Kinetic Ultrasound-Assisted Extraction as a Sustainable Approach for the Recovery of Phenolics Accumulated through UVA Treatment in Strawberry By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material
2.3. Experimental Design, Modelling, and Optimization of Phenolic Compound Extraction
2.4. Ultrasound-Assisted Extraction (UAE) Procedure
2.5. Total Phenolic Content (TPC)
2.6. Phenolic Compound Determination by High-Performance Liquid Chromatography (HPLC-DAD)
2.7. In-Vitro Gastrointestinal Digestion Assay
2.8. Cell Culture
2.8.1. Anti-Inflammatory Potential
2.8.2. Cellular Antioxidant Activity
2.8.3. Anti-Proliferative Activity
2.8.4. Anti-Obesogenic Potential
2.9. Statistical Analysis
3. Results and Discussion
3.1. Influence of Extraction Variables on the Total Phenolic Content (TPC) and Its Peleg’s Model Kinetic Parameters
3.1.1. Modelling of Ultrasound-Assisted Extraction (UAE) Kinetic Parameters
3.1.2. Optimization of RF Phenolic Compounds Ultrasound-Assisted Extraction (UASE)
3.2. Phenolic Compounds Profile
3.3. Digestive Stability of Phenolic Compound Extracted from Strawberry Agro-Industrial By-Products
3.4. Cell Culture Bioactivities of Ultrasound-Assisted RF (USRF) Extracts
3.4.1. Anti-Proliferative Activity of Digested USRF Fractions
3.4.2. Cellular Antioxidant and Anti-Inflammatory Activity
3.4.3. Adipocyte Differentiation Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ariza, M.T.; Reboredo-Rodríguez, P.; Cervantes, L.; Soria, C.; Martínez-Ferri, E.; González-Barreiro, C.; Cancho-Grande, B.; Battino, M.; Simal-Gándara, J. Bioaccessibility and Potential Bioavailability of Phenolic Compounds from Achenes as a New Target for Strawberry Breeding Programs. Food Chem. 2018, 248, 155–165. [Google Scholar] [CrossRef]
- Yang, C.; Lu, J.-H.; Xu, M.-T.; Shi, X.-C.; Song, Z.-W.; Chen, T.-M.; Herrera-Balandrano, D.D.; Zhang, Y.-J.; Laborda, P.; Shahriar, M.; et al. Evaluation of Chitosan Coatings Enriched with Turmeric and Green Tea Extracts on Postharvest Preservation of Strawberries. LWT Food Sci. Technol. 2022, 163, 113551. [Google Scholar] [CrossRef]
- Priefer, C.; Jörissen, J.; Bräutigam, K.R. Food Waste Prevention in Europe—A Cause-Driven Approach to Identify the Most Relevant Leverage Points for Action. Resour. Conserv. Recycl. 2016, 109, 155–165. [Google Scholar] [CrossRef]
- Villamil-Galindo, E.; Van de Velde, F.; Piagentini, A.M. Extracts from Strawberry By-Products Rich in Phenolic Compounds Reduce the Activity of Apple Polyphenol Oxidase. Lwt 2020, 133, 110097. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Artés-Hernández, F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [Green Version]
- Nowicka, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Fecka, I. Comparison of Polyphenol Content and Antioxidant Capacity of Strawberry Fruit from 90 Cultivars of Fragaria × ananassa Duch. Food Chem. 2019, 270, 32–46. [Google Scholar] [CrossRef]
- Zhu, Q.; Nakagawa, T.; Kishikawa, A.; Ohnuki, K.; Shimizu, K. In Vitro Bioactivities and Phytochemical Profile of Various Parts of the Strawberry (Fragaria × Ananassa Var. Amaou). J. Funct. Foods 2015, 13, 38–49. [Google Scholar] [CrossRef]
