Effect of Salt Stress on the Phenolic Compounds, Antioxidant Capacity, Microbial Load, and In Vitro Bioaccessibility of Two Microalgae Species (Phaeodactylum tricornutum and Spirulina platensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. P. tricornutum and S. platensis Cultures
2.2. Chemicals
2.3. Extraction of P. tricornutum and S. platensis
2.4. Antioxidant Capacity Analyses
2.4.1. DPPH Method
2.4.2. ABTS Method
2.4.3. Cupric Reducing Antioxidant Capacity (CUPRAC) Method
2.5. Total Phenolic Compounds (TPC) Analysis
2.6. Analysis of the Phenolic Compounds by LC-ESI-MS/MS
2.7. Detection of the Bioaccessibility of the Bioactive Compounds by In Vitro Digestion
2.8. Microbiological Analyses
2.9. Statistical Data Analysis
3. Results and Discussions
3.1. Antioxidant Capacity Analysis Results
3.1.1. DPPH Method Results
3.1.2. ABTS Method Results
3.1.3. CUPRAC Method Results
3.2. Total Phenolic Compounds (TPC) Analysis Results
3.3. LC-ESI-MS/MS Phenolic Compounds Analysis Results
3.4. Results of the Bioaccessibility of the Bioactive Compounds by the In Vitro Digestion
3.5. Microbiological Analysis Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, L.; Magalhaes, J. Neto, Marine Algae, Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- De Martino, A.; Bartual, A.; Willis, A.; Meichenin, A.; Villazan, B. Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum. Protist 2011, 162, 462–481. [Google Scholar] [CrossRef] [PubMed]
- Mahari, W.A.W.; Razali, W.A.W.; Manan, H.; Hersi, M.A.; Ishak, S.D.; Cheah, W.; Lam, S.S. Recent advances on microalgae cultivation for simultaneous biomass production and removal of wastewater pollutants to achieve a circular economy. Bioresour. Technol. 2022, 364, 128085. [Google Scholar] [CrossRef] [PubMed]
- Klejdus, B.; Kopecký, J.; Benešová, L.; Vacek, J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J. Chromatogr. A 2009, 1216, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina Microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef]
- Rico, M.; López, A.; Santana-Casiano, J.M.; Gonzàlez, A.G.; Gonzàlez-Dàvila, M. Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol. Oceanogr. 2012, 58, 144–152. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- German-Báez, L.; Valdez-Flores, M.; Félix-Medina, J.; Norzagaray-Valenzuela, C.; Santos-Ballardo, D.; Reyes-Moreno, C.; Valdez-Ortiz, A. Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass. Int. J. Food Sci. Technol. 2017, 23, 681–689. [Google Scholar] [CrossRef]
- Drira, M.; Ben Mohamed, J.; Ben Hlima, H.; Hentati, F.; Michaud, P.; Abdelkafi, S.; Fendri, I. Improvement of Arabidopsis thaliana salt tolerance using a polysaccharidic extract from the brown algae Padina pavonica. Algal Res. 2021, 56, 102324. [Google Scholar] [CrossRef]
