A Review on Extracts, Chemical Composition and Product Development of Walnut Diaphragma Juglandis Fructus
Abstract
:1. Introduction
2. Extracts
2.1. Aqueous Extracts of Diaphragma Juglandis Fructus
2.2. Ethanol Extracts of Diaphragma Juglandis Fructus
2.2.1. Protection of the Kidney
2.2.2. Antioxidant Activity
2.2.3. Anti-Tumor Activity
2.2.4. Hypoglycemic Activity
2.2.5. Antibacterial Properties
2.3. Methanol Extracts of Diaphragma Juglandis Fructus
3. Chemical Composition
3.1. Polyphenols
Name | Extraction and Purification Conditions | Yield/Extraction Amount | Monomeric Substances | References |
---|---|---|---|---|
Polyphenols | Enzyme-assisted technology: material-to-liquid ratio of 102.00 mL/g, complex enzyme addition (pectinase and cellulase) of 0.90%, temperature of 45.33 °C. Purification: AB-8 macroporous resin, 90% ethanol elution. | 22.29 mg GAE/g; the polyphenol purity changed from 19.74% to 62.09%. | N/A | [83] |
Polyphenols | Ultrasonic-assisted technology: material-to-liquid ratio of 1:62 (g/mL), volume fraction of ethanol of 50%, ultrasonic time of 50 min, ultrasonic temperature of 71 °C. | 6.98%. | N/A | [97] |
Polyphenols | Ultrasonic-assisted technique: material-to-liquid ratio of 1:40 (g/mL), ethanol concentration of 30%, ultrasound for 15 min, extraction temperature of 50 °C. | 56.46 mg GAE/g. | rutin, isorhamnetin, syringic acid, and p-coumaric acid. | [84] |
Polyphenols and Flavonoids | Ultrasonic cellulase simultaneous extraction method: enzyme mass fraction of 0.4%, material-to-liquid ratio of 1:70 (g/mL), 50% ethanol, pH = 4.8, ultrasonic power of 210 W, extraction temperature of 50 °C, extraction time of 40 min, 2 times extraction. | Flavonoids (121.36 mg/g); polyphenols (63.92 mg/g). | N/A | [82] |
Flavonoids | Ultrahigh-pressure extraction: ethanol volume fraction of 62%, pressure of 385 MPa, holding time of 9 min, material-to-liquid ratio of 1:25 (g/mL). | 12.31%. | N/A | [98] |
Flavonoids | Material-to-liquid ratio of 1:13, 59% ethanol, 2 times of reflux extraction, 77 min each time. | 64.12 mg/g. | N/A | [95] |
Flavonoids | Ultrasonic-assisted technology: 60% ethanol, material-to-liquid ratio of 1:30 (g/mL), ultrasonic power of 200 W, ultrasonic extraction time of 1 h. | 7.76%. | naringin, rutin, isoquercetin, hyperoside, dihydroquercetin, catechin, quercitin, gallic acid, quercetin, astragaloside, epicatechin gallate. | [90] |
Flavonoids | Ultrasonic-assisted lye technology: lye concentration of 0.4 mol/L, ultrasonic time of 1.5 h, material-to-liquid ratio of 1:37. | 13.95%. | N/A | [99] |
Flavonoids | Ethanol concentration of 55%, extraction temperature of 80 °C, extraction time of 80 min. | 9.88%. | N/A | [91] |
Flavonoids | Ultrasonic-microwave synergistic technique: ethanol concentration of 50%, material-liquid ratio of 1:25.6 (g/mL), ultrasonic power of 261.8 W, microwave power of 150 W, extraction temperature of 51.6 °C, extraction time of 8.5 min. | 5.17%. | N/A | [92] |
Total phenolic acid | Ethanol concentration of 40%, extraction temperature of 80 °C, extraction time of 60 min, material-to-liquid ratio of 1:21 (g/mL). | N/A | gallic acid, caffeic acid, protocatechuic acid, methyl gallate. | [96] |
3.2. Polysaccharides
Number | Identity | Amount/(mg/g) | Molecular Weight | Formula | Structural Formula | References |
---|---|---|---|---|---|---|
1 | Mannose | 11.45 ± 0.52 | 182.17 | C6H14O6 | [6] | |
2 | Rhamnose | 8.99 ± 0.41 | 164.16 | C6H12O5 | ||
3 | Ribose | 2.99 ± 0.27 | 150.13 | C5H10O5 | ||
4 | Glucuronic acid | 3.09 ± 0.09 | 194.14 | C6H10O7 | ||
5 | Trehalose | 223.76 ± 10.01 | 342.30 | C12H22O11 | ||
6 | Galacturonic acid | 8.18 ± 0.05 | 194.14 | C6H10O7 | ||
7 | Xylose | 44.79 ± 2.08 | 150.13 | C5H10O5 | ||
8 | Galactose | 2.77 ± 0.02 | 180.16 | C6H12O6 | ||
9 | Arabinose | 8.11 ± 1.57 | 150.13 | C5H10O5 |
Name of Polysaccharide | Extraction and Purification Methods | Monosaccharide Composition and Molar Ratio | Molecular Weight | Biological Activity | References |
---|---|---|---|---|---|
Acid polysaccharide SJP-2 | Crushed through 20 mesh sieve, material-to-liquid ratio of 1:20 (m/v), extraction at 90 °C for 2 h, concentrated and lyophilized, depigmented with hydrogen peroxide, concentrated, and deproteinated by Sevage method. Purification: DEAE-Sepharose Fast Flow ion exchange column (2.0 cm × 35 cm) and Sephadex-G50 gel column chromatography (1.0 × 64 cm). | arabinose:galactose:glucose:galacturonic acid = 1:2.62:4.45:18.53. | 3239 Da | Antioxidant. The IC50 values for scavenging DPPH radicals, hydroxyl radicals, and ABTS radicals were 0.094, 0.945, and 0.591 mg/mL, respectively, and the reducing capacity reached 1.158 at 1.0 mg/mL. The ORAC value was 1217.99 ± 31.22 μmol TE/g. | [102] |
P4a and P5a | Crushed and sieved through 60 mesh sieve at a ratio of 1:40 (m/v), extracted 3 times at 85 °C for 3 h. Concentrated by filtration, alcoholic sedimentation, centrifuged, washed with anhydrous ethanol, sediment spread out, and evaporated in a ventilated area until no alcoholic odor was present. Purification: DEAE-Sephadex A-25 anion-exchange ion column chromatography (2.6 × 46 cm) and Sephadex G-75 gel column chromatography (2.6 × 96 cm). | P4a: mannose:rhamnose:glucose:galactose:xylose:arabinose:fucose = 1:23.1:11.4:72.2:19.9:25.7:2.6. P5a: mannose:rhamnose:glucose:galactose:xylose:arabinose:fucose = 1:36.2:26.7:82.7:12.3:21.9:2.5. | P4a:7015 Da. P5a:13057 Da. | Inhibition of α-glucosidase and AGE formation. | [25] |
Water-soluble polysaccharide DJP-2 | Raw material ratio of 20 mL/g, extraction time of 40 min, and microwave extraction power of 400 W. Purification: DEAE-Cellulose 52 ion exchange column (2.6 × 60 cm) and Sephadex G-100 gel column (2.6 × 60 cm). | Arabinose:galactose:glucose:xylose:mannose = 0.27:0.55:1.00:0.14:0.08. | 4950 Da. | Antioxidant and antibacterial. Antitumor and immunomodulation. Mitigation of oxidative damage to hepatic L02 cells by H2O2. Blood glucose regulation: inhibits α-amylase and α-D-glucosidase activity, lowers blood glucose, inhibits AGEs formation. | [101,103,104] |
3.3. Saponins
3.4. Fatty Acids
3.5. Amino Acids
3.6. Metal Elements
4. Product Development of Diaphragma Juglandis Fructus
Category | Product | Raw Materials | Features | References |
---|---|---|---|---|