- More, P.R.; Arya, S.S. Intensification of Bio-Actives Extraction from Pomegranate Peel Using Pulsed Ultrasound: Effect of Factors, Correlation, Optimization and Antioxidant Bioactivities. Ultrason. Sonochem. 2021, 72, 105423. [Google Scholar] [CrossRef]
- Bengardino, M.B.; Fernandez, M.V.; Nutter, J.; Jagus, R.J.; Agüero, M.V. Recovery of Bioactive Compounds from Beet Leaves through Simultaneous Extraction: Modelling and Process Optimization. Food Bioprod. Process. 2019, 118, 227–236. [Google Scholar] [CrossRef]
- Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rangel, J.C.; Benavides, J.; Jacobo-Velázquez, D.A. Valorization of Carrot Pomace: UVC Induced Accumulation of Antioxidant Phenolic Compounds. Appl. Sci. 2021, 11, 10951. [Google Scholar] [CrossRef]
- Villamil-Galindo, E.; Antunes-Ricardo, M.; Piagentini, A.M.; Jacobo-Velázquez, D.A. Adding Value to Strawberry Agro-Industrial by-Products through Ultraviolet A-Induced Biofortification of Antioxidant and Anti-Inflammatory Phenolic Compounds. Front. Nutr. 2022, 9, 1080147. [Google Scholar] [CrossRef] [PubMed]
- Villamil-Galindo, E.; Van de Velde, F.; Piagentini, A.M. Strawberry Agro-Industrial by-Products as a Source of Bioactive Compounds: Effect of Cultivar on the Phenolic Profile and the Antioxidant Capacity. Bioresour. Bioprocess. 2021, 8, 61. [Google Scholar] [CrossRef]
- Bustos-hipólito, E.; Legorreta-siañez, A.V.; Luisa, A.; Garfias, J.; González-gonzález, L.R.; Arenas-huertero, F.J. Efecto de La Extracción de Los Compuestos Antioxidantes de La Cáscara de Manzana Con Solventes, Sobre La Bioactividad y Su Capacidad Antioxidante. Rev. Fac. Clencia y Tecnol. e Tecnol. 2012, 11, 123–130. [Google Scholar]
- Zielinski, A.A.F.; Haminiuk, C.W.I.; Beta, T. Multi-Response Optimization of Phenolic Antioxidants from White Tea (Camellia sinensis L. Kuntze) and Their Identification by LC-DAD-Q-TOF-MS/MS. LWT Food Sci. Technol. 2016, 65, 897–907. [Google Scholar] [CrossRef]
- Ones, O.; Rodriguez, J. Evaluation of Physical Properties of Ethanolwater Mixtures. Rev. Fac. Ing. Univ. Antioq. 2010, 52, 62–74. [Google Scholar]
- Welti-Chanes, J.; Morales-de la Peña, M.; Jacobo-Velázquez, D.A.; Martín-Belloso, O. Opportunities and Challenges of Ultrasound for Food Processing: An Industry Point of View. In Ultrasound: Advances in Food Processing and Preservation; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128046142. [Google Scholar]
- Milić, P.S.; Rajković, K.M.; Stamenković, O.S.; Veljković, V.B. Kinetic Modeling and Optimization of Maceration and Ultrasound-Extraction of Resinoid from the Aerial Parts of White Lady’s Bedstraw (Galium mollugo L.). Ultrason. Sonochem. 2013, 20, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Urango, A.C.M.; Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques. Appl. Sci. 2021, 11, 2104. [Google Scholar] [CrossRef]