- Aiba, S.; Ogawa, T. Assessment of growth yield of a blue-green alga: Spirulina platensis in axenic and continuous culture. J. Gen. Microbiol. 1977, 102, 179–182. [Google Scholar] [CrossRef]
- Walne, P.R. Studies on food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fish. Investig. Lond. Ser. 1970, 26, 1–62. [Google Scholar]
- Keskin, M.; Guclu, G.; Sekerli, Y.E.; Soysal, Y.; Selli, S.; Kelebek, H. Comparative assessment of volatile and phenolic profiles of fresh black carrot (Daucus carota L.) and powders prepared by three drying methods. Sci. Hortic. 2021, 287, 110256. [Google Scholar] [CrossRef]
- Kelebek, H.; Jourdes, M.; Selli, S.; Teissedre, P.L. Comparative evaluation of the phenolic content and antioxidant capacity of sun-dried raisins. J. Sci. Food Agric. 2013, 93, 2963–2972. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Saafi, E.B.; El Arem, A.; Issaoui, M.; Hammami, M.; Achour, L. Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Int. J. Food Sci. Technol. 2009, 44, 2314–2319. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Shahidi, F. Antioxidants. In Handbook of Antioxidants for Food Preservation, 1st ed.; Shahidi, F., Ed.; Woodhead Publishing Series in Food Science; Technology and Nutrition: Cambridge, UK, 2015; pp. 1–14. [Google Scholar]
- Tanrıseven, D.; Kadiroglu, P.; Selli, S.; Kelebek, H. LC-DAD-ESI-MS/MS-assisted elucidation of the phenolic compounds in shalgams: Comparison of traditional and direct methods. Food Chem. 2020, 305, 1555. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars ‘Ohadi’ and ‘Uzun’ pistachios (Pistacia vera L.). Food Chem. 2019, 272, 418–426. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Amsasekar, A.; Mor, R.S.; Kishore, A.; Singh, A.; Sid, S. Impact of high-pressure processing on microbiological, nutritional and sensory properties of food: A review. Nutr. Food Sci. 2022, 52, 996–1017. [Google Scholar] [CrossRef]
- Kuatrakul, I.; Kuarthongsri, P.; Yabuuchi, C.; Somsai, K.; Utama-ang, N. Sensory descriptive analysis and physicochemical properties of Spirulina platensis from different drying processes: Hot air drying and microwave vacuum drying. Curr. Appl. Sci. Technol. 2017, 17, 191–199. [Google Scholar]
- Yuan, G.; Wang, X.; Guo, R.; Wang, Q. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase, and antioxidant activity in radish sprouts. Food Chem. 2010, 121, 1014–1019. [Google Scholar] [CrossRef]
