J.; Xue, F.; Yu, X.; Shao, T. Extraction Optimization, Purification and Physicochemical Properties of Polysaccharides from Gynura medica. Molecules 2016, 21, 397. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
---|---|---|
IL1β | GTGTCTTTCCCGTGGACCTTC | TCATCTCGGAGCCTGTAGTGC |
IL6 | CTTGGGACTGATGCTGGTGAC | TCTCATTTCCACGATTTCCCAG |
GAPDH | GGGTCCCAGCTTAGGTTCATC | TACGGCCAAATCCGTTCACA |
Analysis Item | Index | SHP | SHP1 | SHP2 |
---|---|---|---|---|
Molecular weight | Mp (kDa) | 15.74 | 8.344 | 12.50 |
Mw (kDa) | 52.46 | 29.37 | 36.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, H.; Liu, Q.; Feng, Y.; Wu, D.; Zhang, X.; Zhang, L.; Li, S.; Tang, F.; Liu, Q.; et al. Ultrasonic Treatment Enhances the Antioxidant and Immune-Stimulatory Properties of the Polysaccharide from Sinopodophyllum hexandrum Fruit. Foods 2023, 12, 910. https://doi.org/10.3390/foods12050910
Liu Z, Li H, Liu Q, Feng Y, Wu D, Zhang X, Zhang L, Li S, Tang F, Liu Q, et al. Ultrasonic Treatment Enhances the Antioxidant and Immune-Stimulatory Properties of the Polysaccharide from Sinopodophyllum hexandrum Fruit. Foods. 2023; 12(5):910. https://doi.org/10.3390/foods12050910
Chicago/Turabian StyleLiu, Ziwei, Hangyu Li, Qianqian Liu, Yangyang Feng, Daiyan Wu, Xinnan Zhang, Linzi Zhang, Sheng Li, Feng Tang, Qun Liu, and et al. 2023. "Ultrasonic Treatment Enhances the Antioxidant and Immune-Stimulatory Properties of the Polysaccharide from Sinopodophyllum hexandrum Fruit" Foods 12, no. 5: 910. https://doi.org/10.3390/foods12050910