- Shorstkii, I.; Stuehmeier-Niehe, C.; Sosnin, M.; Mounassar, E.H.A.; Comiotto-Alles, M.; Siemer, C.; Toepfl, S. Pulsed Electric Field Treatment Application to Improve Product Yield and Efficiency of Bioactive Compounds through Extraction from Peels in Kiwifruit Processing. J. Food Process. Preserv. 2023, 2023, 8172255. [Google Scholar] [CrossRef]
- Turk, M.F.; Baron, A.; Vorobiev, E. Effect of Pulsed Electric Fields Treatment and Mash Size on Extraction and Composition of Apple Juices. J. Agric. Food Chem. 2010, 58, 9611–9616. [Google Scholar] [CrossRef] [PubMed]
- Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Optimizing the Antioxidant Biocompound Recovery from Peach Waste Extraction Assisted by Ultrasounds or Microwaves. Ultrason. Sonochem. 2020, 63, 104954. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Ibarz, A.; Pagan, J. Optimisation and Kinetic Study of the Ultrasonic-Assisted Extraction of Total Saponins from Alfalfa (Medicago sativa) and Its Bioaccessibility Using the Response Surface Methodology. Food Chem. 2020, 309, 125786. [Google Scholar] [CrossRef]
- Galván D’Alessandro, L.; Dimitrov, K.; Vauchel, P.; Nikov, I. Kinetics of Ultrasound Assisted Extraction of Anthocyanins from Aronia melanocarpa (Black Chokeberry) Wastes. Chem. Eng. Res. Des. 2014, 92, 1818–1826. [Google Scholar] [CrossRef]
- Espinoza-Pérez, J.D.; Vargas, A.; Robles-Olvera, V.J.; Rodrı’guez-Jimenes, G.C.; Garcı’a-Alvarado, M.A. Mathematical Modeling of Caffeine Kinetic during Solid–Liquid Extraction of Coffee Beans. J. Food Eng. 2007, 81, 72–78. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Benković, M.; Belščak Cvitanović, A.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J. Kinetics and Thermodynamics of the Solid-Liquid Extraction Process of Total Polyphenols, Antioxidants and Extraction Yield from Asteraceae Plants. Ind. Crops Prod. 2016, 91, 205–214. [Google Scholar] [CrossRef]
- Setford, P.C.; Jeffery, D.W.; Grbin, P.R.; Muhlack, R.A. Mathematical Modelling of Anthocyanin Mass Transfer to Predict Extraction in Simulated Red Wine Fermentation Scenarios. Food Res. Int. 2019, 121, 705–713. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Núñez-Sánchez, M.Á.; Tomás-Barberán, F.A.; Espín, J.C. Neuroprotective Effects of Bioavailable Polyphenol-Derived Metabolites against Oxidative Stress-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. J. Agric. Food Chem. 2017, 65, 752–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeriglio, A.; Cornara, L.; Denaro, M.; Barreca, D.; Burlando, B.; Xiao, J.; Trombetta, D. Antioxidant and Cytoprotective Activities of an Ancient Mediterranean Citrus (Citrus Lumia Risso) Albedo Extract: Microscopic Observations and Polyphenol Characterization. Food Chem. 2019, 279, 347–355. [Google Scholar] [CrossRef]