- Bourgou, S.; Ksouri, R.; Bellila, A.; Skandrani, I.; Falleh, H.; Marzouk, B. Phenolic composition and biological activities of Tunisian Nigella sativa L., shoots and roots. C. R. Biol. 2008, 331, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Khawli, F.A.; Martí-Quijal, F.J.; Pallarés, N.; Barba, F.J.; Ferrer, E. Ultrasound extraction mediated recovery of nutrients and antioxidant bioactive compounds from Phaeodactylum tricornutum microalgae. Appl. Sci. 2021, 11, 1701. [Google Scholar] [CrossRef]
- Golmakani, M.-T.; Moosavi-Nasab, M.; Keramat, M.; Mohammadi, M.A. Arthrospira platensis extract as a natural antioxidant for improving oxidative stability of common Kilka (Clupeonella cultriventris caspia) Oil. Turk. J. Fish. Aquat. Sci. 2018, 18, 1315–1323. [Google Scholar] [CrossRef]
- Bolanho, B.C.; Egea, M.B.; Jacome, A.L.M.; Campos, I.; Carvalho, J.C.M.; Danesi, E.D.G. Antioxidant and nutritional potential of cookies enriched with Spirulina platensis and sources of fiber. J. Food Nutr. Res. 2014, 53, 171–179. [Google Scholar]
- Esquivel-Hernández, D.A.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.; Cuéllar-Bermúdez, S.P.; Mancera-Andrade, E.I.; Núñez-Echevarría, J.E.; Parra-Saldívar, R. Advancement of green process through microwave-assisted extraction of bioactive metabolites from Arthrospira platensis and bioactivity evaluation. Bioresour. Technol. 2017, 224, 618–629. [Google Scholar] [CrossRef]
- Martelli, F.; Cirlini, M.; Lazzi, C.; Neviani, E.; Bernini, V. Edible seaweeds and Spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods 2020, 9, 1442. [Google Scholar] [CrossRef]
- Elloumi, W.; Jebali, A.; Maalej, A.; Chamkha, M.; Sayadi, S. Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules 2020, 10, 1515. [Google Scholar] [CrossRef]
- BenMoussa-Dahmen, I.; Chtourou, H.; Rezgui, F.; Sayadi, S.; Dhouib, A. Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production. Bioresour. Technol. 2016, 218, 816–825. [Google Scholar] [CrossRef]
- Ugya, A.Y.; Imam, T.S.; Li, A.; Ma, J.; Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: A mini review. Chem. Ecol. 2020, 36, 174–193. [Google Scholar] [CrossRef]
- Parniakov, O.; Apicella, E.; Koubaa, M.; Barba, F.J.; Grimi, N.; Lebovka, N.; Pataro, G.; Ferrari, G.; Vorobiev, E. Ultra-sound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp. Bioresour. Technol. 2015, 198, 262–267. [Google Scholar] [CrossRef]
- Min, J.; Shen, H.; Xi, W.; Wang, Q.; Yin, L.; Zhang, Y.; Wang, Z.N. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell. Physiol. Biochem. 2018, 48, 1433–1442. [Google Scholar] [CrossRef]
- Ochoa Becerra, M.; Mojica Contreras, L.; Hsieh Lo, M.; Mateos Díaz, J.; Castillo Herrera, G. Lutein as a functional food ingredient: Stability and bioavailability. J. Funct. Food 2020, 66, 103771. [Google Scholar] [CrossRef]