Food | A compound herbal tea beverage | DJF, licorice, and honeysuckle. | Golden color, stable quality and unique flavor were obtained by double enzymatic digestion. | [110] |
bagged tea | DJF. | Its aqueous extract content was 68.60%, total flavonoid content was 5.62%, polysaccharide content was 4.74%, and 27 flavor substances were detected. The flavor substances with higher content were linalool (4.04%), limonene (3.41%), γ-terpene (1.54%), lauricene (1.82%), and furfural (1.05%). | [111] | |
Effervescent tablets | An 8:2 ratio of jujube pomace to DJF, 0.75% meringue addition, 0.8% anhydrous citric acid addition and 0.25% silicon dioxide addition. | The theoretical shelf-life was 68 days at 25 °C and 60% humidity. | [112] | |
Fruit wine | Walnut flowers, walnut leaves, walnut shells, and DJF. | A unique flavor and excellent taste. | [113] | |
Colorant | DJF. | Good colorant effect, stable performance, and no harmful substances. | [114] | |
A sheep milk and lamb preservative | DJF, buckwheat bran, and raisins. | Favorable taste, antioxidant, and antimicrobial properties. | [115] | |
Medicine | The treatment of ulcerative colitis | AeDJF. | It can effectively treat and alleviate the symptoms of ulcerative colitis, such as weight loss, diarrhea, and blood in stool. Additionally, it can regulate the composition of intestinal flora and promote flora recovery. | [117] |
A combination Chinese herbal formula for the treatment of Parkinson’s disease | Alpiniae Oxyphyllae Fructus, Semen Platycladi, and DJF. | It has promising efficacy in Parkinson’s disease of the type with kidney Yang deficiency, liver heat, blood, and wind. Also, it can be used to tonify liver blood and remove liver wind without side effects. | [118] | |
The treatment of benign prostatic hyperplasia | DJF combined with prostatic artery embolization. | The patient showed significant improvement in prostatic symptoms without serious complications after 7 days of continuous use with DJF. | [119] | |
Others | A nutrient component for cultivating white mushrooms | DJF. | Obtained white mushrooms with high yield, large bodies, rich flesh, uniform thickness, high-temperature resistance, and high nutritional value. | [120] |
Composite photocatalysts | DJF as a biomass carbon doped into the precursor. | Increased the degradation efficiency of the composites, and the catalytic performance was basically unchanged after five cycles of recycling. | [121] | |
An all-natural skin care combination | Mung bean germ extract, Bletilla striata extract, mulberry leaf extract, DJF extract, etc. | Melanin reduction and whitening effect. The extract of DJF could accelerate the production and excretion of melanin from the skin at the cellular level to solve the whitening problem at the root. | [122] |
5. Conclusions and Future Perspectives
- Isolation and structural identification of the monomeric substances in the extracts, especially for the structural characterization of homogeneous polysaccharides.
- Systematic study of synergistic or antagonistic effects among monomers. Comprehensive analysis of the differences in the effects of monomers and mixtures on specific biological activities.
- Flavonoids and other substances have strong antioxidant activity. The study of the relationship between the structural characteristics of the monomers and their biological activities can be effective in obtaining components with better effects.
- Based on the biological activity of DJF, continue exploring and developing products that are popular among and beneficial to consumers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
DJF | Diaphragma Juglandis fructus |
AeDJF | aqueous extract of Diaphragma Juglandis Fructus |
HUA | hyperuricemic |
MG | model group |
UA | uric acid |
Cr | creatinine |
BUN | urea nitrogen |
XOD | xanthine oxidase |
TNF-α | tumor necrosis factor α |
IL-1β | interleukin 1β |
HDG | high-dose group |
RIRI | renal ischemia-reperfusion injury |
CG | normal group |
LDG | low dose group |
MDA | malondialdehyde |
SOD | superoxide dismutase |
BLA | serum lactate |
LDH | lactate dehydrogenase |
TC | total cholesterol |
TG | total triglycerides |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
EeDJF | ethanol extract of Diaphragma Juglandis Fructus |
HPLC | high-performance liquid chromatography |
Vc | vitamin C |
GSH | glutathione |
mTOR | mammalian target of rapamycin |
PKC | protein kinase C |
SDF1α | stromal derived factor 1α |
CXCR4 | chemokine receptor 4 |
MeDJF | methanol extracts of Diaphragma Juglandis Fructus |
Hela | cervical cancer cell |
HGC-27 | human gastric cancer cell |
Ht-29 | colon cancer cell line |
AGEs | advanced glycosylation end products |
EAA | essential amino acids |
NEAA | non-essential amino acids |
MIC | minimum inhibitory concentration |
References
- Kithi, L.; Lengyel-Kónya, É.; Berki, M.; Bujdosó, G. Role of the green husks of persian walnut (Juglans regia L.)—A Review. Horticulturae 2023, 9, 782. [Google Scholar] [CrossRef]
- Nguyen, T.H.D.; Vu, D.C. A Review on phytochemical composition and potential health-promoting properties of walnuts. Food Rev. Int. 2023, 39, 397–423. [Google Scholar] [CrossRef]
- Hama, J.R.; Omer, R.A.; Rashid, R.S.M.; Mohammad, N.; Thoss, V. The diversity of phenolic compounds along defatted kernel, green husk and leaves of walnut (Juglansregia L.). Anal. Chem. Lett. 2016, 6, 35–46. [Google Scholar] [CrossRef]
- Tan, J.Y.; Deng, F.Y.; Huang, Y.R.; Su, Q.H.; Li, J.L.; Cheng, Y.G.; Wang, Y.L. Study on chemical compositions of Diaphragma Juglandis fructus. J. Shaanxi Univ. Tradit. Chin. Med. 2022, 23, 200–203. [Google Scholar] [CrossRef]
- Xiao, M.; Zhao, X.D.; Hao, Y.R.; Chen, K.; Zhai, M.Z. Antioxidant activity and the oil oxidative stability of the extract from Diaphragma Juglandis Fructus. Food Res. Dev. 2021, 42, 71–77. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, J.; Li, J.; Liu, H.; Dong, N.; Geng, Y.Y.; Lu, Y.; Wang, Y. Phenolic composition and nutritional attributes of Diaphragma Juglandis fructus and shell of walnut (Juglans regia L.). Food. Sci. Biotechnol. 2020, 29, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Ghiravani, Z.; Hosseini, M.; Taheri, M.M.H.; Fard, M.H.; Abedini, M.R. Evaluation of hypoglycemic and hypolipidemic effects of internal septum of walnut fruit in alloxan-induced diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 94–100. [Google Scholar] [CrossRef]