- Abdillahi, H.S.; Verschaeve, L.; Finnie, J.F.; Van Staden, J. Mutagenicity, Antimutagenicity and Cytotoxicity Evaluation of South African Podocarpus Species. J. Ethnopharmacol. 2012, 139, 728–738. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Antunes-Ricardo, M.; Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Basilio Heredia, J. Cellular Antioxidant Activity and in Vitro Inhibition of α-Glucosidase, α-Amylase and Pancreatic Lipase of Oregano Polyphenols under Simulated Gastrointestinal Digestion. Food Res. Int. 2019, 116, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Flores, F.P.; Singh, R.K.; Kerr, W.L.; Pegg, R.B.; Kong, F. Total Phenolics Content and Antioxidant Capacities of Microencapsulated Blueberry Anthocyanins during in Vitro Digestion. Food Chem. 2014, 153, 272–278. [Google Scholar] [CrossRef] [PubMed]
- López-Barrios, L.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.A. Changes in Antioxidant and Antiinflammatory Activity of Black Bean (Phaseolus vulgaris L.) Protein Isolates Due to Germination and Enzymatic Digestion. Food Chem. 2016, 203, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Liu, D.; Yu, X.; Sun, H.; Li, Y. A Caco-2 Cell-Based Quantitative Antioxidant Activity Assay for Antioxidants. Food Chem. 2015, 175, 601–608. [Google Scholar] [CrossRef]
- Pacheco-Ordaz, R.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.; González-Aguilar, G. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica Cv. Ataulfo). Peels. Int. J. Mol. Sci. 2018, 19, 514. [Google Scholar] [CrossRef] [Green Version]
- Krygowski, T.M.; Wrona, P.K.; Zielkowska, U.; Reichardt, C. Empirical Parameters of Lewis Acidity and Basicity for Aqueous Binary Solvent Mixtures. Tetrahedron 1985, 41, 4519–4527. [Google Scholar] [CrossRef]
- Bosch, E.; Rosés, M. Relationship between ET Polarity and Composition in Binary Solvent Mixtures. J. Chem. Soc. Faraday Trans. 1992, 88, 3541–3546. [Google Scholar] [CrossRef]
- Santos-Zea, L.; Gutierrez-Uribe, J.A.; Benedito, J. Effect of Solvent Composition on Ultrasound-Generated Intensity and Its Influence on the Ultrasonically Assisted Extraction of Bioactives from Agave Bagasse (Agave salmiana). Food Eng. Rev. 2021, 13, 713–725. [Google Scholar] [CrossRef]
- Perez, E.E.; Carelli, A.A.; Crapiste, G.H. Temperature-Dependent Diffusion Coefficient of Oil from Different Sunflower Seeds during Extraction with Hexane. J. Food Eng. 2011, 105, 180–185. [Google Scholar] [CrossRef]
- Mudnic, I.; Modun, D.; Brizic, I.; Vukovic, J.; Generalic, I.; Katalinic, V.; Bilusic, T.; Ljubenkov, I.; Boban, M. Cardiovascular Effects in Vitro of Aqueous Extract of Wild Strawberry (Fragaria vesca L.) Leaves. Phytomedicine 2009, 16, 462–469. [Google Scholar] [CrossRef]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and Pulsed Ultrasound-Assisted Extractions of Antioxidants from Pomegranate Peel. Ultrason. Sonochem. 2011, 18, 1249–1257. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (Vitis vinifera) Seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Gesek, J.; Jakimiuk, K.; Atanasov, A.G.; Tomczyk, M. Sanguiins—Promising Molecules with Broad Biological Potential. Int. J. Mol. Sci. 2021, 22, 12972. [Google Scholar] [CrossRef] [PubMed]