- Fernández-Sevilla, J.M.; Acién Fernández, F.G.; Molina Grima, E. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 27–40. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic effects of plant flavonoids. Biomed. Res. Int. 2014, 2014, 480258. [Google Scholar] [CrossRef]
- Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal importance of gallic acid and its ester derivatives: A patent review. Pharm. Pat. Anal. 2015, 4, 305–315. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martίnez-Cuesta, M.C.; McDougall, G.J.; Requena, T. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Nunes, M.; Graca, C.; Vlaisavljevic, S.; Tenreiro, A.; Sousa, I.; Raymundo, A. Microalgal cell disruption: Effect on the bioactivity and rheology of wheat bread. Algal Res. 2020, 45, 101749. [Google Scholar] [CrossRef]
- Cian, R.E.; Drago, S.R.; De Medina, F.S.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef]
- Dudley, E.G. Food microbiology: Fundamentals and Frontiers, 5th Edition. Emerg. Infect. Dis. 2022, 28, 267. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. (Eds.) Modern Food Microbiology, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Turkish Food Codex. Communiqué on Microbiological Criteria (Communique No: 2009/68). Available online: https://www.resmigazete.gov.tr/eskiler/2010/01/20100108-10.htm (accessed on 24 August 2022).
Species | Salt Concentration | Analysis * | |||
---|---|---|---|---|---|
DPPH | ABTS+ | CUPRAC | TPC | ||
P. tricornutum | P15 | 27.47 ± 0.83 Aa | 97.65 ± 3.21 Aa | 32.12 ± 0.27 Aa | 63.51 ± 0.43 Aa |
P25 | 56.80 ± 2.09 Bb | 123.18 ± 0.40 BCbc | 32.02 ± 0.45 Aa | 75.95 ± 1.37 Bb | |
P30-C | 79.40 ± 1.71 Cc | 141.89 ± 2.85 Cc | 44.00 ± 0.69 Bb | 82.46 ± 1.07 Cc | |
P35 | 29.76 ± 0.50 Aa | 119.05 ± 2.61 Bb | 31.14 ± 0.09 Aa | 72.63 ± 0.30 Bb | |
S. platensis | S20-C | 172.67 ± 3.21 Fc | 655.59 ± 12.05 Gd | 104.96 ± 2.27 Fd | 204.80 ± 0.66 Fc |
S25 | 151.65 ± 2.65 Eb | 425.43 ± 12.59 Fc | 48.32 ± 0.04 Ca | 171.18 ± 0.96 Eb | |
S30 | 140.66 ± 0.96 Da | 404.30 ± 1.39 Eb | 77.03 ± 1.61 Ec | 166.00 ± 0.49 Da | |
S35 | 137.18 ± 0.50 Da | 373.78 ± 3.11 Da | 70.77 ± 1.76 Db | 163.96 ± 2.84 Da |
No | RT (min) | Phenolic Compounds | x[M−H]−/y[M+H]+ | MS2 | P15 | P25 | P30-C | P35 |
---|---|---|---|---|---|---|---|---|
1 | 6.08 | Catechin isomer | 289 x | 267/245/172/154 | 7.19 ± 0.17 b | 10.48 ± 0.35 d | 8.09 ± 0.07 c | 5.54 ± 0.43 a |
2 | 6.31 | Dimethoxyflavone | 281 x | 267 | 29.90 ± 0.49 b | 31.36 ± 0.22 c | 31.49 ± 0.23 c | 20.40 ± 0.28 a |
3 | 8.10 | Quinic acid | 190 x | 85 | 7.75 ± 0.12 c | 5.95 ± 0.07 b | 5.38 ± 0.08 a | 5.22 ± 0.14 a |
4 | 10.61 | Trans-cinnamic acid | 147 x | 103 | 3.15 ± 0.13 c | 1.72 ± 0.05 a | 4.31 ± 0.10 d | 2.33 ± 0.07 b |
5 | 10.64 | 4-hydroxycinnamic acid | 163 x | 145/141/119 | 5.00 ± 0.02 c | 3.72 ± 0.17 b | 5.56 ± 0.05 d | 2.90 ± 0.07 a |