- Hong, Q.Q.; Ye, Y.L.; Zhang, Y.Z.; Sun, X.L.; Gen, S.X.; Xu, D.P. Research progress on chemical constituents and functional activities of Diaphragma Juglandis Fructus. Food Res. Dev. 2021, 42, 194–202. [Google Scholar] [CrossRef]
- Xu, B.B. Extraction of Polyphenols from Walnut Byproduct and Its Influence on the Stability of Lipid Oxidation. Master’s Thesis, Tarim University, Alar, China, 2017. [Google Scholar]
- Zhang, Y.; Kan, H.; Chen, S.; Thakur, K.; Wang, S.; Zhang, J.; Shang, Y.; Wei, Z. Comparison of phenolic compounds extracted from Diaphragma Juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem. 2020, 321, 126672. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Su, W.W.; Wang, Y.G. Research progress of Diaphragma Juglandis Fructus. J. Pharm. Res. 2021, 40, 524–527. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.J.; Liu, R.; Shen, L.; Tian, X.Y.; Jiang, B. Therapeutic effect of Yunnan Diaphragma Juglandis Fructus extracts on hyperuricemia model in mice. Nat. Prod. Res. Dev. 2021, 33, 1463–1469. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.J.; Liu, R.; Xiao, C.J.; Shen, L.; Tian, X.Y.; Jiang, B. Protective Effect of the aqueous extract of Diaphragma Juglandis Fructus on unilateral renal ischemia-reperfusion injury in rats. Chin. J. Ethnomed. Ethnopharmacy 2022, 31, 25–28. [Google Scholar]
- Hou, D.Y.; Zhang, J.; He, Y.; Luo, Q. Anti-fatigue activity study of aqueous extract from Diaphragma Juglandis Fructus in walnut. Food Nutr. China 2021, 27, 73–77. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, Q.P.; Tan, C.; Peng, C.X.; Gong, J.S. Effect of different parts of walnut on memory in mice. Food Res. Dev. 2022, 43, 61–68. [Google Scholar]
- Zhu, Q.M. Study on Uygur Medicine Diaphragma Juglandis Fructus Chemical Composition, Quality Standard and Activity. Master’s Thesis, Xinjiang Medical University, Urumqi, China, 2015. [Google Scholar]
- Ma, Z.; Hu, C.S.; Yang, Z.; Ma, X.N. Protective effect of the Diaphragma Juglandis Fructus extracts on the rhabdomyolysis-induced acute kidney injury in rats. Int. J. Pharm. Res. 2020, 47, 645–651. [Google Scholar] [CrossRef]
- Hu, G.S.; Gao, S.; Mou, D.H. Water and alcohol extracts from Diaphragma Juglandis on anti-fatigue and antioxidative effects in vitro and vivo. J. Sci. Food Agr. 2021, 101, 3132–3139. [Google Scholar] [CrossRef]
- Hong, Q.Q.; Geng, S.X.; Ji, J.; Ye, Y.L.; Xu, D.P.; Zhang, Y.Z.; Sun, X.L. Separation and identification of antioxidant chemical components in Diaphragma Juglandis Fructus and functional evaluation in Caenorhabditis elegans. J. Funct. Foods 2021, 80, 104422. [Google Scholar] [CrossRef]
- Liu, Y.N.; Wang, P.; Yang, Y.J. Effects of ethanol extract of Diaphragma Juglandis Fructus on the proliferation, apoptosis and migration of colon cancer HCT116 cell. Chin. J. Cell Biol. 2020, 42, 1163–1170. [Google Scholar]
- Bai, N.; Tian, L.L.; Wu, J.; Li, W.T.; Zhang, C.L. Effects of the Diaphragma Juglandis Fructus ethanol extract on the proliferation, invasion, migration and apoptosis of hepatocellular carcinoma cells. J. Zunyi Med. Univ. 2022, 45, 1–8. [Google Scholar] [CrossRef]
- Zangeneh, A.; Zangeneh, M.M.; Goodarzi, N.; Najafi, F.; Hagh Nazari, L. Protective effects of aqueous extract of internal septum of walnut fruit on diabetic hepatopathy in streptozotocin-induced diabetic mice. Sci. J. Kurdistan Univ. Med. Sci. 2018, 23, 26–37. [Google Scholar]
- Tan, J.Y.; Cheng, Y.G.; Li, J.L.; Ren, H.Q.; Li, H.; Huang, Y.R.; Qiao, Y.B.; Li, Q.S.; Wang, Y.L. New taraxasterane-type triterpenes from Diaphragma Juglandis Fructus. Tetrahedron Lett. 2022, 100, 153868. [Google Scholar] [CrossRef]
- Yang, M.Z.; Tian, X.Y.; Xiao, C.J.; Han, B.Y.; Jiang, B. Chemical constituents and bioactivity studies of Diaphragma Juglandis Fructus. Nat. Prod. Res. Dev. 2012, 24, 1707–1711. [Google Scholar] [CrossRef]
- Yin, S.J. Studies on the Active Constituents of Diaphragma Juglandis Fructus. Master’s Thesis, University of Jinan, Jinan, China, 2018. [Google Scholar]
- Zhang, T.R.; Yang, A.L.; Zhang, T.Y.; Zhang, S.F. Study on sedative and hypnotic effect of semen Juglandis. China Pharm. Aff. 2017, 31, 960–964. [Google Scholar] [CrossRef]
- Sun, D.X. The Study of Chemical Constituents from Diaphragma Juglandis Fructus and Green Walnut Husks. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2019. [Google Scholar]
- Ping, L. Analysis of the Chemical Compositions and Antitumor Activities of Water Extracts from Walnut Diaphragm. Master’s Thesis, Shanxi University, Taiyuan, China, 2017. [Google Scholar]
- Li, P.; Jia, H.J.; Jin, M.; Ji, Y.L.; Fan, T.W.; Li, M.P.; Zhang, S.W. Analysis of the volatile cmpositions of water extracts from walnut Diaphragm. Food Sci. 2016, 37, 142–148. [Google Scholar] [CrossRef]
- Li, D.Q.; Gu, J.; Luo, J.R.; Chen, Z.B. A preliminary study on the bactericidal effect of menthol. Chin. J. Disinfect. 2022, 39, 334–336. [Google Scholar]
- Jiang, J.H.; Li, X.C.; Gao, X.Q.; Gao, T.H.; Chen, F.M.; Feng, Y.J.; Huang, L.B. Volatile constituents from platycladusorentalis and their antiumor activities. For. Res. 2006, 33, 311–315. [Google Scholar]
- Marri, L.; Jansson, A.M.; Christensen, C.E.; Hindsgaul, O. An enzyme-linked immunosorbent assay for the detection of diacetyl (2,3-butanedione). Anal. Biochem. 2017, 535, 12–18. [Google Scholar] [CrossRef]
- Gao, X.; Xu, N.; Li, S.; Liu, L. Metabolic engineering of Candida glabrata for diacetyl production. PLoS ONE 2014, 9, e89854. [Google Scholar] [CrossRef]
- Zhao, H.X.; Jing, Y.C.; Bai, H.; Wang, Y.A.; Zhou, H.L. Chemical constituents from Diaphragma Juglandis Fructus and their antioxidant activity. Chin. J. Exp. Tradit. Med. Formulae 2016, 22, 54–57. [Google Scholar] [CrossRef]
- Tan, J.Y.; Cheng, Y.G.; Wang, S.H.; Li, J.L.; Ren, H.Q.; Qiao, Y.B.; Li, Q.S.; Wang, Y.L. The chemical constituents of Diaphragma Juglandis Fructus and their inhibitory effect on α-Glucosidase activity. Molecules 2022, 27, 3045. [Google Scholar] [CrossRef]
- Zhao, H.; Bai, H.; Jing, Y.; Li, W.; Yin, S.; Zhou, H. A pair of taxifolin-3-O-arabinofuranoside isomers from Juglans regia L. Nat. Prod. Res. 2017, 31, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.C.; Zhao, H.X.; Sun, Y.L.; Bai, H. Chemical constituents from Diaphragma Juglandis Fructus. Food Drug 2015, 17, 87–90. [Google Scholar]