- Rue, E.A.; Rush, M.D.; van Breemen, R.B. Procyanidins: A Comprehensive Review Encompassing Structure Elucidation via Mass Spectrometry. Phytochem. Rev. 2018, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Rogachev, I.; Kokko, H.; Mintz-Oron, S.; Venger, I.; Kärenlampi, S.; Aharoni, A. Non-Targeted Analysis of Spatial Metabolite Composition in Strawberry (Fragaria × Ananassa) Flowers. Phytochemistry 2008, 69, 2463–2481. [Google Scholar] [CrossRef]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic Compounds in Strawberry (Fragaria × Ananassa Duch.) Fruits: Composition in 27 Cultivars and Changes during Ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive Compounds and Quantification of Total Ellagic Acid in Strawberries (Fragaria × Ananassa Duch.). Food Chem. 2008, 107, 1629–1635. [Google Scholar] [CrossRef]
- Kaeswurm, J.A.H.; Burandt, M.R.; Mayer, P.S.; Straub, L.V.; Buchweitz, M. Bioaccessibility of Apple Polyphenols from Peel and Flesh during Oral Digestion. J. Agric. Food Chem. 2022, 70, 4407–4417. [Google Scholar] [CrossRef]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries (Rubus idaeus): A General Review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef]
- Milala, J.; Kosmala, M.; Karlińska, E.; Juśkiewicz, J.; Zduńczyk, Z.; Fotschki, B. Ellagitannins from Strawberries with Different Degrees of Polymerization Showed Different Metabolism through Gastrointestinal Tract of Rats. J. Agric. Food Chem. 2017, 65, 10738–10748. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Du, M.; Zhu, M.J. Dietary Red Raspberry Reduces Colorectal Inflammation and Carcinogenic Risk in Mice with Dextran Sulfate Sodium-Induced Colitis. J. Nutr. 2018, 148, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.-X.; Yanagita, T.; Uto, T.; Masuzaki, S.; Fujii, M. Anthocyanidins Inhibit Cyclooxygenase-2 Expression in LPS-Evoked Macrophages: Structure–Activity Relationship and Molecular Mechanisms Involved. Biochem. Pharmacol. 2005, 70, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; et al. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. Biomed Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef] [Green Version]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, G.-I.; Almajano, M. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Frühbeck, G.; Gómez-Ambrosi, J.; Muruzábal, F.J.; Burrell, M.A. The Adipocyte: A Model for Integration of Endocrine and Metabolic Signaling in Energy Metabolism Regulation. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E827–E847. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Lee, J.; Kim, S.; Huh, S.; Kim, Y.; Kim, Y.; Byun, S.Y.; Kim, Y.S.; Park, D. Isorhamnetin Represses Adipogenesis in 3T3-L1 Cells. Obesity 2009, 17, 226–232. [Google Scholar] [CrossRef]
- Tysoe, O. Adipocytes Enter the Cell Cycle in Obesity. Nat. Rev. Endocrinol. 2021, 17, 705. [Google Scholar] [CrossRef]
- Basu, A.; Izuora, K.; Betts, N.M.; Kinney, J.W.; Salazar, A.M.; Ebersole, J.L.; Scofield, R.H. Dietary Strawberries Improve Cardiometabolic Risks in Adults with Obesity and Elevated Serum LDL Cholesterol in a Randomized Controlled Crossover Trial. Nutrients 2021, 13, 1421. [Google Scholar] [CrossRef]
