Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Baseline Survey and Study Setting
2.2. Salmonella Detection and Confirmation
2.3. Whole-Genome Sequencing (WGS)-Based Characterization
2.4. Antimicrobial Susceptibility Testing
2.5. Risk Assessment Model Development
3. Results and Discussion
3.1. Salmonella Prevalence in the UAE Salad Vegetables
3.2. Phenotypic and Genotypic Resistance to Antimicrobials
3.3. Genome Insight on Virulence Determinants
3.4. Infection Risk with Salmonella Due to the Consumption of Salad Vegetables in the UAE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.Q.; Wu, J.; Huang, S.; Wu, J.; Zhang, L.; Chen, X.; Wei, Y.; Ye, Y.; Li, J.; Wang, T.; et al. Prevalence and characterization of Salmonella isolated from raw vegetables in China. Food Control 2020, 109, 106915. [Google Scholar] [CrossRef]
- Hernandez-Reyes, C.; Schikora, A. Salmonella, a cross-kingdom pathogen infecting humans and plants. FEMS Microbiol. Lett. 2013, 343, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ilic, S.; Moodispaw, M.R.; Madden, L.V.; Lewis Ivey, M.L. Lettuce Contamination and Survival of Salmonella Typhimurium and Listeria monocytogenes in Hydroponic Nutrient Film Technique Systems. Foods 2022, 11, 3508. [Google Scholar] [CrossRef]
- Sant’Ana, A.S.; Franco, B.D.; Schaffner, D.W. Risk of infection with Salmonella and Listeria monocytogenes due to consumption of ready-to-eat leafy vegetables in Brazil. Food Control 2014, 42, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1239–1244. [Google Scholar] [CrossRef] [Green Version]
- Osaili, T.M.; Hasan, F.; Al-Nabulsi, A.A.; Olaimat, A.N.; Ayyash, M.; Obaid, R.S.; Holley, R. A worldwide review of illness outbreaks involving mixed salads/dressings and factors influencing product safety and shelf life. Food Microbiol. 2023, 112, 104238. [Google Scholar] [CrossRef]
- Rortana, C.; Dang-Xuan, S.; Nguyen-Viet, H.; Unger, F.; Lindahl, J.F.; Tum, S.; Ty, C.; Grace, D.; Osbjer, K.; Boqvist, S. Quantitative Risk Assessment of Salmonellosis in Cambodian Consumers through Chicken and Pork Salad Consumption. Front. Sustain. Food Syst. 2022, 6, 1059235. [Google Scholar]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar] [CrossRef] [Green Version]
- Habib, I.; Mohamed, M.I.; Khan, M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2021, 10, 2369. [Google Scholar] [CrossRef]
- Wijnands, L.M.; Delfgou-van Asch, E.H.; Beerepoot-Mensink, M.E.; van der Meij-Florijn, A.; Fitz-James, I.; van Leusden, F.M.; Pielaat, A. Prevalence and concentration of bacterial pathogens in raw produce and minimally processed packaged salads produced in and for the Netherlands. J. Food Prot. 2014, 77, 388–394. [Google Scholar] [CrossRef]
- Corredor-Garcia, D.; Garcia-Pinilla, S.; Blanco-Lizarazo, C.M. Systematic Review and Meta-analysis: Salmonella spp. prevalence in vegetables and fruits. World J. Microbiol. Biotechnol. 2021, 37, 47. [Google Scholar] [CrossRef]
- Harb, A.; O’Dea, M.; Hanan, Z.K.; Abraham, S.; Habib, I. Prevalence, risk factors and antimicrobial resistance of Salmonella diarrhoeal infection among children in Thi-Qar Governorate, Iraq. Epidemiol. Infect. 2017, 145, 3486–3496. [Google Scholar] [CrossRef] [Green Version]
- Dennehy, J. UAE and US in $8bn Drive to Prepare Agriculture for Climate Change. 2022. Available online: https://www.thenationalnews.com/uae/2022/11/11/uae-and-us-in-8bn-drive-to-prepare-agriculture-for-climate-change/ (accessed on 27 April 2023).