- Tan, J.Y.; Li, J.L.; Cheng, Y.G.; Qiao, Y.B.; Li, Q.S.; Wang, Y.L. A New phenylbutanone glucoside from Diaphragma Juglandis Fructus. J. Chin. Med. Mater. 2022, 45, 1847–1850. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.J.; Yang, P.; Wang, X.; Gen, Y.L. Separation and identification of chemical constituents from Diaphragma Juglandis Fructus. Food Ind. Technol. 2018, 39, 231–234. [Google Scholar] [CrossRef]
- Zhang, P.P. Quality and Safety Evaluation of Diaphragma Juglandis Fructus from Yunnan and Antimalarial Compounds of Dendrobenthamia capitata. Master’s Thesis, Dali University, Dali, China, 2018. [Google Scholar]
- Wang, D.; Mu, Y.; Dong, H.J.; Yan, H.J.; Hao, C.; Wang, X.; Zhang, L.S. Chemical constituents of the ethyl acetate extract from Diaphragma Juglandis Fructus and their inhibitory activity on nitric oxide production in vitro. Molecules 2018, 23, 72. [Google Scholar] [CrossRef]
- Guan, L.; Zhang, S.L.; Wang, G.J.; Tang, H.; Wang, H.; Wang, J.C. Effects of different polar parts of Diaphragma Juglandis Fructus on kidney yang deficiency in mice. J. Bingtuan Med. 2013, 38, 41–44. [Google Scholar]
- Wang, J.; Wang, H.; Yu, J.; Wang, J.L.; Cui, Q.H.; Hou, L.; Tian, J.Z. Traditional uses, chemical composition, and pharmacological effects of Diaphragma Juglandis fructus: A review. J. Ethnopharmacol. 2023, 312, 116440. [Google Scholar] [CrossRef]
- Liu, P.; Wang, W.; Li, Q.; Hu, X.; Xu, B.; Wu, C.; Bai, L.; Ping, L.; Lan, Z.; Chen, L. Methyl gallate improves hyperuricemia nephropathy mice through inhibiting NLRP3 Pathway. Front. Pharmacol. 2021, 12, 759040. [Google Scholar] [CrossRef]
- Zhang, C.; Song, Y.; Chen, L.; Chen, P.; Yuan, M.; Meng, Y.; Wang, Q.; Zheng, G.; Qiu, Z. Urolithin A attenuates hyperuricemic nephropathy in fructose-fed mice by impairing STING-NLRP3 axis-mediated inflammatory response via restoration of parkin-dependent mitophagy. Front. Pharmacol. 2022, 13, 907209. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Y.; Zhang, X. Astragaloside IV alleviates lipopolysaccharide-induced acute kidney injury through down-regulating cytokines, CCR5 and p-ERK, and elevating anti-oxidative ability. Med. Sci. Monit. 2017, 23, 1413–1420. [Google Scholar] [CrossRef]
- Liu, N.; Xu, L.; Shi, Y.; Fang, L.; Gu, H.; Wang, H.; Ding, X.; Zhuang, S. Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats. Oncotarget 2017, 8, 33807–33826. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, C.; Shi, M.; Guo, F.; Liu, J.; Li, L.; Ren, Q.; Tao, S.; Tang, M.; Ye, H.; et al. Ethanol extract of Liriodendron chinense (Hemsl.) Sarg barks attenuates hyperuricemic nephropathy by inhibiting renal fibrosis and inflammation in mice. J. Ethnopharmacol. 2021, 264, 113278. [Google Scholar] [CrossRef]
- Correa-Costa, M.; Braga, T.T.; Semedo, P.; Hayashida, C.Y.; Bechara, L.R.G.; Elias, R.M.; Barreto, C.R.; Silva-Cunha, C.; Hyane, M.I.; Gonçalves, G.M.; et al. Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis. PLoS ONE 2011, 6, e29004. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, M.; Lu, G.; Yang, Z.; Ji, H.; Hu, Q. Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats. Biomed. Pharmacother. 2017, 96, 727–735. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Y.; Chen, X.; Liang, N.; Qu, S.; Chen, H. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Dis. Model. Mech. 2021, 14, dmm048041. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, J.; Lu, J.; Lin, G.; Yu, Q.; Li, Y.; Chen, J.; Xie, J.; Su, Z.; Zhou, Q. Integrating network pharmacology and experimental validation to clarify the anti-hyperuricemia mechanism of cortex phellodendri in mice. Front. Pharmacol. 2022, 13, 9645593. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; He, Q.; Bulus, N.; Fogo, A.B.; Zhang, M.; Harris, R.C. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes 2020, 69, 2446–2457. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, S.; Li, K.; Wu, G.; Zheng, X.; Zheng, J.; Lu, X.; Zhang, L.; Li, J.; Su, Z.; et al. Coptisine protects against hyperuricemic nephropathy through alleviating inflammation, oxidative stress and mitochondrial apoptosis via PI3K/Akt signaling pathway. Biomed. Pharmacother. 2022, 156, 113941. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Ma, D.; Luo, Y.; Tang, S.; Li, Y.; Chen, G.; Wang, L.; Hou, Z.; Shen, C.; Lu, H.; et al. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered 2021, 12, 6538–6558. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.C.; Park, J.; Ho, K.; Sumner, L.W.; Lei, Z.; Greenlief, C.M.; Mooney, B.; Coggeshall, M.V.; Lin, C. Identification of health-promoting bioactive phenolics in black walnut using cloud-based metabolomics platform. J. Food Meas. Charact. 2020, 14, 770–777. [Google Scholar] [CrossRef]
- Xu, S.T.; Yang, Y.J.; Wang, Y.J.; Guo, Y.T.; Liu, Y.N.; Zhang, J.M.; Qin, X.Y.; Zhang, J. In vitro Comparation on antioxidant activities of extracts from four plant species. Food Res. Dev. 2022, 43, 66–72. [Google Scholar] [CrossRef]
- Wang, Y.K.; Tian, X.Y.; Su, J.; Pang, B.; Zhou, P.; Abedini, M.R. Preliminary study on the protective effects of Diaphragma Juglandis Fructus extract on HIRI in Rats. J. Dali Univ. 2021, 6, 25–28. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, L.; Moore, J.; Wu, T.; Wang, Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009, 113, 160–165. [Google Scholar] [CrossRef]
- Ling, H.C. Studies on Anti-Tumor Effect In Vitro and Chemical Constituents from Diaphragma Juglandis Fructus of Xinjiang. Master’s Thesis, XinJiang Medical University, Urumqi, China, 2016. [Google Scholar]
- Chen, C.; An, N.; Pang, D.; Cheng, Y.; Chen, Y.; Feng, X.; Lei, H.; He, W.; Yang, B.; Zhang, Y.; et al. The green walnut husks induces apoptosis of colorectal cancer through regulating NLRC3/PI3K Pathway. Curr. Pharm. Design 2023, 29, 940. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.T.; Li, Y.; Chu, P.; Ma, X.D.; Tang, Z.Y.; Sun, Z.L. Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed. Pharmacother. 2022, 148, 112785. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wang, X.; Cheng, M.; Wang, S.; Ma, K. The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art. Biomed. Pharmacother. 2023, 165, 115132. [Google Scholar] [CrossRef]
- Heuvel, J.P.V.; Belda, B.J.; Hannon, D.B.; Kris-Etherton, P.M.; Grieger, J.A.; Zhang, J.; Thompson, J.T. Mechanistic examination of walnuts in prevention of breast cancer. Nutr. Cancer 2012, 64, 1078–1086. [Google Scholar] [CrossRef]