6 | 10.72 | Cinnamic acid | 147 x | 103 | 8.44 ± 0.26 c | 6.51 ± 0.00 a | 8.83 ± 0.14 c | 7.76 ± 0.29 b |
7 | 11.88 | Quercetin-3-O-rutinoside | 609 x | 300 | 1.27 ± 0.01 a | 2.10 ± 0.10 c | 1.70 ± 0.03 b | 1.51 ± 0.09 b |
8 | 19.26 | Phloroglucinol | 127 y | 108 | 0.42 ± 0.00 b | 0.34 ± 0.00 a | 0.58 ± 0.03 c | 0.31 ± 0.01 a |
9 | 20.03 | Protocatechuic acid | 153 x | 109 | 0.52 ± 0.02 a | 0.70 ± 0.00 b | 0.91 ± 0.05 c | 0.47 ± 0.01 a |
10 | 26.78 | p-hydroxybenzoic acid | 137 x | 109/93 | 1.12 ± 0.03 c | 0.54 ± 0.02 b | 0.51 ± 0.05 b | 0.20 ± 0.02 a |
11 | 27.99 | Catechin | 289 x | 245 | 0.20 ± 0.02 a | 0.27 ± 0.04 ab | 0.53 ± 0.00 c | 0.30 ± 0.04 b |
12 | 28.50 | Dihydroxy-dimethoxyflavone derivative | 607 x | 315 | 6.36 ± 0.00 a | 8.15 ± 0.14 c | 9.92 ± 0.02 d | 7.09 ± 0.14 b |
13 | 33.59 | Vanillic acid | 167 x | 122 | 0.30 ± 0.05 b | 0.27 ± 0.01 ab | 0.40 ± 0.02 c | 0.20 ± 0.02 a |
14 | 34.71 | Caffeic acid | 179 x | 135 | 0.29 ± 0.01 b | 0.17 ± 0.05 a | 0.34 ± 0.00 b | 0.17 ± 0.01 a |
15 | 37.16 | Epicatechin | 289 x | 245 | 1.11 ± 0.03 c | 0.72 ± 0.00 b | 1.72 ± 0.01 d | 0.59 ± 0.01 a |
16 | 43.95 | Caffeyl alcohol | 164 x | 145/121/103 | 2.16 ± 0.00 a | 2.36 ± 0.05 b | 3.24 ± 0.05 d | 2.62 ± 0.08 c |
17 | 45.01 | Caffeyl alcohol derivative | 164 x | 103 | 0.24 ± 0.02 a | 0.58 ± 0.07 c | 0.86 ± 0.01 d | 0.35 ± 0.03 b |
18 | 47.17 | Lutein | 569 y | 551/533/578/495/119/145/121 | 4.03 ± 0.05 a | 4.39 ± 0.23 ab | 5.21 ± 0.15 c | 4.52 ± 0.02 b |
19 | 50.19 | Diatoxanthin | 566 y | 331/341/360 | 4.92 ± 0.14 b | 4.43 ± 0.14 a | 6.19 ± 0.07 d | 5.40 ± 0.08 c |
20 | 62.89 | Kaempferol | 285 x | 257/229/216 | 0.56 ± 0.00 b | 1.49 ± 0.20 c | 0.43 ± 0.00 a | 0.40 ± 0.02 a |
Total | 84.93 ± 1.32 b | 86.25 ± 1.91 c | 96.99 ± 1.16 d | 68.28 ± 1.54 a |
No | RT (min) | Compounds | x[M−H]−/y[M+H]+ | MS2 | S20-C | S25 | S30 | S35 |
---|---|---|---|---|---|---|---|---|
1 | 5.53 | Catechin derivative | 289 x | 245 | 8.07 ± 0.06 b | 7.22 ± 0.20 a | 7.17 ± 0.03 a | 9.16 ± 0.17 c |
2 | 7.97 | 5,7-Dihydroxy-3′,4′-dimethoxyflavanone | 315 x | 283/245/215/195 | 1.34 ± 0.07 c | 0.84 ± 0.02 b | 0.57 ± 0.08 a | 0.42 ± 0.06 a |
3 | 9.56 | Isoferulic acid | 195 x | 178/133/121 | 9.33 ± 0.08 d | 4.90 ± 0.04 b | 8.28 ± 0.02 c | 3.67 ± 0.12 a |
4 | 10.53 | o-coumaric acid | 165 y | 147/123 | 5.67 ± 0.03 c | 1.17 ± 0.03 b | 0.69 ± 0.15 a | 0.60 ± 0.12 a |
5 | 10.64 | 4-Hydroxycinnamic acid | 163 x | 145/141/119 | 3.33 ± 0.02 c | 2.21 ± 0.08 b | 2.99 ± 0.25 c | 1.57 ± 0.17 a |
6 | 10.88 | Caffeic acid derivative | 179 x | 135 | 4.12 ± 0.30 b | 1.74 ± 0.62 a | 1.95 ± 0.04 a | 1.70 ± 0.02 a |
7 | 11.49 | Ferulic acid | 195 y | 177/145 | 2.35 ± 0.06 c | 0.65 ± 0.06 a | 0.84 ± 0.11 ab | 0.92 ± 0.02 b |