- Habib, I.; Coles, J.; Fallows, M.; Goodchild, S. Human campylobacteriosis related to cross-contamination during handling of raw chicken meat: Application of quantitative risk assessment to guide intervention scenarios analysis in the Australian context. Int. J. Food Microbiol. 2020, 332, 108775. [Google Scholar] [CrossRef]
- Verhoeff-Bakkenes, L.; Jansen, H.A.; in ‘t Veld, P.H.; Beumer, R.R.; Zwietering, M.H.; van Leusden, F.M. Consumption of raw vegetables and fruits: A risk factor for Campylobacter infections. Int. J. Food Microbiol. 2011, 144, 406–412. [Google Scholar] [CrossRef]
- Stevenson, M.A. Sample Size Estimation in Veterinary Epidemiologic Research. Front. Vet. Sci. 2020, 7, 539573. [Google Scholar] [CrossRef]
- Mooijman, K.A.; Pielaat, A.; Kuijpers, A.F.A. Validation of EN ISO 6579-1—Microbiology of the food chain—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1 detection of Salmonella spp. Int. J. Food Microbiol. 2019, 288, 3–12. [Google Scholar] [CrossRef]
- Habib, I.; Elbediwi, M.; Ghazawi, A.; Mohamed, M.I.; Lakshmi, G.B.; Khan, M. First report from supermarket chicken meat and genomic characterization of colistin resistance mediated by mcr-1.1 in ESBL-producing, multidrug-resistant Salmonella Minnesota. Int. J. Food Microbiol. 2022, 379, 109835. [Google Scholar] [CrossRef]
- Thomas, M.; Fenske, G.J.; Antony, L.; Ghimire, S.; Welsh, R.; Ramachandran, A.; Scaria, J. Whole genome sequencing-based detection of antimicrobial resistance and virulence in non-typhoidal Salmonella enterica isolated from wildlife. Gut Pathog. 2017, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute—CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- SCAD (Statistics Centre—Abu Dhabi). Food Balance Sheet of the Emirate of Abu Dhabi (By Type of Family). 2020. Available online: https://www.scad.gov.ae/Release%20Documents/Food%20Balance%20Sheetof%20the%20Emirate%20of%20Abu%20Dhabi_2019_Annual_Yearly_en_v1.pdf (accessed on 13 March 2023).
- Vose, D.J. Risk analysis in relation to the importation and exportation of animal products. Rev. Sci. Tech. 1997, 16, 17–29. [Google Scholar] [CrossRef]
- WHO/FAO (World Health Organization and Food and Agriculture Organization of the United Nations). Risk Assessments of Salmonella in Eggs and Broiler Chickens; Microbiological Risk Assessment Series; WHO/FAO: Rome, Italy, 2002.
- Worldometer. Available online: https://www.worldometers.info/ (accessed on 13 March 2023).