- Li, G.Y.; Cheng, Y.G.; Ceng, T.C.; Li, M.J.; Sun, R.R.; Li, H.F.; Kong, X.P.; Pei, M.R. Action mechanism of total flavonoids of Diaphragma Juglandis Fructus in treating type 2 diabetes mellitus based on network pharmacology and cellular experimental validation of AKT/Fox O1 signaling pathway. Drug Eval. Res. 2019, 42, 30–40. [Google Scholar]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef]
- Jani, N.A.; Sirat, H.M.; Ahmad, F.; Aminudin, N.I. New sesquiterpene dilactone and beta-carboline alkaloid and the alpha-glucosidase inhibitory activity of selected phytochemicals from Neolitsea cassia (L.) Kosterm. Nat. Prod. Res. 2022, 36, 4061–4069. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Z.; Chen, C.; Zhang, B.; Huang, Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit. Rev. Food Sci. Nutr. 2020, 60, 695–708. [Google Scholar] [CrossRef]
- Xi, M.; Hou, Y.; Cai, Y.; Shen, H.; Ao, J.; Li, M.; Wang, J.; Luo, A. Antioxidant and antimicrobial characteristics of ethyl acetate polar fractions from walnut green husk. J. Food Sci. 2023, 88, 1060–1074. [Google Scholar] [CrossRef]
- Elouafy, Y.; El Yadini, A.; Mortada, S.; Hnini, M.; Harhar, H.; Khalid, A.; Abdalla, A.; Bouyahya, A.; Goh, K.; Ming, L. Antioxidant, antimicrobial, and α-glucosidase inhibitory activities of saponin extracts from walnut (Juglans regia L.) leaves. Asian Pac. J. Trop. Bio. 2023, 13, 60. [Google Scholar] [CrossRef]
- Altemimi, A.B.; Al Haliem, S.M.; Alkanan, Z.T.; Mohammed, M.J.; Hesarinejad, M.A.; Najm, M.A.A.; Bouymajane, A.; Cacciola, F.; Abedelmaksoud, T.G. Exploring the phenolic profile, antibacterial, and antioxidant properties of walnut leaves (Juglans regia L.). Food Sci. Nutr. 2023, 1–9. [Google Scholar] [CrossRef]
- Barekat, S.; Nasirpour, A.; Keramat, J.; Dinari, M.; Meziane-Kaci, M.; Paris, C.; Desobry, S. Phytochemical composition, antimicrobial, anticancer properties, and antioxidant potential of green husk from several walnut varieties (Juglans regia L.). Antioxidants 2023, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Boulfia, M.; Lamchouri, F.; Toufik, H. Mineral analysis, in vitro evaluation of alpha-amylase, alpha-glucosidase, and beta-galactosidase inhibition, and antibacterial activities of Juglans regia L. bark extracts. Biomed. Res. Int. 2021, 2021, 1585692. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, Y.M.; Patigul, M. Study on antibacterial activities of walnut Diaphragm Extracts. Food Sci. 2008, 29, 69–71. [Google Scholar]
- Chen, L.; Ge, C.L.; Wei, H.Y.; Ma, X.L.; Mai, D.N.; Shi, J.L. Chemical constituents from Diaphragma Juglandis Fructus and its antitumor activities. Chin. Tradit. Herb. Drugs 2022, 53, 3595–3600. [Google Scholar] [CrossRef]
- Gedük, A.; Zengin, F. LC–MS/MS characterization, antidiabetic, antioxidative, and antibacterial effects of different solvent extracts of Anamur banana (Musa Cavendishii). Food Sci. Biotechnol. 2021, 30, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, F.; Köngül Şafak, E.; Erkan Türkmen, K.; Şeker Karatoprak, G.; Katırcıoğlu, H.; Küçükboyacı, N. Assessment of antimicrobial, antibiofilm, and cytotoxic activities, and characterization of phenolic compounds of Origanum haussknechtii. J. Food Meas. Charact. 2021, 15, 4267–4276. [Google Scholar] [CrossRef]
- Rajendrasozhan, S.; Moll, H.E.; Snoussi, M.; Romeilah, R.M.; Shalaby, E.A.; Younes, K.M.; El-Beltagi, H.S. Phytochemical screening and antimicrobial activity of various extracts of aerial parts of Rhanterium epapposum. Processes 2021, 9, 1351. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Y.M.; Ahmatjan; Patigul, M. Spectrophotometric determination of total alkaloid in Diaphragma julandis Fructus. J. Xinjiang Univ. 2007, 27, 217–219. [Google Scholar]
- Xu, H.; Gao, M.Z.; Kan, H.; Hu, X.; Liu, C.; Liu, Y. Determination of main components and preparation of instant powder of Diaphragma Juglandis Fructus in Juglans sigillata. Food Ind. 2022, 43, 54–58. [Google Scholar]
- Liu, R.X.; Zhao, Z.Y.; Dai, S.G.; Che, X.; Liu, W.H. Identification and Quantification of bioactive compounds in Diaphragma Juglandis Fructus by UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS. J. Agr. Food Chem. 2019, 67, 3811–3825. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Liu, F. Study on extraction of flavonoids and polyphenolics from walnut diaphragm by ultrasonic and cellulase treatment and their antioxidant activities. Grain Oils 2020, 33, 111–115. [Google Scholar]
- Li, R.; Liang, Y.L.; Kan, H.; Liu, Y. Optimization of Extraction Process for Polyphenols from Yunnan distracted wood in Juglans regia by response surface methodology. J. Southwest For. Univ. 2021, 41, 159–165. [Google Scholar] [CrossRef]
- Chen, G.L.; Liu, X.W.; Han, M.D.; Luo, C.X.; Chen, S.G. Study on the Extraction and antioxidant activity of phenolic contents in Diaphragma Juglandis Fructus. Food Res. Dev. 2017, 38, 67–71. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, S.G.; Zhao, Y.Y.; Luo, C.X.; Li, J.; Gao, Y.Q. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind. Crop Prod. 2014, 57, 150–157. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Deng, G.F.; Xu, X.R.; Guo, Y.J.; Xia, E.Q.; Li, S.; Wu, S.; Chen, F.; Ling, W.H.; Li, H.B. Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J. Funct. Foods 2012, 4, 906–914. [Google Scholar] [CrossRef]
- Sha, Y.H.; Mao, X.Y.; Wu, Q.Z.; Zhang, J.; Cheng, W.D. Flavonoid composition and antioxidant activity of Diaphragma Juglandis Fructus. Food Sci. 2021, 42, 91–98. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, Y.G.; Zhang, X.; Yang, J.J.; Zhao, S.L. Optimization of extraction technology of general flavone from Yunnan diaphrgma juglandis fructus and its antioxidant activtities and effects on lipid-changed LO2 hepatocytes steatosis L02 hepatocytes. Food Mach. 2020, 36, 141–146. [Google Scholar] [CrossRef]
- Zhao, J.J. Study on Diaphragma Juglandis fructus flavonoids ultrasound-microwave synergistic extraction process and its antioxidant activity. Food Res. Dev. 2018, 39, 70–76. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, H.; Wang, Y. Revealing and predicting the relationship between the molecular structure and antioxidant activity of flavonoids. LWT 2023, 174, 114433. [Google Scholar] [CrossRef]