- Wu, D.; Ma, X.; Tian, W. Pomegranate Husk Extract, Punicalagin and Ellagic Acid Inhibit Fatty Acid Synthase and Adipogenesis of 3T3-L1 Adipocyte. J. Funct. Foods 2013, 5, 633–641. [Google Scholar] [CrossRef]
Solvent | % US Power | UI (W m−2) |
---|---|---|
Water | 20 | 264,243.70 |
Water | 60 | 319,460.78 |
Water | 100 | 316,666.67 |
EtOH 40% | 20 | 195,665.73 |
EtOH 40% | 60 | 208,713.49 |
EtOH 40% | 100 | 195,462.65 |
EtOH 80% | 20 | 129,973.05 |
EtOH 80% | 60 | 135,099.69 |
EtOH 80% | 100 | 140,890.20 |
Run | Ratio (g mL−1) (X1: Coded value) | Ethanol Content (%v/v) (X2: Coded Value | Ultrasound Power (%) (X3: Coded Value) | K1 (min−1) | K2 (g GAE Kg−1) | |||
---|---|---|---|---|---|---|---|---|
Determined (Equation (1)) | Predicted (Equation (8)) | Determined (Equation (1)) | Predicted (Equation (9)) | Final Temperature °C | ||||
1 | 1:20(-1) | 0(-) | 60(0) | 4.03 | 4.54 | 11.25 | 10.24 | 80 |
2 | 1:40(1) | 0(-1) | 60 (0) | 4.87 | 4.76 | 9.86 | 10.75 | 77 |
3 | 1:20(-1) | 80(1) | 60 (0) | 2.82 | 2.93 | 9.57 | 8.67 | 76 |
4 | 1:40(1) | 80(1) | 60 (0) | 3.42 | 2.92 | 11.51 | 12.52 | 78 |
5 | 1:20(-1) | 40(0) | 20(-1) | 3.07 | 2.22 | 11.31 | 13.38 | 67 |
6 | 1:40(1) | 40(0) | 20(-1) | 6.96 | 6.71 | 12.63 | 12.79 | 62 |
7 | 1:20(-1) | 40(0) | 100(1) | 7.21 | 7.46 | 12.41 | 12.25 | 71 |
8 | 1:40(1) | 40(0) | 100(1) | 2.33 | 3.18 | 19.28 | 17.21 | 74 |
9 | 1:30(0) | 0(-1) | 20(-1) | 5.44 | 5.78 | 12.48 | 11.50 | 76 |
10 | 1:30(0) | 80(1) | 20(-1) | 1.14 | 1.88 | 10.46 | 9.29 | 82 |
11 | 1:30(0) | 0(−1) | 100(1) | 5.20 | 4.45 | 9.64 | 10.82 | 75 |
12 | 1:30(0) | 80(1) | 100(1) | 5.28 | 4.92 | 12.10 | 13.16 | 76 |
13 | 1:30(0) | 40(0) | 60(0) | 5.79 | 5.27 | 14.16 | 14.35 | 77 |
14 | 1:30(0) | 40(0) | 60(0) | 5.65 | 5.27 | 14.90 | 14.35 | 77 |
15 | 1:30(0) | 40(0) | 60(0) | 4.37 | 5.27 | 13.98 | 14.35 | 77 |
Ratio (w/v) | %EtOH | %US | UI (W m−2) | Sample | Responses | K1 | K2 | adj-R2 | RSME | TPC (g GAE Kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
1:30 | 46.4 | 100 | - | OPUSRF-N | Equations (8)–(9) | 5.83 | 14.4 | 0.98 | 0.91 | 12.2 b |
1:30 | 46.4 | 100 | 230,595.15 | USRF-N | Equation (1) | 7.71 | 12.53 | 0.98 | 0.47 | 11.4 ± 0.91 b |
1:30 | 46.4 | 100 | 219,628.94 | USRF-E | Equation (1) | 7.37 | 13.77 | 0.98 | 0.56 | 12.9 ± 0.22 a |
1:30 | 46.4 | 0 | 0 | MCERF-N | Equation (1) | 6.63 | 5.06 | 0.96 | 0.31 | 5.1 ± 0.19 d |
1:30 | 46.4 | 0 | 0 | MCERF-E | Equation (1) | 4.99 | 6.04 | 0.94 | 0.42 | 6.1 ± 0.21 c |
Sample | Compound | Concentration (g Kg−1) | Bioaccessibility (%) | |||
---|---|---|---|---|---|---|
Salival Fluid (SF) | Gastric Phase (GF) | Intestinal Phase (IF) | Gastric Phase (GF) | Intestinal Phase (IF) | ||
USRF-N | TGI | 2.24 ± 0.36 a | 1.14 ± 0.32 b | 0.55 ± 0.16 b | 52.78 | 25.46 |
PT | 0.90 ± 0.10 a | 0.37 ± 0.03 b | 0.22 ± 0.10 c | 38.95 | 23.16 | |
SG | 1.14 ± 0.20 a | 0.76 ± 0.13 b | 0.22 ± 0.03 c | 56.72 | 16.42 | |
PCT | 0.88 ± 0.06 a | 0.43 ± 0.02 b | 0.29 ± 0.04 c | 46.74 | 31.52 | |
BHDP | 0.64 ± 0.09 a | 0.06 ± 0.01 b | 0.08 ± 0.003 b* | 21.43 | 17.86 | |
EAP | 0.76 ± 0.15 a | 0.06 ± 0.004 b | 0.06 ± 0.002 b | 17.65 | 17.65 | |