- Hamilton, A.J.; Stagnitti, F.; Premier, R.; Boland, A.M.; Hale, G. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Appl. Environ. Microbiol. 2006, 72, 3284–3290. [Google Scholar] [CrossRef] [Green Version]
- Kundu, A.; Wuertz, S.; Smith, W.A. Quantitative microbial risk assessment to estimate the risk of diarrheal diseases from fresh produce consumption in India. Food Microbiol. 2018, 75, 95–102. [Google Scholar] [CrossRef]
- Kuan, C.H.; Rukayadi, Y.; Ahmad, S.H.; Wan Mohamed Radzi, C.W.J.; Thung, T.Y.; Premarathne, J.; Chang, W.S.; Loo, Y.Y.; Tan, C.W.; Ramzi, O.B.; et al. Comparison of the Microbiological Quality and Safety between Conventional and Organic Vegetables Sold in Malaysia. Front. Microbiol. 2017, 8, 1433. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.P.; Wang, H.; Adams, J.K.; Feng, P.C. Prevalence and Characteristics of Salmonella Serotypes Isolated from Fresh Produce Marketed in the United States. J. Food Prot. 2016, 79, 6–16. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 19, 360. [Google Scholar] [CrossRef]
- Sivapalasingam, S.; Friedman, C.R.; Cohen, L.; Tauxe, R.V. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot. 2004, 67, 2342–2353. [Google Scholar] [CrossRef]
- Gill, C.J.; Keene, W.E.; Mohle-Boetani, J.C.; Farrar, J.A.; Waller, P.L.; Hahn, C.G.; Cieslak, P.R. Alfalfa seed decontamination in a Salmonella outbreak. Emerg. Infect. Dis. 2003, 9, 474–479. [Google Scholar] [CrossRef]
- Ilic, S.; Duric, P.; Grego, E. Salmonella Senftenberg infections and fennel seed tea, Serbia. Emerg. Infect. Dis. 2010, 16, 893–895. [Google Scholar] [CrossRef]
- Feng, Y.; Chang, Y.J.; Pan, S.C.; Su, L.H.; Li, H.C.; Yang, H.P.; Yu, M.J.; Chiu, C.H. Characterization and Source Investigation of Multidrug-Resistant Salmonella Anatum from a Sustained Outbreak, Taiwan. Emerg. Infect. Dis. 2020, 26, 2951–2955. [Google Scholar] [CrossRef]
- Magnet, S.; Courvalin, P.; Lambert, T. Activation of the cryptic aac(6′)-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J. Bacteriol. 1999, 181, 6650–6655. [Google Scholar] [CrossRef]
- Wang, D.; Fang, L.X.; Jiang, Y.W.; Wu, D.S.; Jiang, Q.; Sun, R.Y.; Wang, M.G.; Sun, J.; Liu, Y.H.; Liao, X.P. Comparison of the prevalence and molecular characteristics of fosA3 and fosA7 among Salmonella isolates from food animals in China. J. Antimicrob. Chemother. 2022, 77, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Wang, Z.Y.; Wu, H.; Mei, C.Y.; Shen, P.C.; Pan, Z.M.; Jiao, X. Chromosomally Located fosA7 in Salmonella Isolates From China. Front. Microbiol. 2021, 12, 781306. [Google Scholar] [CrossRef] [PubMed]
- Deiwick, J.; Salcedo, S.P.; Boucrot, E.; Gilliland, S.M.; Henry, T.; Petermann, N.; Waterman, S.R.; Gorvel, J.P.; Holden, D.W.; Meresse, S. The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect. Immun. 2006, 74, 6965–6972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwietering, M.H. Quantitative risk assessment: Is more complex always better? Simple is not stupid and complex is not always more correct. Int. J. Food Microbiol. 2009, 134, 57–62. [Google Scholar] [CrossRef] [PubMed]
Salmonella Prevalence | ||||
No. of samples | 400 | |||
Number of samples positive for Salmonella (prevalence (P), %) | 5 (1.25) | |||
* 95% Confidence interval of P | 0.41–2.89 | |||
Characterization of Salmonella-positive salad vegetable samples | ||||
Sample code-type (sampling site) | Serovar | Sequence type | Antimicrobial resistance genes | Antimicrobial resistance phenotype |
41–Arugula (supermarket, Al Ain) | 28:z4,z24:z6 | Novel | aac(6’)-Iaa | ** Pan-susceptible |