- de Souza Farias, S.A.; Da Costa, K.S.; Martins, J.B.L. Analysis of conformational, structural, magnetic, and electronic properties related to antioxidant activity: Revisiting flavan, anthocyanidin, flavanone, flavonol, isoflavone, flavone, and flavan-3-ol. Acs. Omega 2021, 6, 8908–8918. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.G.; Tan, J.Y.; Li, G.Y.; Liu, Y.; Li, H.F.; Kong, X.P.; Guo, R.; Yang, B.Y.; Pei, M.R. Optimation of extraction of total flavonoids from Diaphragma Juglandis Fructus by response surface methodology. J. Liaoning Univ. Tradit. Chin. Med. 2018, 20, 40–43. [Google Scholar] [CrossRef]
- Liu, L.J. The Preliminary Study of Antioxidant Effect of Phenolic Acid from Juglans regia L. Master’s Thesis, Dali University, Dali, China, 2018. [Google Scholar]
- Millena, C.G.; Sagum, R.S. Philippine Pili (Canarium ovatum, Engl.) varieties as source of essential minerals and trace elements in human nutrition. J. Food Compos. Anal. 2018, 69, 53–61. [Google Scholar] [CrossRef]
- He, W.; Yan, C.; Xiong, X.Y.; Tang, Z.G. Study on technology and kinetic model for ultrahigh pressure extraction of total flavonoids from walnut diaphragm. Sci. Technol. Food Ind. 2017, 38, 186–191. [Google Scholar] [CrossRef]
- Sha, Y.H.; Xi, Y.; Zhu, Z.F.; Wu, Q.Z.; Mao, X.Y. Ultrasonic assisted extraction of flavonoids from Juglandis Fructus and its antioxidant activity. Farm. Prod. Process. 2020, 18, 25–31. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Calhelha, R.C.; Ćirić, A.; van Griensven, L.J.L.D.; Soković, M.; Ferreira, I.C.F.R. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem. Toxicol. 2013, 62, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.R.; Li, Y.H.; Xiao, T.C.; Zhang, L.F.; Xu, D. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma Juglandis fructus. Int. J. Biol. Macromol. 2017, 105, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.S.; He, L.; Wei, C.Y.; Li, W.Q. Physicochemical properties and antioxidant activity of acid polysaccharide sjp-2 from Semen Juglandis. Sci. Technol. Food Ind. 2016, 37, 59–63. [Google Scholar] [CrossRef]
- Meng, Q.R.; Chen, F.; Xiao, T.C.; Zhang, L.F. Inhibitory effects of polysaccharide from Diaphragma Juglandis fructus on α-amylase and α-d-glucosidase activity, streptozotocin-induced hyperglycemia model, advanced glycation end-products formation, and H2O2-induced oxidative damage. Int. J. Biol. Macromol. 2019, 124, 1080–1089. [Google Scholar] [CrossRef]
- Meng, Q.R.; Wang, Y.Q.; Chen, F.; Xiao, T.C.; Zhang, L.F. Polysaccharides from Diaphragma Juglandis fructus: Extraction optimization, antitumor, and immune-enhancement effects. Int. J. Biol. Macromol. 2018, 115, 835–845. [Google Scholar] [CrossRef]
- El Aziz, M.M.A.; Ashour, A.S.; Gomha Melad, A.S. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res. 2019, 7, 282–288. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, L.Z.; Jiao, M.Y.; Lu, W.J.; Xu, X.H.; Tian, Y.L. Optimization of ultrasound-assisted extraction process of total saponins in semen Juglandis by response surface methodology. Food Res. Dev. 2019, 40, 105–109. [Google Scholar] [CrossRef]
- Han, Y.C.; Holly, A.; Simayil, A. Spectrophotometric determination of total saponins in Uygur medicine of Diaphragma Juglandis fructus. J. Xinjiang Med. Univ. 2010, 33, 286–287. [Google Scholar]
- Zhu, Q.M.; Ling, C.H.; Aytulun, S. Study on extraction and purification process for total saponins from Xinjiang Diaphragma Juglandis Fructus. Northwest Pharm. J. 2015, 30, 20–23. [Google Scholar] [CrossRef]
- Kalkışım, Ö.; Ozdes, D.; Onaran, A. Assessment of mineral elements and heavy metal contents of walnut samplies (Juglans Regia L.). Adv. Food Sci. 2014, 1, 24–29. [Google Scholar]
- He, W. Extraction Technology of Total Flavonoids from Walnut Diaphragm and the Technique of Compound Herbal Tea of Walnut Diaphragm. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2018. [Google Scholar]
- Liu, S.S. Study on the Preparation of Diaphragma Juglandis Fructus teabag. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2015. [Google Scholar]
- Xin, Z.Z.; Wang, L.; Wang, S.Y.; Wang, Y. Process optimization of jujube pomace Distraction wood composite effervescent tablets. Farm Prod. Process. 2022, 9, 39–43. [Google Scholar] [CrossRef]
- Chen, M.Y.; Wang, J.H.; Xue, W.W.; Zhou, J.H. A mixed fruit wine made of different walnut materials. Mod. Agric. Sci. Technol. 2017, 16, 249–250. [Google Scholar]
- Ying, L. A Coloring Agent Based on Diaphragma Juglandis Fructus and Its Preparation Method and Application. C.N. Patent 108,902,666A, 30 November 2018. [Google Scholar]
- Li, L.Q.; Liu, Y.L.; Chen, X.X.; Ma, H.R. A Sheep Milk and Mutton Preservative. C.N. Patent 110,074,173B, 30 August 2022. [Google Scholar]
- Zhao, S.L.; Zhang, F.; Chen, D.; Zhao, Q.Y.J.; Zhang, X.; Lin, Y.P.; Ma, Y.G. A phenolic extract of walnut Diaphragma Juglandis Fructus and its application in the preparation of drugs for the prevention of abnormalities of glucolipid metabolism. C.N. Patent 114,366,765A, 19 April 2022. [Google Scholar]
- Jiang, B.E.; He, Y.; Xu, Z.Y.; Zhang, J.; Liu, G.S.; Min, T.J. Application of Aqueous Extracts of Diaphragma Juglandis Fructus in the Preparation of Drugs for the Treatment of Ulcerative Colitis. C.N. Patent 113,599,414A, 4 March 2022. [Google Scholar]
- Cong, F. A Combination Herbal Formula for the Treatment of Parkinson’s Disease and its Preparation Method. C.N. Patent 113,827,678A, 24 December 2021. [Google Scholar]
- Shen, H.; Zhu, L.; Pan, X.P. Clincal observation of Semen Juglandis combined with arterial embolization in treatment of benign prostatic hyperplasia. Chin. J. Interv. Radiol. 2018, 6, 37–39. [Google Scholar] [CrossRef]
- Wang, C.B.; Ding, P.H. A Cultivation Method of High Quality and High Yield White Mushroom. C.N. Patent 110,291,926A, 19 November 2021. [Google Scholar]
- Yan, W.M. Study on the Preparation and Photocatalytic Performances of g-C3N5-Based Photocatalysts. Master’s Thesis, Tarim University, Aral, Chian, 2022. [Google Scholar]
- Qian, F.Y. An All-Natural Skin Care Composition with Melatonin Whitening Effect and Preparation Method. C.N. Patent 113,975,210A, 28 January 2022. [Google Scholar]
Extracts | Biological Activities | Effects | References |
---|---|---|---|
Aqueous extracts | Kidney protection | Reduced serum uric acid, creatinine, and urea nitrogen. Reduced activity of xanthine oxidase in liver tissue. Reduced IL-1β and TNF-α. Regulated oxidative stress. | [12,13] |