AGN | 5.40 ± 0.18 a | 4.73 ± 0.43 a | 2.52 ± 0.20 b | 69.15 | 36.84 | |
EA | 0.84 ± 0.03 a | 0.57 ± 0.06 a* | 0.16 ± 0.03 b | 83.82 * | 23.53 | |
Q3G | 0.98 ± 0.03 a | 0.51 ± 0.04 b | 0.40 ± 0.03 b | 36.43 | 28.57 | |
K3G | 1.51 ± 0.48 a | 0.88 ± 0.07 ab | 0.30 ± 0.07 b | 75.21 | 25.64 | |
KCH | 0.41 ± 0.05 a | 0.23 ± 0.04 b | 0.10 ± 0.06 c* | 65.71 | 28.57 * | |
P3G | 0.08 ± 0.03 a* | 0.07 ± 0.04 a | 0.02 ± 0.002 a* | 87.50 | 25.00 * | |
TPCHPLC | 15.09 ± 0.96 a | 9.82 ± 0.26 b | 4.88 ± 0.25 c | 59.84 | 29.74 | |
USRF-E | TGI | 2.15 ± 0.24 a | 1.85 ± 0.22 a* | 1.19 ± 0.15 b* | 70.08 * | 45.08 * |
PT | 1.11 ± 0.04 a* | 0.66 ± 0.02 b* | 0.65 ± 0.02 b* | 48.53 * | 47.798 * | |
SG | 1.62 ± 0.16 a* | 1.44 ± 0.20 a* | 0.42 ± 0.01 b* | 52.75 * | 15.38 * | |
PCT | 2.41 ± 0.01 a* | 1.62 ± 0.07 b* | 0.66 ± 0.12 c* | 72.00 * | 29.33 * | |
BHDP | 0.63 ± 0.15 a | 0.49 ± 0.02 a* | 0.04 ± 0.001 b | 58.33 * | 4.76 | |
EAP | 1.77 ± 0.08 a* | 1.33 ± 0.10 b* | 0.99 ± 0.02 c* | 73.89 * | 55.00 * | |
AGN | 8.13 ± 0.84 a* | 6.21 ± 0.37 ab* | 4.12 ± 1.20 c | 47.30 * | 31.38 | |
EA | 1.42 ± 0.15 a* | 0.25 ± 0.01 c | 0.56 ± 0.02 b* | 32.89 | 73.68 * | |
Q3G | 2.64 ± 0.02 a* | 0.85 ± 0.16 c* | 1.12 ± 0.08 b* | 48.57 * | 64.00 * | |
K3G | 1.98 ± 0.03 a | 0.98 ± 0.05 b | 0.70 ± 0.14 c* | 71.53 | 51.09 * | |
KCH | 0.94 ± 0.004 a* | 0.88 ± 0.07 b* | n.d. | 83.81 * | n.d. | |
P3G | 0.04 ± 0.0001 a | 0.02 ± 0.01 a | n.d. | 33.33 | n.d. | |
TPCHPLC | 24.82 ± 0.61 a* | 16.6 ± 0.57 b* | 10.45 ± 1.13 c * | 57.94 * | 36.47 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villamil-Galindo, E.; Gastélum-Estrada, A.; Chuck-Hernandez, C.; Antunes-Ricardo, M.; Reza-Zaldivar, E.E.; Piagentini, A.; Jacobo-Velázquez, D.A. Kinetic Ultrasound-Assisted Extraction as a Sustainable Approach for the Recovery of Phenolics Accumulated through UVA Treatment in Strawberry By-Products. Foods 2023, 12, 2989. https://doi.org/10.3390/foods12162989
Villamil-Galindo E, Gastélum-Estrada A, Chuck-Hernandez C, Antunes-Ricardo M, Reza-Zaldivar EE, Piagentini A, Jacobo-Velázquez DA. Kinetic Ultrasound-Assisted Extraction as a Sustainable Approach for the Recovery of Phenolics Accumulated through UVA Treatment in Strawberry By-Products. Foods. 2023; 12(16):2989. https://doi.org/10.3390/foods12162989
Chicago/Turabian StyleVillamil-Galindo, Esteban, Alejandro Gastélum-Estrada, Cristina Chuck-Hernandez, Marilena Antunes-Ricardo, Edwin E. Reza-Zaldivar, Andrea Piagentini, and Daniel A. Jacobo-Velázquez. 2023. "Kinetic Ultrasound-Assisted Extraction as a Sustainable Approach for the Recovery of Phenolics Accumulated through UVA Treatment in Strawberry By-Products" Foods 12, no. 16: 2989. https://doi.org/10.3390/foods12162989
APA StyleVillamil-Galindo, E., Gastélum-Estrada, A., Chuck-Hernandez, C., Antunes-Ricardo, M., Reza-Zaldivar, E. E., Piagentini, A., & Jacobo-Velázquez, D. A. (2023). Kinetic Ultrasound-Assisted Extraction as a Sustainable Approach for the Recovery of Phenolics Accumulated through UVA Treatment in Strawberry By-Products. Foods, 12(16), 2989. https://doi.org/10.3390/foods12162989