8 | 11.93 | 7/8-Dihydroxycoumarin | 178 y | 117/109 | 6.47 ± 0.16 d | 2.23 ± 0.00 c | 0.50 ± 0.00 a | 0.86 ± 0.00 b |
9 | 14.09 | Gallic acid | 169 x | 125 | 11.13 ± 0.11 c | 9.95 ± 0.12 b | 8.44 ± 0.03 a | 9.80 ± 0.30 b |
10 | 15.2 | 6-Methox-7-hydroxycoumarin | 191 x | 177/162/103 | 4.05 ± 0.53 b | 2.14 ± 0.14 a | 1.76 ± 0.11 a | 3.33 ± 0.22 b |
11 | 19.96 | Phloroglucinol | 127 y | 108 | 2.40 ± 0.01 b | 2.22 ± 0.07 ab | 1.96 ± 0.05 a | 2.02 ± 0.20 a |
12 | 20.09 | Protocatechuic acid | 153 x | 109 | 3.44 ± 0.10 c | 2.66 ± 0.10 b | 2.68 ± 0.14 b | 2.00 ± 0.03 a |
13 | 23.36 | Catechin gallate | 441 x | 291/245/220/195/160 | 4.59 ± 0.72 b | 6.57 ± 0.21 c | 1.74 ± 0.26 a | 2.00 ± 0.35 a |
14 | 26.78 | p-hydroxybenzoic acid | 137 x | 109/93 | 5.97 ± 0.07 b | 1.80 ± 0.41 a | 2.96 ± 0.86 a | 2.68 ± 0.12 a |
15 | 27.88 | Catechin | 289 x | 245 | 6.29 ± 0.03 c | 3.97 ± 0.00 b | 3.39 ± 0.41 b | 2.59 ± 0.16 a |
16 | 28.00 | Chlorogenic acid | 353 x | 191 | 2.99 ± 0.04 b | 1.23 ± 0.02 a | 1.10 ± 0.03 a | 1.06 ± 0.13 a |
17 | 34.60 | Vanillic acid | 167 x | 122 | 7.43 ± 0.13 c | 6.19 ± 0.40 b | 5.47 ± 0.11 b | 3.03 ± 0.68 a |
18 | 34.70 | Caffeic acid | 179 x | 135 | 1.48 ± 0.05 c | 0.92 ± 0.03 a | 1.31 ± 0.00 b | 1.23 ± 0.05 b |
19 | 36.00 | Epicatechin | 289 x | 245 | 8.73 ± 0.90 b | 3.22 ± 0.94 ab | 2.53 ± 0.47 a | 5.55 ± 0.83 ab |
20 | 47.17 | Lutein | 569 y | 551/533/578/495/119/145/121 | 2.18 ± 0.05 c | 0.54 ± 0.05 a | 0.63 ± 0.06 a | 1.02 ± 0.04 b |
21 | 47.38 | Carotenoid derivative | 566 y | 109 | 1.46 ± 0.02 c | 1.23 ± 0.03 b | 0.87 ± 0.02 a | 0.84 ± 0.00 a |
22 | 57.18 | Quercetin derivative | 303 y | 257/285 | 16.19 ± 0.13 b | 18.08 ± 0.18 c | 18.08 ± 0.35 c | 13.38 ± 0.07 a |
23 | 61.00 | Quercetin | 549 x | 463/301/161 | 5.11 ± 0.05 d | 2.79 ± 0.00 a | 3.32 ± 0.03 b | 4.06 ± 0.14 c |
24 | 62.89 | Kaempferol | 285 x | 257/229/216 | 0.75 ± 0.04 c | 0.33 ± 0.00 b | 0.66 ± 0.04 c | 0.17 ± 0.00 a |
Total | 124.87 ± 3.64 d | 84.8 ± 3.75 c | 79.89 ± 3.65 b | 73.63 ± 4.00 a |
Oral Phase | Gastric Phase | Intestinal Phase | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Salt Concentration | DPPH | ABTS+ | CUPRAC | TPC | DPPH | ABTS+ | CUPRAC | TPC | DPPH | ABTS+ | CUPRAC | TPC |
P. tricornutum | P15 | 0.03 ± 0.00 Aa | 0.27 ± 0.01 Aa | 42.39 ± 1.97 Bb | 58.13 ± 0.80 Aa | 0.21 ± 0.01 Bb | 0.73 ± 0.01 Aa | 50.74 ± 0.79 Bb | 130.07 ± 3.30 Aa | 0.31 ± 0.00 Bb | 14.77 ± 0.24 Bb | 698.23 ± 10.25 Aa | 497.82 ± 4.02 Bb |
P25 | 0.03 ± 0.00 Aa | 0.28 ± 0.00 Aa | 47.22 ± 0.60 Cc | 53.93 ± 3.58 Aa | 0.24 ± 0.01 Bb | 0.72 ± 0.07 Aa | 56.85 ± 0.21 Cc | 151.94 ± 4.29 Aa | 0.36 ± 0.00 Cc | 15.27 ± 0.19 Cc | 714.82 ± 14.67 Bb | 519.28 ± 1.31 Bb | |