Anti-fatigue | Prolonged the time to exhaustion. | [14] | |
Memory improvement | Improvement in spontaneous exploratory ability and memory. | [15] | |
Anti-tumor | Caused tumor cell necrosis. Inhibited sarcoma growth. | [16] | |
Ethanol extracts | Kidney protection | Increased oxidase activity. Improved free radical scavenging capacity and testosterone secretion capacity. Reduced malondialdehyde. Reduced TNF-α at the 48th hour. | [12,17] |
Antioxidation | Scavenged DPPH and ABTS. Improved antioxidant enzyme activities. | [18,19] | |
Anti-tumor | Enhanced the apoptosis rate. Reduced proliferation, migration, and invasion ability. Wnt/β-catenin signaling pathway. | [20,21] | |
Hypoglycemia | Inhibited liver damage. Reduced abnormal blood lipid parameters and α-glucosidase activity. | [7,22,23] | |
Antibacterial | Ethyl acetate and n-butanol site extract showed favorable inhibitory effects. | [24,25] | |
Sleep improvement | Shortened sleep latency. Prolonged sleep duration. Improved sleep incidence. | [26] | |
Methanol extracts | Anti-tumor | Inhibited Hela, HGC-27, and Ht-29. | [27] |
Antibacterial | The antibacterial activity of methanol extract was stronger than that of aqueous or ethanol extract. | [8] |
Biological Activities | Animals/Cell Models | Sample Preparation | Test Index | Effects | References |
---|---|---|---|---|---|
Treatment of HUA | SPF grade Kunming breed male mice, weighing 18 to 22 g. Oxygen oxazine acid potassium (50 mg/kg) + adenine (100 mg/kg) in sodium. Carboxymethylcellulose suspension for 21 days. CG, MG, LDG (1 g/kg), HDG (2 g/kg). | Dried and crushed, passed through 120 mesh sieve, 200 g of dry powder was placed in a distillation flask; 500 mL of distilled water was added and extracted 3 times at 85 °C under reflux, cooled and filtered, concentrated, and lyophilized. | The levels of UA, Cr and BUN, XO, TNF-α, and IL-1β. Lesions of renal tissue. | ↓ XOD activity and UA levels (n = 10, p < 0.01 for 2 mg/kg). The aqueous extract at 2 mg/kg was effective in reducing the damage to the kidney structures. | [12] |
Protection against RIRI | SPF level SD male rats, body weight 180 to 220 g. CG, MG, LDG (0.5 g/kg), HDG (1 g/kg). | Dried and crushed, passed through 120 mesh sieve, 200 g of dry powder was placed in a distillation flask; 500 mL of distilled water was added and extracted 3 times at 85 °C under reflux, cooled and filtered, concentrated, and lyophilized. | Cr, BUN, MDA, SOD activity, XOD activity, morphological lesions of renal tissue. | ↓ The levels of MDA, Cr, and BUN and the activity of XOD (p < 0.05 for 1g/kg). ↑ SOD level (p < 0.01 for 1g/kg). The antioxidant capacity of the body was improved. The damage of oxidative stress was reduced, and the renal function after RIRI was improved. | [13] |
Anti-fatigue | Balb/c mice, male, body mass 18–22 g, SPF grade. CG (saline), LDG (125 mg/kg), MDG (250 mg/kg), HDG (500 mg/kg). Mice in each group were weighed daily and administered by gavage at a dose of 0.1 mL/10 g for 14 days. | Take 1000 g of DJF, add 10 L of distilled water, soak for 2 h, then perform heat reflux extraction at 100 °C for 60 min, filter, concentrate and lyophilize. | Body weight, organ index, and time to exhaustion in weight-bearing swimming. Serum biochemical indexes: BLA, LDH, BUN levels. Liver glycogen, muscle glycogen, MDA, and SOD activity in liver tissue. | There was no significant effect (p > 0.05) on the body weight and organs of mice. The low, medium, and high doses of the extract significantly increased the weight-bearing swimming time of mice (p < 0.01), with a certain dose-dependent effect, and improved the anti-fatigue tolerance of mice. ↓ The BLA content of mice in the three dose groups (p < 0.01). The BUN content of mice in the three dose groups decreased by 17.21%, 25.05% and 31.82%, respectively (p < 0.01). ↑The contents of hepatic glycogen and myoglycogen (p < 0.01). The antioxidant capacity of mice was improved: ↓ MDA (p < 0.01), ↑ SOD level (p < 0.01). | [14] |
Memory improvement | SPF grade Kunming breed mice. CG, MG, LDG (0.70 g/kg·bw), MDG (1.40 g/kg·bw), HDG (2.80 g/kg·bw). | Aqueous bath extraction: 1:20 (g/mL), 85 °C, 1 h, filtration, concentration, and lyophilization. | Open field experiment: record the total number of squares crossed and the number of hind limbs erected by the mice within 5 min. Automatic recording of the water maze experiment: recording the latency of escape in mice. TC, TG, HDL-C, LDL-C. | Improvement of exercise and memory: the number of squares traversed and the number of upright hind limbs were significantly increased in the HDG compared with the CG (p < 0.05). The latency of escape was significantly lower in the LDG, MDG, and HDG compared with the MG (p < 0.05). Regulation of blood lipids in mice: HDL-C levels were significantly higher in the LDG, MDG, and HDG compared to the CG (p < 0.05). | [15] |
Anti-cervical cancer activity | SPF grade Kunming mice, weight 24 ± 2 g. Cervical cancer U27 cell line. Dose: 0.8624 g·kg−1, 0.2 mL·10 g−1. | Take 0.3 kg of dry powder and add 10 times the dose of distilled water to soak for 1 h, then water decoct 2 times and rotary evaporate to obtain the infusion. | Tumor inhibition rate. | Tumor suppression rate was 48.8%. Large necrosis of tumor cells, the disappearance of nuclei, and interstitial edema. | [16] |
Anti-tumor | HCT-116 human rectal colon cancer cells. Dose: 50 μg/mL–400 μg/mL. | N/A | N/A | Endoplasmic reticulum stress induces apoptosis in cancer cells. | [16] |
Ethanol Volume Fraction/% | Extraction Site | Classification | Number/Species | Monomer Name | References |
---|---|---|---|---|---|
60 | N/A | N/A | 4 | Quercitrin, naringenin, texifolin, isoquercitrin-6”-O-3′”,4′”,5′”-trihydroxybenzoyl. | [25] |
Diarylheptanes and their synthetic precursors | 1 | Juglanin D. | |||
Phenolic acid | 3 | Gallic acid, ethyl gallate, protocatechuic acid. | |||
Anthraquinones | 2 | 4,5,8-trihydroxy-α-tetralone-5-O-β-D-glucopyranoside, 4,5-dihydroxy-α-tetralone-4-O-β-D-glucopyranoside. | |||
Steroids | 2 | β-sitosterol, daucosterol. | |||
Others | 1 | Taxifolin-3-O-α-l-arabinofuranoside. | |||
70 | Ethyl acetate | Phenolic acid | 3 | Gallic acid, progallin A, protocatechuic acid. | [4,34,35,36,37,38] |