132–Dill (supermarket, Al Ain) | Meleagridis | 463 | aac(6’)-Iaa, fosA7 | Pan-susceptible |
278–Arugula (vegetable market, Dubai) | Mbandaka | 3760 | aac(6’)-Iaa | Pan-susceptible |
279–Arugula (vegetable market, Dubai) | Mbandaka | 3760 | aac(6’)-Iaa | Pan-susceptible |
335–Spinach (vegetable market, Dubai) | Anatum | 64 | aac(6’)-Iaa | Pan-susceptible |
Variable | Description | Units | Distribution/Calculation |
---|---|---|---|
Pret | Prevalence of non-typhoidal Salmonella in salad vegetables at retail in the UAE | % | Beta-distribution (α1; α1); where α1 = positive samples +1; α2 = total tested samples–positive samples +1 [23] RiskBeta (101; 87)–based on current study findings (Table 1) |
C | The minimal Salmonella concentration in contaminated samples | CFU/g | Poisson-distribution of the limit of detection; RiskPoisson (1 CFU/25 g)–based on [15] |
Mveg | The average consumption (per day) of salad vegetables per individual in the UAE | g | Pert-distribution (Minimum; Most likely; Maximum) [23] RiskPert (12 g; 24 g; 36 g)–The average consumption based on the Food Balance Sheet survey (for the year 2019) of the Emirate of Abu Dhabi report [22] |
D | The average dose/amount of Salmonella consumed (ingested) per idividual per day through a serving of salad vegetables | CFU | RiskPoisson (multiplication of: Pret × Mveg × C) |
Pinf,day | The probability of infection with Salmonella per serving per day | Probability | RiskOutput (beta-Poisson dose–response formula with parameters alpha = 0.1324 (95% CI, 0.094 to 0.1817) and beta= 51.45 (95% CI, 43.75 to 56.39)–based on WHO/FAO [24] |
Pinf,year | The probability of infection with Salmonella per serving per year | Probability | RiskOutput (Calculation = Pinf,day × 365)–based on [15] |
CsUAE,year | The expected number of cases of infection per year for the whole UAE population | Cases | RiskOutput (Calculation = Pinf,year × number of UAE inhabitants (10.2 × 106, based on Worldometer data [25] |
Simulated Model Output | Mean | 90% Confidence Interval |
---|---|---|
Exposure (dose) of Salmonella ingested per individual per day via a serving of salad vegetables (D). | 0.0131 | ±0.000524 |
The probability of infection with Salmonella per serving per day (Pinf,day). | 2.367 × 10−5 | ±1.320 × 10−6 |
The expected number of cases of infection over a year for the whole UAE population (CsUAE,year). | 10,584 | ±543 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, I.; Khan, M.; Mohamed, M.-Y.I.; Ghazawi, A.; Abdalla, A.; Lakshmi, G.; Elbediwi, M.; Al Marzooqi, H.M.; Afifi, H.S.; Shehata, M.G.; et al. Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates. Foods 2023, 12, 3060. https://doi.org/10.3390/foods12163060
Habib I, Khan M, Mohamed M-YI, Ghazawi A, Abdalla A, Lakshmi G, Elbediwi M, Al Marzooqi HM, Afifi HS, Shehata MG, et al. Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates. Foods. 2023; 12(16):3060. https://doi.org/10.3390/foods12163060
Chicago/Turabian StyleHabib, Ihab, Mushtaq Khan, Mohamed-Yousif Ibrahim Mohamed, Akela Ghazawi, Afra Abdalla, Glindya Lakshmi, Mohammed Elbediwi, Hassan Mohamed Al Marzooqi, Hanan Sobhy Afifi, Mohamed Gamal Shehata, and et al. 2023. "Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates" Foods 12, no. 16: 3060. https://doi.org/10.3390/foods12163060
APA StyleHabib, I., Khan, M., Mohamed, M.-Y. I., Ghazawi, A., Abdalla, A., Lakshmi, G., Elbediwi, M., Al Marzooqi, H. M., Afifi, H. S., Shehata, M. G., & Al-Rifai, R. (2023). Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates. Foods, 12(16), 3060. https://doi.org/10.3390/foods12163060