P30-C | 0.05 ± 0.00 Bb | 0.35 ± 0.01 Aa | 64.23 ± 0.77 Dd | 69.22 ± 0.58 Bb | 0.31 ± 0.00 Cc | 0.74 ± 0.01 Aa | 62.90 ± 1.19 Dd | 517.98 ± 1.57 Bb | 0.45 ± 0.00 Dd | 16.96 ± 0.11 Dd | 1151.18 ± 15.20 Cc | 557.97 ± 0.90 Cc | |
P35 | 0.03 ± 0.00 Aa | 0.29 ± 0.01 Aa | 32.20 ± 2.10 Aa | 64.78 ± 1.09 Aa | 0.15 ± 0.00 Aa | 0.63 ± 0.01 Aa | 43.50 ± 1.10 Aa | 161.94 ± 3.21 Aa | 0.18 ± 0.00 Aa | 13.89 ± 0.19 Aa | 649.06 ± 4.90 Aa | 491.14 ± 7.78 Aa | |
S. platensis | S20-C | 0.09 ± 0.00 Cb | 5.26 ± 0.05 Dc | 78.58 ± 1.34 Eb | 717.38 ± 4.08 Fd | 0.40 ± 0.00 Db | 5.79 ± 0.11 Cb | 86.83 ± 0.52 Eb | 1325.05 ± 25.79 Fd | 0.87 ± 0.00 Fb | 37.26 ± 0.38 Gc | 7078.48 ± 25.24 Fc | 1641.55 ± 17.65 Fc |
S25 | 0.05 ± 0.00 Ba | 3.98 ± 0.03 Ba | 64.90 ± 0.44 Da | 554.70 ± 10.27 Ca | 0.23 ± 0.00 Ba | 4.66 ± 0.08 Ba | 71.72 ± 0.40 Da | 904.60 ± 9.43 Ca | 0.68 ± 0.01 Ea | 22.95 ± 0.38 Ea | 4695.91 ± 20.58 Eb | 1139.18 ± 7.40 Da | |
S30 | 0.05 ± 0.00 Ba | 4.09 ± 0.06 Cb | 63.69 ± 0.09 Da | 611.4 ± 11.95 Db | 0.23 ± 0.00 Ba | 4.72 ± 0.17 Ba | 70.71 ± 0.32 Da | 957.50 ± 11.65 Db | 0.68 ± 0.01 Ea | 24.09 ± 0.65 Fb | 4425.67 ± 16.25 Da | 1197.15 ± 3.50 Da | |
S35 | 0.05 ± 0.00 Ba | 4.21 ± 0.09 Cb | 62.49 ± 1.36 Da | 668.10 ± 13.48 Ec | 0.23 ± 0.00 Ba | 4.79 ± 0.26 Ba | 69.70 ± 0.23 Da | 1010.41 ± 14.56 Ec | 0.68 ± 0.01 Ea | 25.24 ± 0.86 Fb | 4155.43 ± 11.77 Da | 1255.12 ± 4.88 Eb |
Species | Salt Concentration | Yeast/Mold Count (cfu/g) | Total Aerobic Mesophilic Bacteria Count (cfu/g) |
---|---|---|---|
P. tricornutum | P15 | <10 | 2.24 × 104 |
P25 | 1.15 × 104 | 1.88 × 104 | |
P30-C | 1.25 × 104 | >300 | |
P35 | 1.35 × 104 | 2.78 × 104 | |
S. platensis | S20-C | <10 | >300 |
S25 | 1 × 104 | 1.7 × 104 | |
S30 | <10 | 1.9 × 104 | |
S35 | <10 | 1.21 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzlasir, T.; Selli, S.; Kelebek, H. Effect of Salt Stress on the Phenolic Compounds, Antioxidant Capacity, Microbial Load, and In Vitro Bioaccessibility of Two Microalgae Species (Phaeodactylum tricornutum and Spirulina platensis). Foods 2023, 12, 3185. https://doi.org/10.3390/foods12173185
Uzlasir T, Selli S, Kelebek H. Effect of Salt Stress on the Phenolic Compounds, Antioxidant Capacity, Microbial Load, and In Vitro Bioaccessibility of Two Microalgae Species (Phaeodactylum tricornutum and Spirulina platensis). Foods. 2023; 12(17):3185. https://doi.org/10.3390/foods12173185
Chicago/Turabian StyleUzlasir, Turkan, Serkan Selli, and Hasim Kelebek. 2023. "Effect of Salt Stress on the Phenolic Compounds, Antioxidant Capacity, Microbial Load, and In Vitro Bioaccessibility of Two Microalgae Species (Phaeodactylum tricornutum and Spirulina platensis)" Foods 12, no. 17: 3185. https://doi.org/10.3390/foods12173185