Flavonoids | 28 | Quercetin, dihydroquercetin, catechin, quercitrin, quercetin-3-O-(6”-galloyl)-β-D-galactopyranoside, kaempferol, naringenin, taxifolin-3-O-α-l-arabinofuranoside, (2S,3S)-taxifolin-3-O-α-D-arabinofuranoside, (2S,3S)-taxifolin-3-O-α-l-arabinofuranoside, Juglanoside A, Juglanoside B, Juglanoside E, 3,5,7-trihydroxylchromone-3-O-α-l-arabinofuranoside, taxifolin, taxifolin-3-β-d-xylopyranoside, (+)-catechin, catechin lactone A, naringenin derivatives naringenin 7-O-β-d-glucopyranoside, sakuranetin 5-O-β-d xylopyranoside, (2R)-eriodictyol-5-O-β-d-glucoside, 3-O-methylquercetin, avicularin, quercetin-3-O-α-d-arabinofuranoside, quercetin 3-O-β-d-xylopyranoside, quercetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, quercetin-3-O-β-d-glucopyranoside, luteolin. | |||
Authraquinones | 2 | 1,4,8-trihydroxy-3-naphthalenecarbox-ylicacid-1-O-β-D-glucopyranoside ethyl ester,(4S)-4-hydroxy-α-tetralone-4-O-β-D-(6′-O-4′-hydroxylbenzoyl)glucopyranoside. | |||
Steroids | 2 | β-sitosterol, daucosterol. | |||
Diarylheptanes and their synthetic precursors | 1 | Juglanin D. | |||
Lignans | 2 | (+)-pinoresinol, (+)-syringaresinol. | |||
Phenylbutanone glucoside | 6 | Juglandisde A, salviaplebeiaside, 3′-O-β-D-glucopyranoside of 4-(3,4′-dihydroxyphenyl)butan-2-one, benzyl-β-D-glucopyranoside, phenylethyl-β-D-glucopyranoside, methyl(6-O-p-hydroxy-benzoyl)-β-D-glucopyranoside. | |||
Megastigmanes | 11 | Diamegastigmane A, diamegastigmane B, diamegastigmane C, blumenol B, vomifoliol, aglycone of euodionoside G, bridelionol C, myrsinionoside A, byzantionoside B, blumenol C glucoside, (6R, 9S)-6′-(4″-hydroxybenzoyl)-roseoside. | |||
Phenylpropanoids | 9 | 1-O-(Z)-coumaroyl, 6-O-(E)-coumaroyl-β-D-glucopyranoside, 1,6-di-O-(E)-coumaroyl-β-d-glucopyranoside, erythro-(7S,8R)-guaiacyl-glycerol-β-O-4′-dihydroconiferyl ether, 1-(4′-hydroxy-3′-methoxyphenyl)-2-[4″-(3-hydroxypropyl)-2″,6″-dimethoxyphenoxy]propane-1,3-diol, rosalaevin B, 5-methoxy-(+)-isolariciresinol, erythro-guaiacyl-glycerol-β-O-4′-(5′)-methoxylariciresinol, rhoiptelol B, dihydrodehydodiconiferyl alcohol. | |||
Others | 3 | dihydrovomifoliol-9-O-β-D-glucopyranoside, bis(7-hydroxyheptyl) hexanedioate, 4-O-(2-hydroxymethylethyl)-dihydroconi-ferylalcohol. | |||
70 | Petroleum ether | Flavonoids | 1 | Juglanin A. | [37] |
Steroids | 1 | β-sitosterol. | |||
70 | N-butyl alcohol | Flavonoids | 2 | Quercetin-3-O-(4″-O-acetyl)-α-l-rhamnopyranoside, kaempferol-3-O-α-l-rhamnopyranoside. | [34] |
Phenolic acid | 1 | vanillin. | |||
70 | Terpenoids | 4 | Juglansin A, juglansin B, juglansin C, juglansin D. | [23] | |
75 | Ethyl acetate | Phenolic acid | 10 | Protocatechuic acid, vanillin, methyl gallate, vanillic acid, syringic acid, ellagic acid, gallic acid, ethyl gallate, p-hydroxybenzoic acid, juglanin D. | [24,39,40] |
Sesquiterpenoids | 1 | 4′-dihydro-phaseic acid. | |||
Authraquinones | 3 | Juglanoside E, emodin, isosclerone. | |||
Steroids | 1 | oleanolic acid. | |||
Others | 3 | Heptadecane, 3-hydroxy-1-(4-hydroxyphenyl)-1-propanone, glycerol-1-octadecanoate. | |||
95 | Ethyl acetate | Phenolic acid | 6 | Gallic acid, dihydrophaseic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, ethyl gallate. | [41] |
Megastigmanes | 3 | Blumenol B, (6R,9R)-9-hydroxymegastigman-4-en-3-one, (6R,9S)-9- hydroxymegastigman-4-en-3-one. | |||
Flavonoids | 3 | Quercitrin, taxifolin-3-O-α-l-arabinofuranoside, dihydroquercetin. | |||
Authraquinones | 1 | (4S)-4-hydroxy-1-tetralone. | |||
Terpenoids | 1 | (+)-dehydrovomifoliol. | |||
95 | Petroleum ether | Authraquinones | 2 | 2-ethoxyjuglone, isosclerone. | [39] |
Flavonoids | 1 | Juglanin A. | |||
Megastigmanes | 1 | 4-megastigmen-3,9-dione. | |||
95 | Water | Phenolic acid | 4 | 3′-O-(E-4-coumaroyl)-quinic acid, dihydrophaseic acid, 5′-O-(E-4-coumaroyl)-quinic acid, vanillic acid-4-O-β-D-glucopyranoside. | [39] |
Others | 1 | Litchiol A. | |||
N/A | N/A | Phenolic acid | 1 | p-coumaric acid. | [19] |
Others | 3 | 1′-methyl-2′-hydroxy) propane-O-α-D-glucopyranoside, (4′-hydroxyphenyl) methylene-O-β-D-glucopyranosyl-(4→1)-α-l-arabinopyranoside, 2-carboxy-5,7-dihydroxy3-naphthyl-β-D-glucopyranoside. |
Extraction Conditions | Detection Method | Extraction Yield | Purification Conditions | References |
---|---|---|---|---|
95% ethanol, 80 °C reflux extraction, water-saturated n-butanol extraction. | UV-visible spectrophotometry (250 nm). | 4.19%. | N/A | [107] |
Material-to-liquid ratio of 1:25, 80% ethanol, 80 °C reflux extraction two times, each time 2 h. | UV-visible spectrophotometry (563 nm). | 2.65%. | D101 macroporous adsorbent resin: maximum sample volume of 180 mL, water elution volume of 8 BV, volume fraction of eluent 50% ethanol, elution volume of 7 BV. | [108] |
Ultrasonic-assisted technology: ethanol concentration of 60%, ultrasonic time of 3 min, material-to-liquid ratio of 1:25 (g/mL). | UV-visible spectrophotometry (460 nm). | 1.86%. | N/A | [106] |
Material-to-liquid ratio of 1:25, 80% ethanol, 80 °C reflux extraction two times, each time 2 h. | N/A | 2.70%. | D101 macroporous adsorbent resin: maximum sample volume of 180 mL, water elution volume of 8 BV, volume fraction of eluent 50% ethanol, elution volume of 7 BV. The purity of total saponins increased from 27.40% to 50.80%, and the elution rate of total saponins could reach 82.40%. | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Ma, M.; Chen, Z.; Ma, A.; Li, S.; Xia, J.; Jia, Y. A Review on Extracts, Chemical Composition and Product Development of Walnut Diaphragma Juglandis Fructus. Foods 2023, 12, 3379. https://doi.org/10.3390/foods12183379
Zhan Y, Ma M, Chen Z, Ma A, Li S, Xia J, Jia Y. A Review on Extracts, Chemical Composition and Product Development of Walnut Diaphragma Juglandis Fructus. Foods. 2023; 12(18):3379. https://doi.org/10.3390/foods12183379
Chicago/Turabian StyleZhan, Yuanrong, Mengge Ma, Zhou Chen, Aijin Ma, Siting Li, Junxia Xia, and Yingmin Jia. 2023. "A Review on Extracts, Chemical Composition and Product Development of Walnut Diaphragma Juglandis Fructus" Foods 12, no. 18: 3379. https://doi.org/10.3390/foods12183379
APA StyleZhan, Y., Ma, M., Chen, Z., Ma, A., Li, S., Xia, J., & Jia, Y. (2023). A Review on Extracts, Chemical Composition and Product Development of Walnut Diaphragma Juglandis Fructus. Foods, 12(18), 3379. https://doi.org/10.3390/foods12183379